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Preface

Human beings can localize sounds extremely well in daily life. This ability is called

spatial hearing perception. In contrast to visual perception, which covers only the front

region of a person’s hearing, spatial hearing provides three-dimensional information of

the surrounding environment, even in darkness. This information is useful in our daily

life, together with vision, when seeking objects and warning ourselves to evade potential

danger. With sound localization capability, we are well able to tell the direction of traffic.

Thereby, we can immediately ascertain the positions of speakers and auditory objects that

might be obscured from sight. Furthermore, the spatial separation of sounds improves

intelligibility in a noisy environment by a phenomenon known as the "cocktail party effect."

Therefore, spatial hearing plays a vital role in our daily communications.

Apart from daily communications, sound localization has also been considered increas-

ingly for use in modern audio devices such as hearing aids, game audio, virtual and aug-

mented reality applications, and teleconferencing. Because spatial hearing is an important

aspect of our perception, it is necessary to consider it when designing those information

systems. Nevertheless, the present telecommunication systems that we are using every day

can transmit only limited media information to us without sufficient spatial auditory aware-

ness. The original spatial sound impression of auditory events can be reduced severely by

conventional technologies. The exciting atmosphere and enjoyment of a concert and sport

event might become tedious and flat when presented to us, even when using the latest in-

formation communication systems. Therefore, it is urgent to improve spatial hearing per-

ception for the audio products of today. If technology that can achieve “sense of presence"
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can be realized, then we might even stay at home and “sit" at the best place among the

audiences to enjoy every great moment brought to use by musicians and athletes. For the

reasons presented above, spatial hearing is important for both our daily communications

and information systems in the consumer industry.

Over the past century, many scientists and researchers have made numerous attempts to

ascertain the mechanisms and principles of spatial hearing perception. Furthermore, many

audio applications have been developed in attempts to reproduce original sound fields for

listeners such as stereophonic and multi-channel (e.g. 5.1 channels and 22.2 channels) sur-

round sound techniques. No matter how complex such sound systems become, humans

can receive sound with only two ears. Therefore, binaural sound pressures should contain

all acoustic information related to spatial hearing perception. From a physical perspec-

tive, sound waves from different positions interact with a listener’s anatomical structures

(e.g., pinnae, head, and torso) with correspondingly different effects. In other words, the

sound waves travel from a certain sound source in space and reach a listener’s ears after

scattering, diffraction, and reflection from a listener’s pinnae, head, and torso. The pro-

cesses of scattering, diffraction, and reflection convert the sound field information into the

obtained binaural sound pressures. Therefore, the values of these binaural sound signals

also vary according to the sound source directions. Human brains can then use these cues

to ascertain the directions of sound arrival, which is the basic principle of human spatial

hearing. Human spatial hearing ability is mainly attributed to the discrimination of acous-

tic frequency characteristics arising during sound transmission from source positions to a

listener’s ears. These transmission characteristics are described by a head-related transfer

function (HRTF), which is conventionally represented as a response along the frequency

with spectrum characteristics strongly dependent on the sound source direction: each di-

rection of the sound incidence corresponds to a pair of HRTFs with specific frequency

characteristics. A pair of HRTFs enables synthesis of a virtual sound that seems to origi-

nate from a certain position in a free space by modifying the frequency components of any

sound source. That is the basic method for a type of spatial audio rendering called binaural
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synthesis. This notion, which was born in the 1970s, was first validated at Kobe University

in 1980. For the past few decades, psychoacoustic experiments and audio techniques based

on HRTFs have become popular and conventional modes of investigating spatial hearing

and 3D audio application development.

Actually, HRTFs are obtainable by calculation or measurement at different directions.

Although HRTF values vary with the source direction as well as the subject because of the

different size and shape of human anatomical structures, they show little dependence on

distance beyond 1 m. When plotting HRTF values at a certain distance along all directions

on a sphere, the spherical surface would have many peaks, notches and spatial variations

distributed at different regions on the sphere. Results of earlier psychoacoustic experiments

suggest that the spatial characteristics within limited areas on the sphere, which are called

HRTF local features, are extremely important for spatial hearing perception. Moreover,

the directional resolutions of HRTFs required in binaural synthesis depend on the source

direction. For these reasons, methods must be found for analyzing HRTFs locally. Nev-

ertheless, to date no method exists which allows for locally analyzing HRTFs. Methods

either evaluate an HRTF direction by direction, or consider all directions simultaneously.

To address this difficulty, this study proposes a new method applying the notion of wavelets

with the aim of better studying HRTF local features. This proposal is expected to open a

new avenue for the study and application of HRTFs. The structure of this study to achieve

the objectives above is presented below.

Chapter 1 introduces the motivation and background survey of this study. Based on

a survey of earlier research and its limitations, the study objective is proposed. Chapter

2 reviews a conventional method of modeling HRTF spatial patterns, and illustrates that

HRTF local features cannot be captured well using this conventional method. In Chapter

3, a method is proposed to model HRTF spatial patterns based on continuous spherical

wavelet transform. Using this proposed method, the HRTF local features are modeled and

the approximation errors are compared between the conventional method and the proposed

method. Chapter 4 further extends the proposed method introduced in chapter 3 using the
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discrete spherical wavelet transform for the modeling of HRTF spatial patterns. Because of

the better characteristics of the analysis functions, the expansion coefficients are expected

to control the spatial resolutions of the HRTF better and enable more efficient represen-

tations the HRTF local features. Chapter 5 describes the use of the proposed modeling

method to recover the time-domain head-related impulse responses which are necessary

for actual signal processing in binaural synthesis. In Chapter 6, an auditory model is intro-

duced to evaluate the proposed method with respect to human hearing perception. Finally,

the main conclusions of this thesis are presented in chapter 7.
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Chapter 1

Introduction

1.1 Motivation of this study

Regarding the information perceived from a sound, apart from its loudness, pitch and

timbre, the spatial information such as sound source directions and distances, also helps

enrich the impression the perceived auditory scene. Although the spatial hearing ability

is always unconsciously neglected by the listener compared with speech communication,

it plays an important role in our daily life communication. The spatial hearing perception

helps us be aware of the surrounding environment that always involves in a series of audi-

tory events, such as the position of the speaker, the direction of the cars in the traffic and

so on.

Since spatial hearing plays an important role in our daily life, it should not be missing

in the design of current audio-related devices, such as the Virtual Auditory Display (VAD)

devices, hearing aids, virtual reality (VR), augmented reality(AR), teleconference and so

on. Therefore, it is of great importance for us to understand the mechanism of our spa-

tial auditory system and principle of spatial hearing, in order to develop advanced audio

applications.

The investigation of sound localization for human beings dates back to more than one

hundred years ago [1]. Thanks to the modern signal processing technology, the knowledge
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of sound localization has also been much investigated for the past several decades [2–4].

The perception of spatial hearing with only two ears largely depends on the interau-

ral differences including the interaural time difference (ITD) and interaural level differ-

ence (ILD) [3]. These two localization cues provide the dominate cues for the sound lo-

calization in the horizontal plane. When a sound is presented from the side, the path from

the sound source to the contralateral ear is interrupted by a listener’s head. The far ear will

be shadowed and a sound attenuation result in that side. ILD is direction dependent in the

horizontal plane and can be employed by a person as a important cue for sound localiza-

tion. The ILD due to head shadow effects depends on the wavelength of sound compared

with the size of the head. For a sound source at the side, this interaural level difference

can be as much as 35 dB at high frequencies [5]. For a sound source spanning frequen-

cies below 1 kHz, the sound’s wavelength can be several times larger than head and, in

this case, the ILD between ears can be neglected [1]. For a low frequency sound, listeners

are sensitive to the interaural time difference rather than ILD. However, the sensitivity to

phase differences declines with increasing frequency up to a limit of 770Hz [1]. Another

psychoacoustic experiment also showed that the performance of pure tone sound was worst

for sounds of 1500-3000 Hz and better for lower and higher frequencies [6]. In the range

around 1500 to 3000, the stimuli are too high in frequency to provide ITD and too low to

provide ILD. There has been lots of investigation on the ITD and ILD in horizontal plane

sound localization, whose results are consistent with the notion that the spatial information

lies in ITD for low frequency and ILD for high frequency.

Apart from the binaural differences, the spectral features caused by the reflection and

diffraction by the pinnae, head and torso also provide important cues for vertical sound

localization and front-back disambiguity [7]. These spectral cues are important especially

for relative higher frequencies. There is also research showing that the first and second

notches of HRTFs can be regarded as important spectral cues [8].

The traditional way of investigating the spatial hearing perception is based on the above

cues, which can be further explained by the so called head-related transfer function and its
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binaural differences introduced in the next. However, the perception of sounds’ directions

depend on many factors, which also includes the dynamic cues(e.g., head movement or

dynamic sound source;) [9] and the properties and number of sound sources [10]. Visual

information can also influence the perception of direction of sounds [11]. Therefore, the

spatial hearing perception is a type of multimodal perception in which the dominate cues

can be regarded as the interaural differences and the spectral cues, as well as the dynamic

cues. This study is aimed at investigating the human spatial hearing by means of analyzing

the head related transfer functions.

1.2 The head-related transfer function

Here, it is denoted that a sound source direction in space is specified by its azimuthal

angle θ ∈ [−180◦, 180◦] and elevation angle φ ∈ [−90◦, 90◦], in which (0◦, 0◦) and (90◦, 0◦)

represent the front and left direction, respectively. This spherical coordinate is shown as

Fig. 1.1

Figure 1.1: Spherical coordinate system.

Head-related transfer functions (HRTF) describe the sound transmission from the free

field to the ear drum in space [2, 3, 12, 13]. This function, Hs(θ, φ, r, f ), is calculated as

the complex-valued frequency response of sound pressure at the ear drum Pe(θ, φ, rs, f ),
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divided by that in the center of the head when it is absent (Pc(θ, φ, r, f )):

Hs(θ, φ, r, f ) =
Pe(θ, φ, rs, f )
Pc(θ, φ, r, f )

, (1.1)

where rs and r are the distances from the sound source to the evaluated ear and the center of

the head, respectively. (θ, φ) denotes the azimuth and elevation angles of the sound source

whose frequency is f in space. The ITD and ILD can be calculated by the differences of

time and magnitudes of the left and right signal, both of which depends on the frequency.

As described in Eq. (1.1), the HRTF depends on the direction, frequency and distance to

the sound source. Since it is individual variable related to the listener’s anthropometric

parameters, they vary among different subjects.

Figure 1.2: Loudspeaker array for measuring HRTF in Tohoku University.

HRTF is conventionally obtained through measurement for discrete samplings of direc-

tions, using a set of loudspeaker array Fig.(1.2). To measure the HRTF. an ideal impulse
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signal is a Dirac delta function which is impossible to be create in practice. An alter-

native way is to use other excitation signals such as the TSP signal [14] or a sinusoidal

signal [3]. The measured values of HRTF for different individuals are usually stored as an

HRTF dataset. Nowadays, there are many available HRTF datasets in the world, such as

the dataset for KEMAR by the MIT Media Lab, the CIPIC dataset, the Tohoku University

dataset, and the ARI HRTF dataset, and so on [15–19].

Figure 1.3: An individual head model.

Apart from measurement, HRTF can be calculated as well using a numerical sim-

ulation like the boundary element method (BEM) and Finite-Difference Time-Domain

method (FDTD) , which is a widely used method for acoustic radiation and scattering

problems [20–22]. To calcute the HRTF using the simulation methods, a 3D scanner of

a the surfaces of a human or artificial head is needed, as shown in Fig. 1.3. [23–27] The

calculation of the HRTF can be time consuming; however, it can cover more positions than

the measuring method which only provides data for positions where a loudspeaker is avail-

able. Besides, with the BEM approach, HRTFs for the near field (e.g. the distance of the

sound source < 0.25m) can also be calculated, while it can be very demanding to measure.

