893 research outputs found

    The multiprocessor real-time scheduling of general task systems

    Get PDF
    The recent emergence of multicore and related technologies in many commercial systems has increased the prevalence of multiprocessor architectures. Contemporaneously, real-time applications have become more complex and sophisticated in their behavior and interaction. Inevitably, these complex real-time applications will be deployed upon these multiprocessor platforms and require temporal analysis techniques to verify their correctness. However, most prior research in multiprocessor real-time scheduling has addressed the temporal analysis only of Liu and Layland task systems. The goal of this dissertation is to extend real-time scheduling theory for multiprocessor systems by developing temporal analysis techniques for more general task models such as the sporadic task model, the generalized multiframe task model, and the recurring real-time task model. The thesis of this dissertation is: Optimal online multiprocessor real-time scheduling algorithms for sporadic and more general task systems are impossible; however, efficient, online scheduling algorithms and associated feasibility and schedulability tests, with provably bounded deviation from any optimal test, exist. To support our thesis, this dissertation develops feasibility and schedulability tests for various multiprocessor scheduling paradigms. We consider three classes of multiprocessor scheduling based on whether a real-time job may migrate between processors: full-migration, restricted-migration, and partitioned. For all general task systems, we obtain feasibility tests for arbitrary real-time instances under the full-and restricted-migration paradigms. Despite the existence of tests for feasibility, we show that optimal online scheduling of sporadic and more general systems is impossible. Therefore, we focus on scheduling algorithms that have constant-factor approximation ratios in terms of an analysis technique known as resource augmentation. We develop schedulability tests for scheduling algorithms, earliest-deadline-first (edf) and deadline-monotonic (dm), under full-migration and partitioned scheduling paradigms. Feasibility and schedulability tests presented in this dissertation use the workload metrics of demand-based load and maximum job density and have provably bounded deviation from optimal in terms of resource augmentation. We show the demand-based load and maximum job density metrics may be exactly computed in pseudo-polynomial time for general task systems and approximated in polynomial time for sporadic task systems

    MORA: an Energy-Aware Slack Reclamation Scheme for Scheduling Sporadic Real-Time Tasks upon Multiprocessor Platforms

    Full text link
    In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrate that MORA does not jeopardize the system schedulability and we show by performing simulations that it can save up to 32% of energy (in average) compared to execution without using any energy-aware algorithm.Comment: 11 page

    k2U: A General Framework from k-Point Effective Schedulability Analysis to Utilization-Based Tests

    Full text link
    To deal with a large variety of workloads in different application domains in real-time embedded systems, a number of expressive task models have been developed. For each individual task model, researchers tend to develop different types of techniques for deriving schedulability tests with different computation complexity and performance. In this paper, we present a general schedulability analysis framework, namely the k2U framework, that can be potentially applied to analyze a large set of real-time task models under any fixed-priority scheduling algorithm, on both uniprocessor and multiprocessor scheduling. The key to k2U is a k-point effective schedulability test, which can be viewed as a "blackbox" interface. For any task model, if a corresponding k-point effective schedulability test can be constructed, then a sufficient utilization-based test can be automatically derived. We show the generality of k2U by applying it to different task models, which results in new and improved tests compared to the state-of-the-art. Analogously, a similar concept by testing only k points with a different formulation has been studied by us in another framework, called k2Q, which provides quadratic bounds or utilization bounds based on a different formulation of schedulability test. With the quadratic and hyperbolic forms, k2Q and k2U frameworks can be used to provide many quantitive features to be measured, like the total utilization bounds, speed-up factors, etc., not only for uniprocessor scheduling but also for multiprocessor scheduling. These frameworks can be viewed as a "blackbox" interface for schedulability tests and response-time analysis

