139,392 research outputs found

    Deep Learning For Sequential Pattern Recognition

    Get PDF
    Projecte realitzat en el marc d’un programa de mobilitat amb la Technische Universität München (TUM)In recent years, deep learning has opened a new research line in pattern recognition tasks. It has been hypothesized that this kind of learning would capture more abstract patterns concealed in data. It is motivated by the new findings both in biological aspects of the brain and hardware developments which have made the parallel processing possible. Deep learning methods come along with the conventional algorithms for optimization and training make them efficient for variety of applications in signal processing and pattern recognition. This thesis explores these novel techniques and their related algorithms. It addresses and compares different attributes of these methods, sketches in their possible advantages and disadvantages

    When Can You Fold a Map?

    Get PDF
    We explore the following problem: given a collection of creases on a piece of paper, each assigned a folding direction of mountain or valley, is there a flat folding by a sequence of simple folds? There are several models of simple folds; the simplest one-layer simple fold rotates a portion of paper about a crease in the paper by +-180 degrees. We first consider the analogous questions in one dimension lower -- bending a segment into a flat object -- which lead to interesting problems on strings. We develop efficient algorithms for the recognition of simply foldable 1D crease patterns, and reconstruction of a sequence of simple folds. Indeed, we prove that a 1D crease pattern is flat-foldable by any means precisely if it is by a sequence of one-layer simple folds. Next we explore simple foldability in two dimensions, and find a surprising contrast: ``map'' folding and variants are polynomial, but slight generalizations are NP-complete. Specifically, we develop a linear-time algorithm for deciding foldability of an orthogonal crease pattern on a rectangular piece of paper, and prove that it is (weakly) NP-complete to decide foldability of (1) an orthogonal crease pattern on a orthogonal piece of paper, (2) a crease pattern of axis-parallel and diagonal (45-degree) creases on a square piece of paper, and (3) crease patterns without a mountain/valley assignment.Comment: 24 pages, 19 figures. Version 3 includes several improvements thanks to referees, including formal definitions of simple folds, more figures, table summarizing results, new open problems, and additional reference

    Automatic Structural Scene Digitalization

    Get PDF
    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.Comment: paper submitted to PloS On
    • …
    corecore