Alternative calculations of the transfer functions for very simple models like a rigid sphere

or a snowman model, rather than the head model have also been studied [28, 29].
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Figure 1.4: HRTFs at azimuth 80 deg. and elevation 0 deg.

Figure 1.5: HRTF for every two degrees in azimuth ( from −180◦ to 180◦) and eleva-
tion (from −90◦ to 90◦) angles at a frequency of 7.4 kHz.

As described by Eq. (1.1), the HRTF is a function of several variables including the

frequeny and direction of the sound source. Therefore, the values of HRTF vary for differ-

ent frequencies and directions. Fig. (1.4) shows the HRTF for a sound source in direction
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(80◦, 0◦) over the full audible frequency range. Fig. (1.5) shows the BEM based calculated

HRTF at every two degrees for the azimuth ( from −180◦ to 180◦) and elevation (from −90◦

to 90◦) angles at the frequency 7.4 kHz. This results in a total of 10,622 directions. The

HRTF plotted in the spatial domain (along direction) clearly shows its direction depen-

dency for sound sources at different directions; this is very convenient for the observation

and analysis of the data as the spatial variations of the HRTF introduced by the reflections

and diffractions can be clearly revealed.

1.3 HRTF modeling

HRTF datasets contain discrete samplings; these raw data is difficult to handle by ex-

amining the data point by point. Modeling HRTF has many benefits; it helps to observe

the data in different domains and analyze the properties of the HRTFs conveniently. It is

also important to model the HRTF for further processing of HRTF such as interpolation,

extrapolation, etc. Furthermore, modeling the HRTF with a small number of parameters

can greatly reduce the size of the datasets, which is important to store and transmit them.

The HRTF is a function of direction and frequency, these functions can be modeled in these

two domains [30]. For the past decades, many attempts have been made to model HRTF,

both in the frequency and spatial domains.

1.3.1 HRTF modeling in the frequency domain

The HRTF can be regarded as the frequency response of a linear time invariant (LTI)

system. Filters models for LTI system and signal processing methods like principle com-

ponent analysis (PCA) [31] and filter models [32] are widely used to model the HRTF in

the frequency domain. The purpose of HRTF modeling is to approximate the original data

with a simple formula; therefore, approximation error is an important metric to evaluate

different modeling method. A commonly used way of evaluating the approximation error
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is based on the spectral distortion which is given by the following equation [33, 34]:

Erms =

√√
1
N

N∑
i=1

[
20 log10

|Hsynth( fi)|
|Htarget( fi)|

]2

, (1.2)

where Hsynth( fi) and Htarget( fi) are the approximated and target HRTF at the frequency fi,

respectively. N is the total number of sampled frequencies.

Filter models for HRTF

According to the theory of signal processing, the general form of describing a differen-

tial equation for a discrete-time LTI system is as follows:

x(k) = −

n∑
i=1

aix(k − i) +

m∑
i=0

biu(u − i), (1.3)

H(z) =

∑m
i=0 biz−i∑n
i=0 aiz−i =

B(z)
A(z)

, (1.4)

where u(k) is the input to the system and x(k) is the corresponding output. The order (m, n)

of the numerator (m) and denominator (n) polynomials B(z) and A(z) correspond to the

number of zeros and poles of the transfer functions, respectively. This system model is

called the autoregressive moving-average model (ARMA) [7, 35]. The HRTF for a certain

direction can be represented by these zeros and poles, this reduces the data size effec-

tively [7]. To calculate the coefficients in this model, a common criteria is to minimizes a

quadratic expression: the difference in energy between the target and synthetic data. The

HRTF can be smoothed by controlling the order of the model [7]. Some studies use other

optimization methods to do the calculation, such as the frequency warping method [36].

The HRTF data can also be preprocessed to obtain its directional transfer function (DTF),

by subtracting the average of HRTF for all directions from each HRTF.

A similar way to model the HRTF in the frequency domain is based on a finite impulse
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response (FIR) model representing the HRTF with only zeros [37]:

x(k) =

m∑
i=0

biu(u − i), (1.5)

H(z) =

m∑
i=0

biz−i = B(z), (1.6)

Another method, based on the ARMA model, is the common-acoustical-pole and

zero(CAPZ) model for the HRTF [38]. This method assumes that this HRTF set shares

the same poles in the approximation. The order for modeling can be effectively reduced

with this method.

Principle component analysis for HRTF modeling

Principle Components Analysis (PCA) is a statistical processing method which derives

several basis functions from an HRTF dataset and decomposes the target data using these

basis functions. Each HRTF can be represented as a weighted sum of these basis func-

tions [39, 40]:

dk = Cwk, (1.7)

where C is a matrix, the colums of which are the selected eigenvectors. dk is the k-th

HRTF or DTF. wk is the vector of the coefficients, representing the contribution of each

basis function to the approximation.

In Kisterler’s work [40], it was found that the HRTFs can be modeled as a linear com-

bination of five basic spectral shapes (basis functions), which accounts for approximately

ninety percent of the variance in the original HRTF magnitude functions.

It should be noticed that the basis component functions are derived from the target

HRTF set; this means that the basis functions vary for different target datasets. Although

the flexibility of target dependent basis functions allows for a more efficient modeling and

compression of HRTF data, it is also a barrier for analyzing and comparing HRTFs from

different datasets.
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1.3.2 HRTF modeling in the spatial domain

Representing the HRTF in the spatial domain has many advantages: it allows for the

observation of the spatial variations introduced by the acoustic scattering of the head for

different directions. Besides, looking at the HRTF in the spatial domain allows for a quick

comparison of HRTFs between different subjects and for different frequencies. An example

of the HRTF magnitudes in the spatial domain are plotted as in Fig. 1.6.

Figure 1.6: Plotting the HRTF magnitudes in the spatial domain.

The HRTF can be decomposed into a weighted sum of spatial basis functions. The

HRTF of a given ear can be generally represented as:

H(θ, φ) =

N∑
i=1

ci fi(θ, φ) + ε, (1.8)

where H(θ, φ) is the target HRTF data set at set frequency at azimuth and elevation angles

θ and φ, respectively. If given the spatial basis functions fi(θ, φ) with a total number of

N, the corresponding coefficients ci can be obtained in such a way to represent the target

HRTF data in the spatial domain.

Various methods are used to select or derive the spatial basis function wi(θ, φ). These

basis function are usually chosen as spatial PCA , Legendre polynomials, or the spherical

harmonics [41–43]. The spherical harmonic decomposition has been widely applied to

HRTF modeling in the past decades due to its several advantages. The spherical harmonics
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form an orthogonal basis for functions on the sphere, low orders give an ideal approxi-

mation of the coarse structures of in the target dataset [44]. Modeling methods using the

spherical harmonics also allow for interpolation since the basis functions are continuous

functions over all direction [45, 46].

1.3.3 Local analysis of the HRTFs

Although the HRTF spatial patters have been much studied with spherical harmon-

ics, only the overall spatial characteristics are described with this method. However, as

suggested by the previous study, humans localize sounds with different resolutions at dif-

ferent directions as shown in Fig. 1.7 [47]. Besides, the required directional resolutions

of the HRTF for convincing spatial audio rendering also vary according to the directions

(Fig. 1.8) [48]. Based on these perceptual evidences, HRTFs should be considered to be

modeled locally at different directions.

Figure 1.7: Average minimum audible angle as a function of the stimulus frequency (Mills
AW,1958). [47]
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Figure 1.8: Required directional resolutions of HRTFs for binaural audio rendering (Min-
naar P, et al.,2000). [48]

1.3.4 Summary of the exsiting modeling methods

Modeling HRTF has many advantages. Basically, HRTF modeling in the frequency

domain allows for convenient frequency interpolation while modeling in the spatial domain

allows for convenient spatial interpolation. Besides, modeling HRTF have some other

benefits as summarized in Table 1.1.
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Table 1.1: Benefits of modeling HRTFs

Benefits HRTF modeling methods

Smoothing HRTFs for designing

psychoacoustic tests

Smoothing in frequency domain

• IIR filter [7]

• PCA [39]

Smoothing in the spatial domain
• Spherical harmonics [44]

Interpolating HRTF for unknown

directions

In frequency domain

• Common pole zero model

[49]

In the spatial domain

Interpolating ITD

• Spherical harmonics [45]

Interpolating HRTF magnitudes

• Spherical harmonics [46,50]

Extrapolation of HRTF for un-

known distances
Along the distance

• Spherical harmonics [46,50]

• Fourier legend trans-

form [51]

Preprocessing for HRTF

personalization

HRTF magnitudes
• PCA [52, 53]

Interaural cues

Sinusoidal models

• For ITD [54]

• For ILD [55]
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Table 1.2: Existing method of HRTF modeling.

Domain Method Compression

Frequency

interpola-

tion

Spatial in-

terpolation

local

analysis

Frequency

domain

Principle

component

analy-

sis(PCA)

[39, 40]

Possible Possible
Possible

but limited

Not possi-

ble

Frequency

domain

Filter mod-

els(FIR,

IIR) [7, 37]

Possible Possible
Possible

but limited

Not possi-

ble

Spatial

domain

Spherical

harmonic

decom-

position

[41]

Possible
Not

possible
Possible

Not possi-

ble

Table 1.2 shows some of the existing methods for HRTF modeling. All of them allows

for data compression, either in the frequency domain, or the spatial domain. The spher-

ical harmonic decomposition is a conventional method for modeling of the HRTF in the

spatial domain, since it provides good modeling efficiency, especially at low frequencies.

Besides, the use of continuous basis functions allows for the spatial interpolation of HRTF.

Nevertheless, there are still some limitations to this method:

• The expansion coefficients of the spherical harmonic decomposition carry informa-

tion for all directions. This is because the basis functions take significant values for

all directions. The analysis of those direction dependent local features is difficult

with this method.
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• Some local features of the HRTF require a large number of harmonics to be approx-

imated; this is not very efficient.

• The target HRTF dataset to be decomposed using the spherical harmonics requires

data for all directions. In some cases, the HRTF data is available only for a local

region.

• Perceptual studies suggest that the angular resolution needed to characterize human

sound localization depends on source’s direction [56]. The directional resolution of

the HRTF required for binaural synthesis varies for all directions [48]. The spher-

ical harmonic expansion considers all directions simultaneously. Local analysis is

difficult using methods based on the spherical harmonics.

Due to the above limitations of spatial modeling based on the spherical harmonic ex-

pansion. A way is necessary to capture local features of the HRTF.

1.4 Objective

HRTFs are functions of frequency and direction. As these two variables are indepen-

dent, the HRTF can be modeled along one or the other. This thesis follows the latter, since

qualitative analysis is more easier in the spatial domain than the frequency domain. The

variations of HRTF magnitudes in the spatial domain exhibit many direction dependent

features introduced by the filtering of pinnae, head and torso; this is an important property

of HRTF whose values much rely on the directions.

None of the existing modeling methods allow for local analysis of the HRTF. This thesis

seeks to develop a new method to model the HRTF in the spatial domain based on a set of

wavelets on the sphere which take significant values only on a small region on the sphere.