    New data structures, models, and algorithms for real-time resource management

    Get PDF
    Real-time resource management is the core and critical task in real-time systems. This dissertation explores new data structures, models, and algorithms for real-time resource management. At first, novel data structures, i.e., a class of Testing Interval Trees (TITs), are proposed to help build efficient scheduling modules in real-time systems. With a general data structure, i.e., the TIT* tree, the average costs of the schedulability tests in a wide variety of real-time systems can be reduced. With the Testing Interval Tree for Vacancy analysis (TIT-V), the complexities of the schedulability tests in a class of parallel/distributed real-time systems can be effectively reduced from 0(m²nlogn) to 0(mlogn+mlogm), where m is the number of processors and n is the number of tasks. Similarly, with the Testing Interval Tree for Release time and Laxity analysis (TIT-RL), the complexity of the online admission control in a uni-processor based real-time system can be reduced from 0(n²) to 0(nlogn), where n is the number of tasks. The TIT-RL tree can also be applied to a class of parallel/distributed real-time systems. Therefore, the TIT trees are effective approaches to efficient real-time scheduling modules. Secondly, a new utility accrual model, i.e., UAM+, is established for the resource management in real-time distributed systems. UAM+ is constructed based on the timeliness of computation and communication. Most importantly, the interplay between computation and communication is captured and characterized in the model. Under UAM+, resource managers are guided towards maximizing system-wide utility by exploring the interplay between computation and communication. This is in sharp contrast to traditional approaches that attempt to meet the timing constraints on computation and communication separately. To validate the effectiveness of UAM+, a resource allocation algorithm called IAUASA is developed. Simulation results reveal that IAUASA is far superior to two other resource allocation algorithms that are developed according to traditional utility accrual model and traditional idea. Furthermore, an online algorithm called IDRSA is also developed under UAM+, and a Dynamic Deadline Adjustment (DDA) technique is incorporated into IDRSA algorithm to explore the interplay between computation and communication. The simulation results show that the performance of IDRSA is very promising, especially when the interplay between computation and communication is tight. Therefore, the new utility accrual model provides a more effective approach to the resource allocation in distributed real-time systems. Thirdly, a general task model, which adapts the concept of calculus curve from the network calculus domain, is established for those embedded real-time systems with random event/task arrivals. Under this model, a prediction technique based on history window and calculus curves is established, and it provides the foundation for dynamic voltage-frequency scaling in those embedded real-time systems. Based on this prediction technique, novel energy-efficient algorithms that can dynamically adjust the operating voltage-frequency according to the predicted workload are developed. These algorithms aim to reduce energy consumption while meeting hard deadlines. They can accommodate and well adapt to the variation between the predicted and the actual arrivals of tasks as well as the variation between the predicted and the actual execution times of tasks. Simulation results validate the effectiveness of these algorithms in energy saving

    Feasibility Tests for Recurrent Real-Time Tasks in the Sporadic DAG Model

    Full text link
    A model has been proposed in [Baruah et al., in Proceedings of the IEEE Real-Time Systems Symposium 2012] for representing recurrent precedence-constrained tasks to be executed on multiprocessor platforms, where each recurrent task is modeled by a directed acyclic graph (DAG), a period, and a relative deadline. Each vertex of the DAG represents a sequential job, while the edges of the DAG represent precedence constraints between these jobs. All the jobs of the DAG are released simultaneously and have to be completed within some specified relative deadline. The task may release jobs in this manner an unbounded number of times, with successive releases occurring at least the specified period apart. The feasibility problem is to determine whether such a recurrent task can be scheduled to always meet all deadlines on a specified number of dedicated processors. The case of a single task has been considered in [Baruah et al., 2012]. The main contribution of this paper is to consider the case of multiple tasks. We show that EDF has a speedup bound of 2-1/m, where m is the number of processors. Moreover, we present polynomial and pseudopolynomial schedulability tests, of differing effectiveness, for determining whether a set of sporadic DAG tasks can be scheduled by EDF to meet all deadlines on a specified number of processors
    • …
    corecore