This method is expected to allows for a local reconstruction of the HRTF. This method

is also expected to be capable of representing local features of the HRTF more efficiently

than the existing methods. A spatial correspondence between the local variations of the
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HRTF and the expansion coefficients is also expected. This method way may open a new

approach to the study of the HRTF, whose values largely depend on the sound source’s

direction. The following figure shows the structure and research map of this thesis.
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Figure 1.9: Research map of this thesis.
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Chapter 2

Modeling of head-related transfer

function based on spherical harmonics

2.1 Introduction

This chapter introduces spherical harmonic functions which are a set of orthogonal

functions covering different spatial frequencies on the sphere. These functions can be used

to represent functions defined on the surface of a sphere. Here, the HRTF dataset for all

directions are decomposed by these basis functions into a series of coefficients. The HRTF

dataset thus can be represented by these coefficients. Section 2.2 briefly introduces the

preliminary theory to represent HRTF dataset with a set of basis functions, the spherical

harmonics. Section 2.3 validate this modeling method by simulations. Section 2.4 summa-

rizes the content of this chapter.
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2.2 Preliminaries

The spherical harmonic functions are derived as the solution to the directional part of

the Laplace’s equation. An arbitrary surface function on the sphere can be represented a

set of spherical harmonics of different spatial patterns. The spherical harmonic transform

basically decompose a target function on the sphere into a set of expansion coefficients.

Therefore, the original surface function on the sphere may be described with those de-

composed expansion coefficients. Since this study focuses on the HRTF magnitudes in the

spatial domain. The HRTF magnitudes for all directions are modeled with the spherical

harmonic decomposition.

2.2.1 Spherical harmonics

Assume that the solution function ψ for the Laplace’s equation is harmonic. The

Laplace’s equation in the standard spherical coordinate system is the partial differential

equation [57]

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

]
ψ(r, θ, φ) = 0. (2.1)

Here r denotes the radial distance. θ, and φ describe the inclination angle and the azimuth

angle, respectively.

If under the assumption that ψ is independent on r, the solutions to Eq. (2.1) can be

described as ψ = Θnm(θ)Φm(φ). Therefore, the original Laplace’s equation can be divided

into two differential equations

[
1

sin θ
d
dθ

(
sin θ

d
dθ

)
+ n(n + 1) −

m2

sin2 θ

]
Θ(θ) = 0, (2.2)

[
d2

dφ2 + m2
]
Φ(φ) = 0. (2.3)

Eq. (2.2) can be solved by the transformation of variables ζ = cos θ, which derives
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the Legendre differential equation. Eq. (2.3) can be regarded as a complex exponential

function of φ. The above two solutions are combined as a joint function Ynm = ΘnmΦm,

which is called the spherical harmonic function of order n and degree m, [57]

Ynm(θ, φ) = NnmPm
n (cos θ)eimφ, (2.4)

where Pm
n is the associated Legendre function and Nnm is a normalization coefficient.

The associated Legendre function can be described as [57]

Pm
n (ζ) = (−1)m(1 − ζ2)m/2 1

2nn!
dn+m

dζn+m (ζ2 − 1)n, (2.5)

where ζ ∈ [−1, 1], and n is a positive integer defining the order, while m ∈ [−n, n] denotes

the degree of the sollution function. The above sollution can be further extended based on

the following descriptions.

Pm
−n−1(ζ) = Pm

n (ζ), (2.6)

P−m
n (ζ) = (−1)m (n − m)!

(n + m)!
Pm

n (ζ). (2.7)

The normalization coefficient Nnm is chosen such that
∫ 2π

0

∫ π

0
|Ynm(θ, φ)|2 sin θdθdφ = 1,

that is

Nnm =

√
2n + 1

4π
(n − m)!
(n + m)!

. (2.8)

Up to now, the above solutions deal with complex values where the analysis functions,

the spherical harmonics, are of complex values, too. The real-valued spherical harmonics

read as below.

Ym
n (θ, φ) =



(−1)m+1
√

2n+1
2π

(n+m)!
(n−m)! P

−m
n (sin φ) cos(mθ) m > 0√

2n+1
4π P0

n sin(θ) m = 0

(−1)m
√

2n+1
2π

(n−m)!
(n+m)! P

m
n (sin φ) sin(mθ) m < 0

(2.9)

The plotting of the spherical harmonic Ym
n is shown as Fig. 2.1. As can be observed,
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the spatial variations of spherical harmonics for higher orders change more rapidly on the

sphere, which enables to cover higher spatial frequency.

Figure 2.1: Spherical harmonic Ym
n of degree m and order n (n = 1, 2, 3).

Spherical harmonic transforms

The integral calculation along the direction Ω = (θ, φ) on a sphere S2 with a unit radius

can be described as ∫
Ω∈S2

dΩ =

∫ 2π

0

∫ π

0
sin θdθdφ. (2.10)

An important property of the spherical harmonic functions is that each one is orthonor-

mal to another. ∫
Ω∈S2

Ynm(Ω)Y∗n′m′(Ω)dΩ = δn−n′,m−m′ . (2.11)

Here ∗ is the complex conjugate operator and δi, j the Kronecker Delta. They are also
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complete on S2:
∞∑

n=0

n∑
m=−n

Ynm(Ω)Y∗nm(Ω′) = δ(θ, θ′)δ(φ, φ′), (2.12)

where δ(x) denotes the Dirac’s delta function.

After defining the spherical harmonics as above, the decomposition of a target function

f (Ω) on S2 can be represented as a weighted sum of spherical harmonics as follow [58]:

f (Ω) =

∞∑
n=0

n∑
m=−n

fnmYnm(Ω), (2.13)

where the expansion coefficients fnm denotes the spherical wave spectrum, which can be

calculated as below [58]:

fnm =

∫
Ω∈S2

f (Ω)Y∗nm(Ω)dΩ. (2.14)

As for the case of real-valued spherical harmonics, the transform can be described as

below.

fnm =

∫ π

−π

∫ π/2

−π/2
f (θ, φ)Ym

n (θ, φ) sin(φ)dφdθ. (2.15)

After the spherical transform, the expansion coefficients can be used to represent the

target dataset which is always a point cloud. For the decomposition of discrete target data,

it can be computed with least square method in which the analysis functions, spherical

harmonics, are discretized in space [59].

2.2.2 Representing HRTF magnitudes with spherical harmonics

As HRTF are functions of direction in space, many attempts have been made to model

the spatial part of HRTF using spherical harmonic functions [41]. For each frequency, the

HRTF magnitudes can be represented as a weighted sum of spherical harmonics described

by the following function:

H(θ, φ) =

∞∑
n=0

n∑
m=−n

Bnm · Ynm(θ, φ), (2.16)

23



where H(θ, φ) is a dataset of HRTF magnitudes at a certain frequency. Ynm(θ, φ) is the

spherical harmonic function of order n and degree m. Bnm is the coefficient of Ynm(θ, φ) in

the approximation. In practice, the order n is truncated to a maximum order N, in such a

way, Eq. (2.17) becomes:

H(θ, φ) =

N∑
n=0

n∑
m=−n

Bnm · Ynm(θ, φ) + ε, (2.17)

where ε is the error in the approximation. To calculate the coefficients Bnm, we can not

use the Eq. (2.15) directly as it is for a continuous function. However, the HRTF dataset

are commonly obtained by measurement or calculation for discrete directions. Here a least

square method can be used for the calculation if the dataset and its transform is in matrix

form:

H = WC + ε, (2.18)

Where H is the vector target HRTF dataset. W is the matrix of spherical harmonics, in

which each column is spherical harmonic for a certain order and degree. H is the vector of

expansion coefficients.

C = W+H, (2.19)

- Once we can obtain the expansion coefficients, we can use them to represent the HRTF

data size which usually has a big data size. An advantage of spherical harmonics is that it

allows for convenient interpolation of HRTF as long as the expansion coefficients is known.

2.3 Numerical evaluation

This method is tested by applying it to the target HRTF data set calculated using the

Boundary Element Method for the SAMRAI dummy head ( [23]). The HRTF dataset for

sound sources at 1.5 m were calculated at frequencies between 93.75 to 20, 000 Hz with

the interval of 93.75 Hz and samples every two degrees in azimuth and elevation angles

for a total of 16, 022 directions. Here the target HRTF is considered to be the magnitudes
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values, and the real-valued spherical harmonics are used in the approximation ( [41]).

For an objective evaluation, a conventional measure of approximation error in the fre-

quency domain is defined using the Root Mean Squared (RMS) value ( [60]), here a relative

error for evaluating the approximation accuracy in the spatial domain is defined as:

Emnl =
1
N

N∑
m=1

|Hsynth(θm, φm) − Htarget(θm, φm)|
|Htarget(θm, φm)|

, (2.20)

where Hsynth(θi, φi) and Htarget(θi, φi) are the reconstructed HRTF and target HRTF at the

sampling direction (θi, φi), respectively; N is the total number of the HRTF samples under

study.

2.3.1 Parameters and conditions for the evaluation

The evaluated dataset is a calculated HRTF using BEM method [23] for all directions

at the frequency of 7.4 kHz at a distance of 1.5 m. The magnitudes of this target HRTF is

shown in Fig. (2.4).
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 2.2: Target HRTF to be modeled
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2.3.2 Simulation results

To calculate the expansion coefficients, the least squared method is used for the discrete

samplings of HRTF on the sphere as shown in Eq. (2.19)

(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 2.3: Reconstructed HRTF using spherical harmonics up to order 5.
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 2.4: Reconstructed HRTF using spherical harmonics up to order 10.
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 2.5: Reconstructed HRTF using spherical harmonics up to order 20.
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 2.6: Reconstructed HRTF using spherical harmonics up to order 30.
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Figure 2.7: Approximation errors based on spherical harmonics at multiple frequencies.

The approximated HRTF up to different orders (order 5, 10, 20 ,30) are shown from

Fig. (2.3) to Fig. (2.6). As can be observed in these figures, approximation to a higher

orders enable to catch finer details of the HRTF. Some sharp changes of the approximated

HRTFs do not appear until the order reaches as a rather high order. The approximation er-

rors (average decibel distance across all directions between the approximated HRTF mag-

nitude and target HRTF magnitude) based on spherical harmonics at multiple frequencies

are shown in Fig. 2.7.

2.4 Summary

In this chapter, a common method to analyze HRTFs covering all directions is is intro-

duced based on the spherical harmonic decomposition (e.g., [41, 61]). Rather than looking

at the data direction-by-direction, this approach characterizes the HRTFs using a set of

expansion coefficients. The spherical harmonic functions take significant values over all

directions on spheres, which are called global functions. Therefore, each coefficient in-

cludes information from all directions at a particular spatial frequency. This is suited as
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a global representation of the target data; however, it requires knowledge of the HRTFs

for a sampling covering all directions. In addition, perceptual studies suggest that the

minimum audible angle to characterize human sound localization depends on the source’s

direction ( [56]). The directional resolution of HRTF required in binaural synthesis varies

for all directions on the sphere around the head ( [48]). Since the conventional methods

based on spherical harmonics are difficult for local analysis, methods are needed to analyze

the HRTFs at different resolutions for different directions.
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Chapter 3

Locally modeling head-related transfer

functions with continuous spherical

wavelets

3.1 Overview

The spherical harmonic decomposition has been a conventional method for modeling

the HRTF spatial pattern. However, there still exists some limitations with this method

considering the modeling efficiency and the human spatial hearing characteristics. This

chapter proposes to use continuous wavelets on the sphere for representing the HRTF spa-

tial patterns.

3.2 Modeling HRTFs using continuous spherical wavelets

In this section, a series of continuous spherical wavelets or local analysis functions

constructed by a projection of wavelets in Cartesian plane are proposed, which take signif-
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icant values over a small region of directions on the sphere rather than the global functions

like spherical harmonics. These local functions still obtained by scaling and translating an

initial wavelet function on the sphere basing on the classic wavelet theory.

3.2.1 Continuous spherical wavelet functions on the sphere

Wavelet transform has various applications in audio and image processing [62,63]. The

morlet wavelet [64] is a common wavelet which has a simple composition: a oscillation

function and a Gaussian window. A basic morlet wavelet has the following description:

w(x) = cos(αx)e−
x2

2σ2 , (3.1)

where w(x) is a morlet wavelet. α controls the oscillation rate of the cosine function. σ

determines the width of the Gaussian window. The classic wavelets are defined in 1D and

Cartesian coordinate as the samplings in these cases can be absolutely equal. While for the

case on the sphere, as there is no perfect equally distributions of points on the sphere, there

are no perfect ways for constructing wavelets on the sphere. Here we try to project the

wavelets from the Cartesian plane to the functions on the sphere, so as to construct wavelet

functions on the sphere. The projection method is simple which just replace the ’x’ with a

spherical distance in Eq. (3.1). The proposed local function is thus defined as:

W0(θ, φ) = cos
[
α · D0(θ, φ)

]
· e−

D2
0(θ,φ)

2σ2 , (3.2)

where W0(θ, φ) is a spherical wavelet functions center at (θ0, φ0). D0(θ, φ) denotes the spher-

ical angle between (θ, φ) and (θ0, φ0) for a unit sphere, and parameters α and σ control the

oscillation rate and the width of Gaussian window, respectively. Since multiple wavelets

which cover different spatial frequencies are required, a scaling factor S is introduced here.

Therefore, a series of scaled wavelet function are generated:

W0,S (θ, φ) =
√

S cos
[
α · S · D0(θ, φ)

]
· e−

S 2 ·D2
0(θ,φ)

2σ2 . (3.3)
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With the above generation method, continuous spherical wavelets of different spatial fre-

quencies are expected to be constructed with the corresponding different scaling factor S .

After defining those local functions on the sphere as in Eq. (3.3) . A target HRTF dataset

on the sphere can be approximated as a weighted sum of those wavelets functions, which

can be described as follows:

H(θ, φ) =

∞∑
`=1

∑
i∈D(`)

c`,i ·Wi,`(θ, φ), (3.4)

Here, Wi,`(θ, φ) is the local function whose scale is ` and the center position is (θi, φi); c`,i

is the corresponding expansion coefficient in the decomposition. The samplings of points

corresponding to a certain scale ` is denoted as D(`). Due to the reason that it is very

difficult to construct local functions with perfect discrete frame. The expansion coefficients

are obtained with a least square sense.

3.3 Local represention of HRTF using the propsed local

functions

The main difference of the proposed local functions from the conventional spherical

harmonics is that the former takes significant value in a local region while the latter con-

sider all directions at one time. Therefore, the proposed wavelet functions may have a good

ability to describe the HRTF local features distributed in different local regions.To conduct

a local representation, only those wavelets important to a target local region is selected for

the purpose. Since the low-scale local functions are constructed with big spatial windows,

they have wide influence in space, while those high-scale those have more compact sup-

port on the sphere. To implement it, all local functions with the center positions inside

the target local region are selected in the reconstruction of the target HRTFs. Besides, the

local functions around the local region, however with its amplitude decreased to 10 % of

the peak value are selected for the local representation as well.
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3.4 Numerical evaluation

3.4.1 Parameters and conditions for the evaluation

This analyzed dataset is the same as the one in Sec. (2.3), a calculated dataset for every

two degrees in azimuth and elevation angles at frequency between 93.75 Hz to 20 kHz.

The parameters in Eq. (3.3) are empirically set to α = 0.667 and σ = 1. There are many

different ways to define the sets D(`) ( [65]) of the manifolds on the sphere. Here, an initial

sampling is decided as vertexes of an icosahedron [66] whose 12 points are uniformly

distributed on the sphere. To derive the directions of samplings for the higher scales, an

midpoint is introduced in the projected curve of each edge of the previous scale. To define

the scaling factor in the discrete form, wavelets functions on the sphere are generated in a

dyadic step as below:

S ` = 2`−1. (3.5)

The spherical wavelets constructed using this method and the corresponding located posi-

tions thus can be shown in the following figures.
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Figure 3.1: Contructed wavelet of scale 1 using the proposed method in chapter4 and its
located positions on the sphere.

Figure 3.2: Contructed wavelet of scale 3 using the proposed method in chapter4 and its
located positions on the sphere.
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3.4.2 Simulation results

3.4.3 Objective measurement

The goal of this study is to approximate the original HRTF magnitudes using a set of

analysis functions. To measure the approximation error in the spatial domain, the mean

normalized error is used, which is defined as

Emnl =
1
N

N∑
m=1

|Hsynth(θm, φm) − Htarget(θm, φm)|
|Htarget(θm, φm)|

, (3.6)

where Hsynth(θm, φm) and Htarget(θm, φm) are the reconstructed HRTF magnitude and target

HRTF magnitude at direction (θm, φm), respectively; and N is the total number of HRTF

samples under study.

Representing for all directions

For modeling the HRTF spatial patterns, as shown in Fig. (3.3), an example of the

HRTF magnitudes covering all directions in space at a single frequency 7.4 kHz is given.

Then, the target HRTF magnitudes on the sphere are represented based on the modeling

proposal introduced in Section 3.2.1 up to a certain scale. The approximated HRTF mag-

nitudes are shown in Fig. (3.4), Fig. (3.5) and Fig. (3.6) which respectively shows the

modeling results based on the proposed method up to scale of 3, 4 and 5. The correspond-

ing Emnl is 0.09, 0.04 and 0.01, respectively. This result shows that the approximation up to

a higher scale covers more spatial frequencies and therefore yields a smaller approximation

error.
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Figure 3.3: Target HRTF.
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 3.4: Reconstructed HRTF using local functions up to scale 3. Emnl=0.09.
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 3.5: Reconstructed HRTF using local functions up to scale 4. Emnl=0.04.
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(a) View(170◦,−22◦)

(b) View(−5◦,−10◦)

Figure 3.6: Reconstructed HRTF using local functions up to scale 5. Emnl=0.01.

Representing for a local region of directions

Since the main difference between the proposed wavelets on the sphere and spherical

harmonics is that the former decomposes the target HRTFs with analysis functions with
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compact support on the sphere. The proposed method introduced in this chapter is expected

to better capture HRTF local features, in such a way that the target HRTF magnitudes

over a local region may be more efficiently represented. Same as the method introduced

previously in section 3.3, those wavelets that have a great impact on the target local region

are selected in the approximation.

Figure 3.7: Values for the coefficients of scale 5.

Fig. 3.8 givens an example of this local representation, in which the target HRTFs of

a local region center at (90◦, −48◦) on the sphere are approximated up to scale 5. The

radius of this local region one the sphere is chosen to be a spherical distance of 1.5 m with

a corresponding size of 2.888 steradians. Fig. (3.7) shows the expansion coefficients of

scale 5. It can be observed that there seems to be a correspondence between the narrow

deep notch of the HRTF and the scale 5 coefficients. This indicates that the expansion

coefficients may have a potential to describe the local features of HRTF. The approximation

error of this regional representation results in terms of Emnl of 0.006.
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(a) The local region below the white doted line.

(b) The local region on the sphere.

Figure 3.8: The local region to be reconstructed is center at (90◦, −48◦) with a size of 2.888
steradians on the sphere. Panel(a) present this region unfolded to euclidean plane; panel(b)
present the same region on the sphere.

A comparison is made between the Emnl values for the local representation of HRTF

at 7.4 kHz over the local region introduced above using the proposed modeling method

based on the continuous spherical wavelets and the conventional method based on spherical
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harmonics (e.g., [41]). When modeling with a comparable number of analysis functions,

the proposed continuous spherical wavelets up to scale 4 with 275 wavelet functions and

scale 5 with is 937 wavelet functions yield Emnl values of 0.022 and 0.006 respectively,

which has smaller values of Emnl values than that of modeling using spherical harmonics

up to order 16 with 256 spherical harmonics and order 30 with 961 spherical harmonics,

with Emnl of 0.054 and 0.018, respectively.

3.4.4 Approximation error for multiple frequencies

Here, the proposed method is implemented for modeling HRTF magnitudes of multiple

frequencies, linearly distributed between 93.75 to 20,000 Hz. In order to compare the local

modeling performance of the proposed method and the conventional method [41] based on

spherical harmonics, the simulations now are extended for the case of multiple frequencies.

Although the conventional modeling method based on spherical harmonics is suitable for

global representation of HRTFs, only the local region center at (90◦, −48◦) is evaluated

by the two methods. Besides, these two modeling methods are set to have a compara-

ble numbers of the parameters in the comparison. In detail, the proposed local modeling

method up to scales 4 with 275 wavelets and scale 5 with 937 wavelets is compared with

the modeling based on spherical harmonics up to, respectively, order 16 with 289 spherical

harmonics and order 30 with 961 spherical harmonics. The comparison results are shown

in Fig. (3.9) and Fig. (3.10) which suggests that the proposed method using the local func-

tions yields smaller Erms values than that using the spherical harmonics when the number

of used analysis functions are comparable in the approximation.
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Figure 3.9: Comparison with spherical harmonics up to order 16: Erms with the proposed
method up to scale 4 (number of local functions is 275) and that with the conventional
method up to order 16 (number of spherical harmonics is 289)
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Figure 3.10: Comparison with spherical harmonics up to order 30: Erms values with the
proposed method up to scale 5 (number of local functions is 937) and the conventional
method up to order 30 (number of spherical harmonics is 961).
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3.5 Summary

In this chapter, to locally model the HRTF spatial patterns, a set of continuous spher-

ical wavelets is proposed for the purpose. Different from the spherical harmonics that

take significant values in all directions, the proposed wavelets on the sphere have com-

pact support on the sphere with different scaling factors and center positions. Numerical

simulation shows that approximation up to a higher scale has corresponding smaller ap-

proximation error. Furthermore, the proposed method allows for local representation of

the HRTF with appropriately selecting the wavelet functions that intersect the target lo-

cal region. Therefore, it can achieve the direction dependent spatial resolution needed

for accurate sound localization in a certain target region. Furthermore, in the decomposi-

tion of HRTF of a local region at 7.4 kHz, there seems to be a correspondence between

the values for high-scale coefficients and the spatial details of the HRTFs. It may indi-

cate that the expansion coefficients have a potential to describe the HRTF local features.

The correspondence may be improved by defining analysis functions with lower redun-

dancy. Finally, given a comparable number of analysis functions, the proposed method

yields smaller values of approximation errors to represent HRTF spatial pattern of a local

region than a conventional spherical harmonics method when using a a comparable num-

ber of analysis functions.The main content of this chapter is also summarized in a pub-

lished paper by the author (copyright at the Journal of the Acoustical Society of America,

https://asa.scitation.org/doi/10.1121/1.4962805). [67]
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Chapter 4

Discrete modeling of head-related

transfer functions with spherical wavelet

transform

4.1 Introduction

The continuous spherical wavelet proposed in 3 drives the expansion coefficients from

the sampled HRTF dataset through the least square optimization. However, the target

HRTF dataset is always discrete along the direction and there is a mismatch between the

target data and the analysis function. For this reason, it is difficult to control the spatial

resolution of the reconstructed HRTF through the expansion coefficients if the analysis

functions lack orthogonality. To tackle this problem, this chapter proposes to model the

HRTF spatial patterns based on discrete spherical wavelet transform with better character-

istics among the analysis functions.
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4.2 Review of spherical wavelet transform

For the purpose of modeling HRTF in a certain local region on the sphere, P. Bates

et al. recently proposed to use Slepian functions to decompose the target HRTFs inside a

certain local region [68]. The Slepian functions are orthogonal analysis functions corre-

sponding to the target local region, which means the construction of the Slepian functions

depends on the target region on the sphere. This local modeling method makes sense if

HRTFs only inside that region are of interest. However, since the construction of Slepian

functions depends on the target local region and do not consider other regions simultane-

ously. Therefore it is hard to control the spatial resolution of the reconstructed HRTFs

locally over the entire sphere. The wavelet analysis on the sphere may be a solution to this

problem. According to the classic wavelet theory, a series of wavelets for different scales

and positions is generated by dilating and translating a mother wavelet [69–71]. While for

the case on the sphere, this way of generating wavelets is not feasible enough. Despite that

there exists several methods which construct continuous wavelets or localized functions on

a sphere by projecting the wavelets from the euclidean plane to the sphere [72–77], it is

still difficult to set a discrete frame for the dilation and translation process on the sphere.

For this reason, representing discrete data on a sphere still remains a problem with the con-

tinuous spherical wavelet analysis, thus the same for representing discrete HRTF data on

the sphere. To generate discrete spherical wavelets for efficiently modeling target functions

on a sphere, Schröder and Sweldens proposed the lifting scheme for the purpose [78–80].

A main difference from the classic wavelet analysis which constructs the wavelets through

the dilation and translation of a initial wavelet, lifting scheme straightly obtain the expan-

sion coefficients from the predefined discrete manifolds. Although lifting scheme based

spherical wavelets have been extensively applied in the field of computer graphics and

medical signal processing [81–83], to the best of the authors’ knowledge, these spherical

wavelets have not yet been applied to the modeling of HRTF. Here in this chapter, the dis-

crete wavelet analysis based on lifting scheme is conducted for modeling the HRTF spatial

patterns.
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4.2.1 Multiresolution analysis

Although the lifting scheme process does not construct wavelet functions directly, its

multi-resolution analysis is very similar to that of the classic wavelet theory. Here, the

target function is divided into two parts: the approximation and detail part, as if processed

through a low-pass and a high-pass filter, respectively. Fig. 4.1 shows an example, where a

high-pass filter (“High”) and a low-pass filter (“Low”) calculate the wavelet coefficients W`

and scaling coefficients S ` at a certain scale level ` = 1, ..., L− 1, which corresponds to the

detail and approximation parts, respectively. An example of the multi resolution analysis of

function on the sphere using spherical wavelet transform based on lifting scheme is shown

in Fig. 4.2.

Figure 4.1: Multiresolution analysis based on wavelet analysis.

Figure 4.2: Multiresolution analysis of function on the sphere using spherical wavelet
transform based on lifting scheme.
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4.2.2 Lifting scheme based spherical wavelets

To uniformly define the discrete manifolds on the sphere, the icosahedron and its sub-

division samplings with different resolutions are used for the purpose. A vertex set at level

` is denoted as V` =
{
~v`,i

}
i=1,...,I` , where ~v`,i defines a vertex at level `, and I` is the total

number of vertex at this level. An icosahedron vertex is thus defined as a root level set V1,

which has a total of points I1 = 12. The next level vertex set V`+1 can be obtained by adding

midpoints at every edge of the previous level and then projecting them on the sphere; this

midpoint set is denoted as M` =
{
~m`, j

}
j=I`+1,...,I`+1

, where ~m`, j denotes the midpoint at level

`.

Figure 4.3: Sampling of an icosahedron V1 and its following subdivisions V2, V3, and V4

from left to right, with the vertex number of 12, 42, 162, and 642, respectively.

A vertex set can be divided into a lower-scale vertex set and the corresponding midpoint

set, namely V`+1 = V` ∪ M`. For example, Fig. 4.3, shows an icosahedron sampling set V1,

and its subdivision vertex sets V` (` = 2, 3, 4, ...).

Figure 4.4: Local neighborhoods (N(~m) = ~v(k), k = 1, ..., 8}) of a point ~m ∈ M` ⊂ V`+1 using
the local naming scheme. The dashed-lines are the edges of next subdivision.

To conduct the spherical wavelet transform, a local naming scheme is applied, where
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each ~m`, j ∈ M` is only filtered with points over a small neighborhood. As an example, in

Fig. 4.4, a midpoint ~m ∈ M` is surrounded by the neighborhood set N(~m) which consists

of 8 points (N(~m) = ~v(k), k = 1, ..., 8) [79, 84]. When performing the forward spherical

wavelet transform, the vertex level goes from the leaf level to the root level as ` decreases.

By implementing the steps backwards, the inverse transform is realized. Generally, the

process of the forward transform can be shown as below.

Figure 4.5: Lifting scheme forward wavelet transform.

• Forward step 1:

∀~v`,iεV` : S (~v`,i)← S (~v`+1,i)

∀~m`, jεM` : W(~m`, j) = S (~v`+1, j) −
∑
~v`,iεN(~m`, j) zw

`,i, jS (~v`,i),

where S (~v`,i) denotes the scaling coefficient corresponding to a point ~v`,i on V`, and

W(~m`, j) the wavelet coefficient corresponding to the point ~m`, j on M`. Please notice

that the target function H which is set to be the same as the initial scaling coefficients

at the finest level L, namely H(~vL,i) = S (~vL,i); zw
`,i, j are the weights for filtering the

neighborhood set N(~m`, j) around a midpoint ~m`, jεM` in order to predict the value of

the midpoint. There are different ways to define the filtering neighborhood and the

corresponding weights. Here in this study, the butterfly subdivision scheme [79] is

applied for the purpose, which leads to that, zw
`,1, j = zw

`,2, j = 1/2, zw
`,3, j = zw

`,4, j = 1/4,

and zw
`,5, j = zw

`,6, j = zw
`,7, j = zw

`,8, j = −1/16.

• Forward step 2:
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With the wavelet coefficients W(~m`, j) calculated in step 1, the scaling coefficients

S (~v`,i) are updated in order to represent the approximation as:

∀~m`, jεM` : S (~v`,v1) = S (~v`,v1) + zs
`,1, jW(~m`, j), S (~v`,v2) = S (~v`,v2) + zs

`,2, jW(~m`, j).

Here, ~v`,v1 and ~v`,v2 denote the two endpoints on the parent edge of ~m`, j. zs
`,i, j

are weights to satisfy that the resulting wavelet has a vanishing integral: zs
`,i, j =

I`+1, j/2I`,i, in which I`,i is the integral of the scaling function of ~v`,i.

As shown in Fig. 4.5, when performing the forward transform, the higher level ver-

tex set V`+1 corresponding to the scaling coefficients S (V`+1) are split into the lower-level

vertex set V` and the midpoint set M`, respectively. The coefficients of V` are used to “Pre-

dict" the coefficients of midpoint set M` and the prediction difference is used as the wavelet

coefficients W(M`), which corresponds to the “Forward step 1". In “Forward step 2", the

obtained wavelets coefficients W(M`) calculated in step 1 update the coefficients of V` and

the resulted scaling coefficients S (V`) represent the approximation of S (V`+1). Therefore,

the forward step 1 and 2 actually correspond to the high-pass filter and low-pass filter in

Fig. 4.1 which calculate the wavelet coefficients and scaling coefficients, respectively.

The inverse transform can be performed by impelementing the above two steps back-

wards.

• Backward Step 1:

Calculate S (~v`,i):

∀~m`, jεM` : S (~v`,v1) = S (~v`,v1) − zs
`,1, jW(~m`, j), S (~v`,v2) = S (~v`,v2) − zs

`,2, jW(~m`, j).

• Backward Step 2: ∀~v`,iεV` : S (~v`+1,i)← S (~v`,i)

∀~m`, jεM` : S (~v`+1, j) = W(~m`, j) +
∑
~v`,iεN(~m`, j) zw

`,i, jS (~v`,i)

In the forward transform of the lifting scheme, the scaling coefficients S and wavelet

coefficients W of a target function H are calculated. While in the inverse transform, the
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target function is synthesized through the calculated expansion coefficients. Here, the for-

ward and inverse transform based on the lifting scheme can be denoted asW andW−1, re-

spectively. Please notice that the expansion coefficients consist of the scaling and wavelet

coefficient S and W, namely, C = {S ,W} in the spherical wavelet decomposition, and can

be obtained through the forward transform as C = W{H}. By implementing the inverse

spherical wavelet transform, the approximation of the target function can be realized with

the decomposed expansion coefficients, namely H =W−1{C}.

Different from the classic wavelet theory, the lifting scheme analysis avoids construct-

ing the analysis function directly. However, if the value of coefficient corresponding to a

position of interest set as 1 and the rest expansion coefficients set as 0, the generation of the

corresponding analysis function can be realized. With this method, the wavelet or scaling

function of level ` and position ~m`,p or ~v`,p in the lifting scheme analysis can be generated

as below:

Y`,p =W−1
`,p{C}. (4.1)

Here,W−1
`,p denotes the inverse transformW−1 from the root to the leaf level; the expansion

coefficient c`,p ∈ C is set as 1, and the rest of the coefficients are set as 0.
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Figure 4.6: Analysis functions in Eq. 4.1 for the spherical wavelet transform (the leaf level
is set to scale level 6) based on the lifting scheme with the butterfly subdivision: scaling
function of scale level 1 (upper left), and wavelets of scale level 1 (upper right), 2(down
left), and 3(down right). The finest resolution corresponds to level 6.

Fig. 4.6 shows the scaling function of scale level ` = 1 and spherical wavelets from

scale ` = 1 to 3, which corresponds to the center positions for locating the scaling function

and wavelets on the sphere correspond to the mesh vertex in Fig. 4.3. It can be seen that the

low-scale spherical wavelets have greater support, while the high-scale wavelets have more

compact support, which accounts for the low spatial frequency and high spatial frequency,

respectively.
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4.3 Modeling HRTF spatial patterns with spherical

wavelets

4.3.1 Modeling HRTF magnitudes with spherical wavelets

After defining the analysis function in the previous section, the target HRTF magni-

tudes H(θ, φ) can be decomposed as the function below:

H(θ, φ) =
∑
~v1,i∈V1

S (~v1,i)ϕ1,i(θ, φ) +

L−1∑
`=1

∑
~m`, j∈M`

W(~m`, j) · ψ`, j(θ, φ), (4.2)

where ϕ1,i(θ, φ) and ψ`, j(θ, φ) denote the scaling function and spherical wavelet correspond-

ing to ~v1,i and ~m`, j, respectively; S (~v1,i) and W(~m`, j) denote the corresponding coefficients

in the approximation. Please notice that, in order to implement this method, the sampling

positions (θ, φ) of the target HRTF magnitudes along the direction should match a cer-

tain kind of manifolds on the sphere such as the icosahedron subdivision in the spherical

wavelet analysis. The required HRTF target data can be obtained through the interpola-

tion of the HRTF or generation the HRTF magnitudes at the desired directions based on

numerical simulation such as the boundary element method (BEM) [23]. An example of a

scaling function ϕ1,i(θ, φ) of scale level ` = 1 and spherical wavelet ψ`, j(θ, φ) of scale level

` = 1, 2, 3, and the corresponding meshes for locating these analysis functions are shown

in Fig. 4.6 and Fig. 4.3, respectively. For efficient representation of the target HRTFs,

` is truncated to a certain scale level. The expansion coefficients are obtained based the

decomposition method introduced in Section 4.2.

4.3.2 Modeling interaural level differences with spherical wavelets

It is known that the HRTF spectrum plays an important role in elevation localization,

while the interaural level differences contribute to the horizontal sound localization of the

higher frequency components and elevation localization as well [13, 85]. Here the lifting
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scheme based spherical wavelet transform is applied as well to the HRTF interaural level

difference(ILD). Fig. 4.7 shows an example of the ILD at 7.4 kHz.

Figure 4.7: ILD of the HRTF in 3.3 at frequency 7.4 kHz.

The ILD is defined as the difference of the level of the left and right HRTF in decible

scale and can be described with the following equation:

ILD f (θ, φ) =
HL f (θ, φ)
HR f (θ, φ)

, (4.3)

where HL f (θ, φ) and HR f (θ, φ) are respectively the left and right HRTF magitude at fre-

quency f and direction (θ, φ). The ILD at a frequency f can be represented based spherical

wavelets with the following equation:

ILD f (θ, φ) =
∑
~v1,i∈V1

S (~v1,i)ϕ1,i(θ, φ) +

L−1∑
`=1

∑
~m`, j∈M`

W(~m`, j) · ψ`, j(θ, φ). (4.4)

4.4 Numerical evaluation

To evaluate the proposed modeling method in this chapter, numerical simulation is

implemented to validate the effectiveness of the method described in Section 4.2.
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4.4.1 Objective measurement

To calculate the approximation error in the spatial domain, the same error measurement

is used as that in the previous chapters as below. Please notice that this objective criteria

may not necessarily reflect the perceptual performance.

Emnl =
1
N

N∑
m=1

|Hsynth(θm, φm) − Htarget(θm, φm)|
|Htarget(θm, φm)|

. (4.5)

Here Hsynth(θm, φm) and Htarget(θm, φm) are the approximated HRTF magnitude and the tar-

get HRTF magnitude at direction (θm, φm), respectively. N is the total number of HRTF

samplings of the target dataset.

4.4.2 HRTF database

Figure 4.8: Original HRTFs (left ear) at 7.4 kHz. The panels from left to right are the
HRTF with views of (80◦, −22◦) and (−95◦, −10◦), respectively.

HRTF datasets are always obtained through measuring the impulse responses at prede-

fined grid positions or calculating based on simulation methods at desired positions. The

target HRTF applied here is the same as that used in the chapter 3 which covers all direc-

tions at multiple frequencies. The number of the HRTF samplings along the direction is

10242 at each frequency bins. This number of samplings is high enough to recover HRTFs
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at all directions within the audible frequency range [61], and allows for visualizing the fine

details of HRTF spatial patterns. The target HRTF at 7.4 kHz for the left ear is shown in

Fig. 4.8.
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4.4.3 HRTF representation using the proposed method

Figure 4.9: Approximated HRTF (left ear) in Eq. 5.4 with spherical wavelets up to different
scales.
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Based on the lifting scheme based spherical wavelet analysis, the target HRTF magni-

tudes whose sampling points match the icosahedron subdivision of scale level ` = 6 (10242

points in total) are decomposed to a root level ` = 1. The spatial variations of the HRTF

magnitudes can be smoothed by truncating ` to a certain level in the reconstruction. Fig. 4.9

shows that the original HRTF with a total sampling number of 10242 is approximated up to

scale 1 (number of coefficients = 42), 2 (number of coefficients = 162), 3 (number of co-

efficients = 642), and 4 (number of coefficients = 2562), which yield Enml = 0.260, 0.105,

0.048 and 0.009 respectively. The expansion coefficients from scale level 1 to 5 are shown

in Fig. 4.10. The target HRTF magnitude is equal to the scaling function at scale level 6.

This result suggests that the higher scale spherical wavelets catch finer details, while the

low scale spherical wavelets approximate of the coarse structure of the HRTF. Thus, the

original target HRTF with a high sampling amount can be represented by the expansion

coefficients. A perfect reconstruction of the target HRTF can be realized by implementing

the backward transform using all 5 scale’s expansion coefficients.

One of the motivations of this study is to visualize and describe the HRTF local features

using the expansion coefficients. In the previous work of the authors’ group, the coefficients

of a set of local analysis function could describe the local features to some degree [67].
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Figure 4.10: Expansion coefficient values of spherical wavelets at each scale in the decom-
position of the target HRTF at 7.4kHz (Fig. 4.8) from the scale level ` = 1 to the scale level
` = 3.

By taking look at the expansion coefficients in Fig. 4.10, some interesting assumptions
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may be made. The lowest scale (scale 1) coefficients may describe the spatial filtering

effects excluding the pinna effects; the significant differences between the coefficient values

of the ipsilateral and contralateral sides clearly reveal the head shadow effect. For the

expansion coefficients of scale 5 , most of their values are nearly 0. It suggests that the

spatial spectrum at this scale plays little role in the composition of the target HRTF. The

coefficient values of scale 4 are also close to 0 except at some small local regions that

corresponds to distributions of the sharp spatial variations of the original HRTFs. For the

coefficients of scales higher than 1, most of their values are small and the significant values

are only taken at some local regions. Since the pinna effects are more likely involved in the

fast-changing spatial details [86, 87], these higher scale coefficients seem to have a closer

relevance to the pinna effects, which highly depend on the direction. The distribution of the

expansion coefficients at different scales not only classify the acoustic effects of different

anatomical parts, but also exhibits in which direction those filtering effects take place. This

is a significant advantage over spherical harmonic decomposition. Therefore, the proposed

method provides a tool for visualization and insights of the spatial filtering effects inside

the HRTF data. Furthermore, the distribution of the expansion coefficients should also have

the individual information across different subject, this may also open a means for HRTF

individualization.

The ILD in Fig. fig:ILD is also appximated with simulation, and the result is shown in

Fig. 4.11 and Fig. 4.12.
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Figure 4.11: The reconstructed ILD at 7.4 kHz with modeling up to level 1.

Figure 4.12: The reconstructed ILD at 7.4 kHz with modeling up to level 3.
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4.4.4 Efficient representation of the HRTF using the proposal

Fig. 4.10 shows that the expansion coefficients are close to 0 in most directions at the

higher levels. This indicates that the rapidly changing spatial variations mainly occur in

some small and local regions. An assumption can be made that those low–value coefficients

play little role in the reconstruction and could be removed to more efficiently represent the

HRTF. To perform the compression, the analysis functions of each scale are first normalized

to the same energy. The expansion coefficients with the absolute values above a certain

threshold after the normalization are preserved to reconstruct the HRTF. In this manner,

the HRTF can be represented by a small number of coefficients.

The following part of this section evaluates this efficient representation of the HRTF

in all directions and compares it with the spherical harmonic method when using same

number of analysis functions. The comparison is further extended to evaluations of HRTFs

in some local regions on the sphere.

Comparison with spherical harmonics in all directions

Figure 4.13: Comparisons of Emnl for the target HRTF in all directions betweeen the ap-
proximation using 121 spherical wavelets (SWs) and spherical harmonics (SHs) up to order
10.
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Figure 4.14: Comparisons of Emnl for the target HRTF in all directions betweeen the ap-
proximation using 441 spherical wavelets (SWs) and spherical harmonics (SHs) up to order
20.

Figure 4.15: Comparisons of Emnl for the target HRTF in all directions betweeen the ap-
proximation using 676 spherical wavelets (SWs) and spherical harmonics (SHs) up to order
25.
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Figure 4.16: Comparisons of Emnl for the target HRTF in all directions betweeen the ap-
proximation using 961 spherical wavelets (SWs) and spherical harmonics (SHs) up to order
30.

The spatial representation of the HRTF in all directions is conducted with the same

target HRTF as above. To compare the performance with spherical harmonics, the ap-

proximation errors are evaluated using the same number of analysis functions between the

two methods. Namely, the approximation errors using spherical wavelets (SWs) with the

number of coefficients of 121, 441, 676, 961 for reconstruction are compared to the er-

rors when using spherical harmonics (SHs) up to order 10, 20, 25, and 30, respectively,

which represent the HRTF with different spatial accuracy. Please note that in this study, we

use real spherical harmonic representations with icosahedron samplings, which are well-

conditioned for the spherical harmonic decomposition, because the orthonormality error

decreases [88]. Fig. 4.13, Fig. 4.14, Fig. 4.15, and Fig. 4.16 plots the comparison results.

It shows that our proposed method is slightly better or at least comparable with the con-

ventional method based on real-valued spherical harmonics in terms of the approximation

error when representing the HRTF magnitudes in all directions with a same number of

analysis functions in the above conditions.
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Comparisons with spherical harmonics at local regions

An expected advantage of the proposed method over the spherical harmonic method is

to better represent the HRTF local features. Next, comparisons with the spherical harmonic

method are conducted with the HRTF represented at some local regions. To perform this

local representation, only the significant–value spherical wavelets corresponding to the

target local region are selected for the reconstruction; this selection is done in two steps.

The first selecting step depends on the local area under evaluation. Because the low–scale

spherical wavelets contribute to the coarse structure and have an influence over a larger

area on the sphere, all analysis functions of scale 1 are preserved in the reconstruction.

For the higher–scale spherical wavelets, only those close to the area under evaluation are

used. More specifically, the spherical wavelets whose radius of influence intersects the

area under evaluation are selected for this local representation. The radius of influence of

a spherical wavelet is defined as the distance between its center position (where it has its

maximum value) and the position where its amplitude decreases to the minimum value.

Second, among the selected wavelets in the first step, only the spherical wavelets with

significant expansion coefficient values are preserved.
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Figure 4.17: Four local regions (in white) selected for the evaluation of the local represen-
tation.

The target HRTFs at the audible frequencies are reconstructed inside four spherical

caps that are centered at (90◦,−48◦), (90◦,48◦), (−90◦,48◦), and (−90◦,−48◦), respectively,

all with a size of 1.40 steradians, and denoted as local region 1, 2, 3, and 4, respectively.

These four regions together cover most directions in space, as shown in Fig. 4.17. For these

four local regions, the Emnl values are compared between the approximation using spher-

ical wavelets with 121 and 441 highest coefficients for reconstruction, and real-valued

spherical harmonics up order 10 (number of harmonics=121) and order 20 (number of

harmonics=441), respectively. The results shown in Fig. 4.18, Fig. 4.19, Fig. ??, and

Fig. 4.21, suggest that when using these same number of analysis functions, our pro-

posed method yields smaller approximation errors than for the spherical harmonic method.

Therefore, the efficiency of modeling HRTF local features using spherical wavelets is val-
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idated.

Figure 4.18: Comparisons of Emnl for representing target HRTFs insider local region 1 be-
tween the approximation using the same number of spherical wavelets (SWs) and spherical
harmonics (SHs).

Figure 4.19: Comparisons of Emnl for representing target HRTFs insider local region 2 be-
tween the approximation using the same number of spherical wavelets (SWs) and spherical
harmonics (SHs).
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Figure 4.20: Comparisons of Emnl for representing target HRTFs insider local region 3 be-
tween the approximation using the same number of spherical wavelets (SWs) and spherical
harmonics (SHs).

Figure 4.21: Comparisons of Emnl for representing target HRTFs insider local region 4 be-
tween the approximation using the same number of spherical wavelets (SWs) and spherical
harmonics (SHs).
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4.5 Summary

In this chapter, the HRTF spatial variations are represented using the lifting scheme

based spherical wavelets, which are widely used in the field of computer graphics. Nu-

merical experiments showed that when using the same number (121 and 441) of analy-

sis functions, approximation of the HRTF at the evaluated local regions based on spher-

ical wavelets yields smaller errors than for the spherical harmonic method. In addition,

the expansion coefficients of the spherical wavelets could well correspond to the direc-

tion dependent HRTF local features. This provides a tool for visualizing and analyz-

ing the acoustic filtering effects inside the target HRTF data. Future work will consider

evaluations of several individual HRTFs to study the individual information that bene-

fits from the proposed method. The main content of this chapter has also been pre-

sented in a published paper by the author of this thesis (copyright at Applied Acoustics,

https://www.sciencedirect.com/science/article/pii/S0003682X18301397). [89]
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Chapter 5

Modeling head-related impulse response

with spherical wavelets

5.1 Overview

In the previous chapters, the modeling of HRTF is focused on its magnitude in the

spatial domain. However, in order to render the binaural spatial audio, the time-domain

head-related impulse response (HRIR) or complexed-valued HRTF with both magnitude

and phase are required. Therefore this chapter studies the decomposition of the time do-

main HRIRs and the representation based on the spherical wavelet.

5.2 HRTF model with minimum-phase reconstruction

The complex-valued HRTF contains both magnitudes and phase. The binaural HRTF

magnitudes are conventionally used to explain the human elevation localization and the

horizontal localization for the higher frequency components based on the interaural level

differences. While the HRTF phase, especially the interaural phase cues are believed to

75



contribute to the horizontal localization for the lower frequency (below 1500 Hz) compo-

nents of sound sources. The interaural phase cues can be further explained with the in-

teraural time differences (ITDs) which should be frequency dependent. That is, the actual

values of ITD vary along the frequency.

Various investigation has been proposed to integrate activity across frequency channels

and turn the multiple, one or each frequency channel, ITD estimates into a single perceptual

ITD cue [90–92]. An existing perceptual evidence also suggests that a pair of HRIRs of

a certain direction can be reconstructed with the magnitude and the interaural time delay

(ITD) without introducing no obvious perceptual artifacts [93]. Since the magnitude parts

of HRTFs have been represented with spherical wavelets previously, the representation of

ITD will be considered in this chapter.

In the minimum-phase reconstruction, the original HRTF H(w) can be represented as

product of a minimum phase component Hmin(w) and an all pass filter Hap(w) as described

as below.

H(w) = Hmin(w)ap(w) (5.1)

Ideally, the minimum phase component of HRTF is obtained by factoring the transfer

function polynomial and identifying zeros and poles which are inside unit circle. However

this is not practical and a non parametrical method of obtaining minimum phase component

is used here [32].
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Figure 5.1: Original HRIRs at direction (80◦, 0◦)

Figure 5.2: HRIRs based on minimum-phase reconstruction.
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Here, Fig. 5.1 and Fig. 5.2 present an example of the original HRIRs and the recon-

structed HRIRs based the minimum phase model. The original HRIRs in Fig. 5.1 and

constructed HRIRs in Fig. 5.2 look quite different, regarding the waveforms, however they

should be perceptually identical.

5.3 Estimating interaural time delays using spherical

wavelets

5.3.1 Calculation of interaural time delays

According to the literature, there exists three common methods to calculate the ITDs.

The first method compares the onset time arrival for the left and right HRIR signal and

the difference of the onset time can be regarded as the ITD [94–96]. An example of this

onset detection method is shown in Fig. 5.3. The second method considers the interaural

cross correlation, and the time delay τ which maximizes the coherence of the signal at

one ear with respect to the signal at the other is used to determin the ITD (Eq. 5.2 and

Eq. 5.3) [97–99]. While the last method calculates the interual time difference and use the

slope of the regression along the frequency as the ITD value [100–102]. All of the above

methods should have close results. An excellent review can be found with a paper by Katz

and Noisternig [103]. Here in our study, we used the group delay method since it seems to

derive ITD smoothly along the direction in space and its effectiveness has been validated

in a previous perceptual study [102].

IT D(θ, φ) = argmaxIACC(θ, φ, τ), s.t.|τ| < 1ms, (5.2)

IACC(θ, φ, τ) =

∫ t2

t1
pL(θ, φ, t)pR(θ, φ, t + τ)dt√∫ t2

t1
p2

L(θ, φ, t)dt
∫ t2

t1
p2

R(θ, φ, t)dt
(5.3)
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Figure 5.3: ITD calculation based on the onset time difference between the binaural signals
for HRTF at (80◦, 0◦).

Figure 5.4: ITDs with the right side view.
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Figure 5.5: ITDs with the front view.

Figure 5.6: ITDs with the left side view.

The calculated ITDs in the spatial domain based on the group delay method are shown

in , Fig. 5.4. Fig. 5.5, Fig. 5.6.
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5.3.2 Modeling of interaural time delays with spherical wavelets

The decomposition of the target IT Ds(θ, φ) can be described using the following matrix

form:

IT Ds(θ, φ) =
∑
~v1,i∈V1

S (~v1,i)ϕ1,i(θ, φ) +

L−1∑
`=1

∑
~m`, j∈M`

W(~m`, j) · ψ`, j(θ, φ). (5.4)

Here, ϕ1,i(θ, φ) and ψ`, j(θ, φ) are the scaling function and spherical wavelet correspond-

ing to ~v1,i and ~m`, j, respectively; S (~v1,i) and W(~m`, j) are the expansion coefficients in the

decomposition.

5.4 Evaluation

In this section, numerical experiments are conducted to validate the effectiveness of the

method described in Section 5.3.2.

5.4.1 Objective measurement

The goal of this study is to approximate the original HRTF magnitudes using a set of

analysis functions. To measure the approximation error in the spatial domain, the root

mean squared (RMS) value is used, which is defined as

Erms =

√√
1
N

N∑
m=1

[
IT Dsynth(θm, φm) − IT Dtarget(θm, φm)

]2
, (5.5)

where IT Dsynth(θm, φm) and IT Dtarget(θm, φm) are the reconstructed ITD and target ITD at

direction (θm, φm), respectively; and N is the total number of HRTF samples under study.

81



5.4.2 Results

Figure 5.7: ITDs appximated with 121 spherical wavelets (Right side view).

Figure 5.8: ITDs appximated with 121 spherical wavelets (Left side view).
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Figure 5.9: ITDs appximated with 10 order spherical harmonics (Right side view).

Figure 5.10: ITDs appximated with 10 order spherical harmonics (Left side view).
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Figure 5.11: ITDs appximated with 441 spherical wavelets (Right side view).

Figure 5.12: ITDs appximated with 441 spherical wavelets (Left side view).
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Figure 5.13: ITDs appximated with 20 order spherical harmonics (Right side view).

Figure 5.14: ITDs appximated with 20 order spherical harmonics(Left side view).

As shown in Fig. 5.7, Fig. 5.12 and 5.9, 5.10, the ITDs are estimated based on 121

spherical wavelets and 10 order spherical harmonics, respectively. Through visual obser-

vation, these two modeling methods do not show significant differences due to the fact that

the target ITDs are smooth and not so difficult for modeling. However, in the tables of the

calculated approximation errors as shown in Table. 5.1 and Table. 5.2, modeling ITDs with

spherical wavelets yield smaller approximation errors than modeling with spherical har-

monics when using a same number of analysis functions. Since the approximation errors
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are so small, it still remains a question whether these approximated accuracy has significant

perceptual necessity or not.

Table 5.1: Comparison of approximated ITDs in all directions using same number of spher-
ical wavelets and spherical harmonics.

Modeling with SWs Approximation error (µs) Modeling with SHs Approximation error (µs)

121 SWs 3.14 10 order SHs 3.46

441 SWs 2.22 20 order SHs 2.37

676 SWs 2.07 25 order SHs 2.18

961 SWs 1.95 30 order SHs 2.09

Table 5.2: Comparison of approximated ITDs in local regions using same number of spher-
ical wavelets and spherical harmonics.

Approximation error (µs) With 121 SWs With 10 order SHs With 441 SWs With 20 order SHs

Region 1 2.30 2.94 1.34 2.27

Region 2 2.44 4.21 1.34 2.64

Region 3 2.47 3.93 1.33 2.60

Region 4 2.29 2.95 1.33 2.25

5.5 Summary

This chapter reviews the minimum-phase reconstruction of the HRTF, which is a com-

mon method to recover the HRIR or complexed valued HRTFs for binaural rendering.

Since the HRTF magnitudes has been modeled in the previous chapters, the modeling of

ITD is considered here. According to the calculated approximation error (objective evalua-

tion), modeling with spherical wavelets yields smaller approximation errors than modeling

with spherical harmonics when using same number of analysis functions in the case of

both representing the ITDs in all directions and local regions. The approximated ITDs will

help recover the HRIRs for the binaural spatial audio rendering. The reconstructed HRIRs
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will also be evaluated in the next chapter based on some perceptual models which are more

relevant to the human spatial hearing perception.
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Chapter 6

Evaluation based on the perceptual

model

6.1 Overview

Until this chapter, the evaluation of the proposed method has been based on objective

evaluations with simple criteria. This chapter applies an auditory model which charac-

terizes the human sound localization to the evaluation of the modeling method. In such

a manner, this chapter aims to evaluate the proposed method in a way more relevant to

human spatial hearing perception.

6.2 Perceptual model of human sound localization

In the past decades, a lot of research has been done trying to figure out the acoustic cues

that human listeners utilize to localize the sound direction and how those acoustic cues are

processed by the brain. However, most of the proposed human sound localization models in
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the past based on simple matching methods with ITD and ILD cues cannot work very well,

or cannot predict both the horizontal and elevation directions simultaneously. [104–107]

Here in this thesis, a human sound localization model based on a probabilistic model is

applied which is called “An ideal-observer model of human sound localization” proposed

by Reijniers et al. recently. [108]

6.2.1 Review on the Ideal-observer model of human sound localiza-

tion

Ideal-observer model has been widely used for predicting the behavioral performance

in the psychological experiments. As with the case of human sound localization, given a

pair of signals to the left and right ear, human is able to extract the relevant acoustic cues

that are related to sound localization. Here the interaural time difference (ITD) and the

spectral information of the left and right ear are considered to be utilized for the acoustic

cues for the sound localization. The ITD cue is known to play a vital role for the horizontal

sound localization in the lower frequency range while the binaural spectra information may

play a more important role in the higher frequency horizontal localization and elevation

localization.

Acoustic information

Although the ITD is freuqency dependent, it is considered to be a single delay value

which is still believed to have reasonable perceptual significance [40]. As for the spectral

information, due to the limitation of human hearing system, it is decomposed into a certain

number of frequency channels and represented in log scale. To summarize, the acoustic

information used by the listener can be describe as

X = [Xitd,XL,XR], (6.1)
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where Xitd is the ITD of the binaural signal. XL and XR describe the monaural spectra of

the left and right ears, respectively. The ITD is measured by the human brain for processing

and can be written as

Xitd = itd(θ) + σitd, (6.2)

where Xitd is the exact ITD corresponding to the directrion θ, and σitd denotes the error of

the measurement due to the limited precision of the hearing apparatus.

Similarly, the logmagnitude spectra in the left and right ear can be represented as below.

XL = S + HL(θ) + σL + σS; XR = S + HR(θ) + σR + σS (6.3)

Here S is the sound source spectrum. HL(θ) and HR(θ) are the logmagnitude of the left and

right HRTF. σL, σR and σS are the corresponding measurement error of the left, right ear

HRTF logmagnitudes and sound source spectrum when utilized as the perception cues by

the listeners.

Instead of using the monaural magnitudes directly as above, they can also be trans-

formed into a new basis which consists of the difference and average of the left and right

magnitudes as follows:

X− = XL(θ) − XR(θ) = HL(θ) −HR(θ) + σ− (6.4)

X+ = (XL(θ) + XR(θ))/2 = S + (HL(θ) + HR(θ))/2 + σ+, (6.5)

with

σ− = σL − σR, σ+ = σS + (σL + σR)/2. (6.6)

Here X− and X+ are the interaural difference and average of the left and right ear magnitude,

respectively; σ− and σ+ are the corresponding measurement errors when utilizing these

cues. Therefore, the acoustic information can be summarized as below instead.

X = [Xitd,X−,X+], (6.7)
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It is believed that the just noticed difference (JND) varies along the ITD value [109],

which may suggests that the measurement of ITD does not follow a normal distribution

since the perception of ITD is not uniform in time unit. The just noticed difference (JND)

basically increases as the actual value of ITD and may read as

jnd(itd) = a + b · itd. (6.8)

Here, a = 32.5µs, and b = 0.095. Further, the formula below transforms the ITD scale

from time unit to jnd unit.

itd →
∫ itd

0

1
jnd(x)

dx =
1
b

[log(a + b · itd) − log(a)]. (6.9)

Therefore, the ITD will be represented in this new unit scale which may be more relevant to

the actual utilization of the ITD cues. Fig. 6.1 and Fig. 6.2 shows the comparison between

the ITD in time and jnd units, which suggests that the ITD in jnd units is not as flat as that

in time units and gradually increase as with the ITD value.

Figure 6.1: ITD in time units.
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Figure 6.2: ITD in jnd units.

Rather than represent the log-magnitudes along each frequency bin, the received signal

is decomposed into a certain number of frequency channels. These frequency channels are

chosen based on the equivalent rectangular bandwidth (ERB) of the auditory filter such as

the Gammatone filter [110]. There may be different ways to calculate the ERB for each

center frequency, while a typical one is used here as shown in the equation as below. [111]

ERB( f ) = 6.23 f 2 + 93.39 f + 28.52. (6.10)

The center frequencies are chosen so that there are no severe overlaps between the

adjacent frequency channels, namely, a center frequency is calculated as the sum of the

previous center frequency and its corresponding ERB. Fig. 6.4 shows an example of the

Gammatone filters with some different center frequencies. Fig. 6.4 shows 30 four order

Gammatone filters covering frequency range from 300 Hz to 15000 Hz.

With the defined frequency channels, the left and right ear signal are processed by

those auditory filters one by one, and the energy of each channel’s output represents spectra

information.
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Figure 6.3: Gammatone filter with different center frequencies.
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Figure 6.4: Frequency responses of 30 Gammatone filte covering frequency from 300 Hz
to 15000 Hz.

Figure 6.5: HRTF magnitude along the frequency in certain direction.
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Figure 6.6: Frequency channel responses based on 30 auditory filters.

Estimating sound source position based on Bayes’ rule

To predict the sound source direction θ given the acoustic information X, the Bayes’

rule is applied for this purpose.

P(θ|X) =
P(θ)P(X|θ)

PX
(6.11)

where P(θ) is the prior knowledge of the perceived sound direction by the listener. This

prior knowledge should not be uniformly distributed in space. However, for simplicity, P(θ)

and P(X) are considered uniformly distributed parameters. Therefore, the calculation of the

posterior probability P(θ|X) can be reduced to the calculation of the likelihood P(X|θ).

By including the measurement error σitd, σL, σR, and σS, the likelihood P(X|θ) can be

written as

Xθ[σ] = Tθ + σ (6.12)

P(X|θ) =
1

(2π)N/2|
∑
|1/2
· exp{−

1
2

(X − Tθ)T
∑−1

(X − Tθ)} (6.13)

Here, the directional template Tθ = [itd, (HL−HR), (S + (HL + HR)/2)](θ) , and the covari-
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ance matrix is denoted as

∑
=


σ2 0 0

0
∑
− 0

0 0
∑

+

 . (6.14)

with
∑
− = 2σ2

I · I and
∑

+ = (σ2
I /2 + σ2

S ) · I + σ2 · 1. This covariance variable determines

how much uncertainty of human hearing when processing the acoustic information. A

bigger measurement error indicates that the listener may be not good at extracting the cues

precisely for predicting the direction of the sound source.

In order to evaluate the average localization performance, the localization test is done

under a certain number of trials with multiple noise realization. The average localization

error can be calculated as

ε(θ) =
1
M

M∑
i=1

arccos{θ̂(Xθ[σi]) · θ}. (6.15)

Here M is the total number of the test trials, and Xθ[σi] denotes the acoustic informa-

tion with the noise realization σi. Please notice that, this error metric introduced here is

the absolute error of the sound localization. The localization error can also be calculated

with different ways such as the lateral and polar localization error, which accounts for the

azimuth and elevation localization error, respectively.

Fig. 6.8 shows a example of localization estimation of a target sound source at

(75◦, 26◦), with running the test for 500 trials. The simulated result shows that the ideal ob-

server model can estimate the source position with good accuracy. Besides, an interesting

finding may also observed that this model also estimate the sound source with front back

confusions even with a relatively low probability.Since humans may also localize sounds

with possibility of estimating the sound source positions with front back confusions, it sug-

gests that the this model may be a good option for evaluating the human sound localization

with perceptual significance.
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Figure 6.7: Example of the localization test with 500 trials of a sound source (white point
in the left pannel) and the simulated localization probability (right pannel).

Figure 6.8: Average localization error of 500 trials for 160 source directions on the sphere.

Fig. 6.8 shows the average localization error of 500 trials for each of 162 directions

distributed on the sphere. The localization performance is similar to that in the study by

Reijniers et al. [108].
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6.3 Evaluation of the proposal based on the perceptual

model

In the previous chapter, the HRTF magnitude and ITD have been represented with

spherical wavelets, which shows better approximation efficiency than the spherical har-

monics under the evaluated conditions. However, those evaluations are conducted with

very simple objective error metric, which may not reflect the perceptually related signif-

icance. Therefore, in this section, the modeled HRTFs based on spherical wavelets and

spherical harmonics are evaluated and compared based on the ideal observer model.

To recover the HRIRs for evaluation with the perceptual model, both the ITD and HRTF

magnitudes are necessary, as suggested by the minimum-phase reconstruction introduced

in Chapter 5. Here, the HRTF magnitudes are approximated with a same method as that

introduced in Chapter 4, in which the spherical wavelets are used for representing the

HRTF magnitudes. Specifically, a few local regions are selected for recovering the time

domain HRIRs based on the HRTF magnitudes approximated with spherical harmonics

and spherical wavelets. The recovered HRIRs in each local region are then analyzed and

compared based on the ideal observer model.
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Figure 6.9: Four local regions (in white) selected for the evaluation of the local represen-
tation.

For the numerical experiments, the HRTF magnitudes are reconstructed with spherical

harmonics and spherical wavelets with a same number of analysis functions in a local

region centered at (90◦,−48◦) with a size of 1.40 steradians (Local region 1 in Fig. 6.9).
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6.3.1 Lateral and polar localization error

Figure 6.10: Spherical coordinate systems.

In order to evaluate the lateral localization and polar localization separately, the inter-

aural polor coordinate (Fig. 6.10 (b)) is used, in place of vertical coordinate (Fig. 6.10 (a))

which has been used so for in this study. In the polar coordinate, a point (r, α, β) where the

lateral angle β ∈ [−π2 ,
π
2 ], and the polar angle α ∈ [−π, π].

In each local region, HRTFs 17 directions that are nearly uniformly distributed are

evaluted with the perceptual model. The Table 6.11 shows result, which suggests that

there is no obvious difference between the simulated localization performance based on

the spherical wavelet and spherical harmonic methods. It may indicate that the perceptual

model used in the simulation may be very tolerant of the loss of the HRTF spatial details.

The small differences of the HRTFs synthesized by this two methods may not be reflected

by the introduced perceptual model.
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Figure 6.11: Average lateral localization error and polar localization error of the evaluated
directions for HRTFs in each local region.
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6.3.2 Absolute localization error

Figure 6.12: Absolute localization error of 500 trials for 17 source directions in local region
1. The values in red means the error based on spherical wavelets (SWs) is bigger than that
based on spherical harmonics (SHs).

The evaluation based on the ideal observer model shown in Fig. 6.12 shows that when

modeling HRTF magnitudes with same number of analysis functions in the evalauted con-

ditions, the localization error of the SWs method has slightly better performance than the

SHs method except for a small cases. The HRTF magnitudes are evaluated in other Local

regions (local region 2, 3, and 4 in Fig. 6.9) as well, the average error shown in Table. 6.13

suggests a consistent result as that in local region 1.

Figure 6.13: Average absolute localization error of all evaluated directions in each local
region 1, 2, 3, and 4 in Fig. 6.9.
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Although the above results suggest that HRTFs magnitudes approximated by the spher-

ical wavelets seem have very close performance compared with the spherical harmonics

based ones. This result may suggests that some spatial details of HRTFs may be not so

perceptually important which was also shown by a previous perceptual study in which the

HRTFs magnitudes are represented with spherical harmonics up to a truncated order [44].

However there also exists study suggesting that the spatial details in the higher spherical

harmonics also contribute to the perception of timbre. [112]. In any sense, the ideal ob-

server model used here may be a appropriate tool for reflecting the perception related per-

formance with the tested HRIRs. However, the ultimate evaluation of the HRTFs should

be relying on the behavioral experiments which however are out of the scope of this study.

6.4 Summary

In this chapter, a auditory model called ideal observer model is introduced and re-

viewed, which shows a reasonable performance for modeling the human sound localiza-

tion. The HRTF magnitudes reconstructed by the spherical wavelets and spherical harmon-

ics were compared in terms of the modeling accuracy based on the objective error metric,

however those error metric does not consider the human perception. Therefore, those re-

constructed HRTFs are evaluated by the auditory model introduced here and the evaluation

is compared between the modeling with spherical harmonics and spherical wavelets when

using same number of analysis functions. The numerical experiment shows that when rep-

resenting the HRTF in a evaluated local region, the spherical wavelet method yield slightly

smaller localization error than the spherical harmonic method.
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Chapter 7

Conclusions

This thesis focuses on the modeling of spatial patterns of the HRTF. Rather than the

conventional method based on the spherical harmonics, this thesis mainly proposed mod-

eling methods with considering the HRTF local features. These models are used for:

• Chapter 3: Modeling HRTFs with continuous spherical wavelets

• Chapter 4: Modeling HRTFs with discrete spherical wavelets

• Chapter 5: Modeling HRIRs with spherical wavelets

• Chapter 6: Evaluation based on a perceptual model

The main difference between the proposed method and the conventional method is

the analysis function, either local functions or global functions. With modeling based on

global functions, some fast changing spatial variations may require modeling up to a high

order which is not efficiency. Besides, the fact that human’s spatial hearing has different

resolutions along the direction, which also suggest that methods are needed to modeling

the HRTF locally in space.

In chapter 3, in order to model the HRTF local feature, a set of continuous local func-

tions inspired by the wavelet transform on the sphere is proposed to capture HRTF local

features rather than the conventional method based on spherical harmonics that are global
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functions on the sphere. Simulation results show that with a same number of analysis

functions, the proposed continuous local function yields smaller approximation error than

the spherical harmonic method. Besides, there is a correspondence between the higher

scale expansion coefficients and some HRTF local features. This correspondence can be

improved by improving the orthogonality among the analysis functions.

Since the classic wavelet theory can be rather difficult to be applied for the case on the

sphere, the local functions defined in chapter 3 lack orthogonality and therefore is not con-

venient to control the spatial resolution on the sphere based on the expansion coefficients.

In chapter 4, the discrete spherical wavelets are introduced and applied for the purpose

of modeling the HRTF spatial patterns. With the discrete spherical wavelet based on the

lifting scheme, the HRTF magnitudes are decomposed and represented with a set of expan-

sion coefficients. Thanks to the good orthogonality of the discrete spherical wavelets, the

derived expansion coefficients can have a good description of the HRTF spatial features.

To evaluate the modeling by this method, the approximation error is compared between the

spherical harmonics methods and the spherical wavelet method. When using same number

of analysis function for representing the HRTF magnitude in all directions, the proposal

performs slightly better or at least comparable with the spherical harmonic method with

the evaluated condition. Besides, when comparing the approximation error in the defined

local regions, the proposed modeling method based on discrete spherical wavelet yields

smaller error than the spherical harmonic method during the audible frequency range.

In chapter 5, the modeling based on spherical wavelets is extended for the HRIRs.

Rather than model the HRIRs themselves, they are first decomposed into a ITD value

and a pair of magnitudes, and the latter has been modeled in the previous chapter. Then

the modeling of the HRIRs is reduced to the modeling of ITDs. Same with the previous

comparing method, the target ITDs are represented with SHs and SWs with a same number

of functions in the evaluated conditions. The simulation results suggest a slight better

performance with the SWs method. However, it still remains a problem whether such a

small difference is perceptually significant or not.
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In chapter 6, a human sound localization model is reviewed and proposed for evaluating

the SWs based HRTF modeling, aiming at better reflecting the perceptual advantage of the

proposed method. The numerical experiments show that the HRTF reconstructed with the

spherical wavelets method have smaller approximation error than the spherical harmonic

method in a evaluated local region. Therefore, the perceptual significance of the proposed

method is validated.
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