
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Spring 5-31-2010

New data structures, models, and algorithms for real-time New data structures, models, and algorithms for real-time

resource management resource management

Xinfa Hu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hu, Xinfa, "New data structures, models, and algorithms for real-time resource management" (2010).
Dissertations. 213.
https://digitalcommons.njit.edu/dissertations/213

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/213?utm_source=digitalcommons.njit.edu%2Fdissertations%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

NEW DATA STRUCTURES, MODELS, AND ALGORITHMS
FOR REAL-TIME RESOURCE MANAGEMENT

by
Xinfa Hu

Real-time resource management is the core and critical task in real-time systems. This

dissertation explores new data structures, models, and algorithms for real-time resource

management.

At first, novel data structures, i.e., a class of Testing Interval Trees (TITs), are

proposed to help build efficient scheduling modules in real-time systems. With a

general data structure, i.e., the TIT* tree, the average costs of the schedulability tests in

a wide variety of real-time systems can be reduced. With the Testing Interval Tree for

Vacancy analysis (TIT-V), the complexities of the schedulability tests in a class of

parallel/distributed real-time systems can be effectively reduced from 0(m2nlogn) to

0(mlogn+mlogm), where m is the number of processors and n is the number of tasks.

Similarly, with the Testing Interval Tree for Release time and Laxity analysis (TIT-RL),

the complexity of the online admission control in a uni-processor based real-time

system can be reduced from 0(n2) to 0(nlogn), where n is the number of tasks. The

TIT-RL tree can also be applied to a class of parallel/distributed real-time systems.

Therefore, the TIT trees are effective approaches to efficient real-time scheduling

modules.

Secondly, a new utility accrual model, i.e., UAM+, is established for the resource

management in real-time distributed systems. UAM+ is constructed based on the

timeliness of computation and communication. Most importantly, the interplay between

computation and communication is captured and characterized in the model. Under

UAM+, resource managers are guided towards maximizing system-wide utility by

exploring the interplay between computation and communication. This is in sharp

contrast to traditional approaches that attempt to meet the timing constraints on

computation and communication separately. To validate the effectiveness of UAM + , a

resource allocation algorithm called IAUASA is developed. Simulation results reveal

that IAUASA is far superior to two other resource allocation algorithms that are

developed according to traditional utility accrual model and traditional idea.

Furthermore, an online algorithm called IDRSA is also developed under UAM + , and a

Dynamic Deadline Adjustment (DDA) technique is incorporated into IDRSA algorithm

to explore the interplay between computation and communication. The simulation

results show that the performance of IDRSA is very promising, especially when the

interplay between computation and communication is tight. Therefore, the new utility

accrual model provides a more effective approach to the resource allocation in

distributed real-time systems.

Thirdly, a general task model, which adapts the concept of calculus curve from

the network calculus domain, is established for those embedded real-time systems with

random event/task arrivals. Under this model, a prediction technique based on history

window and calculus curves is established, and it provides the foundation for dynamic

voltage-frequency scaling in those embedded real-time systems. Based on this

prediction technique, novel energy-efficient algorithms that can dynamically adjust the

operating voltage-frequency according to the predicted workload are developed. These

algorithms aim to reduce energy consumption while meeting hard deadlines. They can

accommodate and well adapt to the variation between the predicted and the actual

arrivals of tasks as well as the variation between the predicted and the actual execution

times of tasks. Simulation results validate the effectiveness of these algorithms in

energy saving.

NEW DATA STRUCTURES, MODELS, AND ALGORITHMS
FOR REAL-TIME RESOURCE MANAGEMENT

by
Xinfa Hu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2010

Copyright © 2010 by Xinfa Hu

ALL RIGHTS RESERVED

APPROVAL PAGE

NEW DATA STRUCTURES, MODELS, AND ALGORITHMS
FOR REAL-TIME RESOURCE MANAGEMENT

Xinfa Hu

Dr. Joseph Leung, Disserta ion Advisor 	 sate
Dist nguished Professo 	 Computer Science, NJIT

Dr. Ass Michael A. Baltrush, Committee Member Date
ociate Professor and Chairperson of Computer Science, NJIT

Dr. Vincent Oria, Committee Member 	 t	 t Date
Associate Professor of Computer Science, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. lie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Xinfa Hu

Degree: 	 Doctor of Philosophy

Date: 	 May 2010

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2010

• Master of Engineering in Computer Science,
Xi' an Jiaotong University, Xi' an, P. R. China, 2000

• Bachelor of Engineering in Computer Science,
Xi' an Jiaotong University, Xi' an, P. R. China, 1994

Major: 	 Computer Science

Technique Reports and Publications:

Xinfa Hu and Joseph Leung,
"Integrating communication cost into the utility accrual model for the resource
allocation in distributed real-time systems,"
Proceedings of the fourteenth IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 217-226, August 2008.

Xinfa Hu and Joseph Leung,
"Testing interval trees for real-time scheduling systems,"
Proceedings of the fourteenth IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 327-336, August 2008.

Xinfa Hu, Guoliang Xing, and Joseph Leung,
"Exploring the interplay between computation and communication in distributed
real-time scheduling," submitted to IEEE Transactions on Computers, October
2009.

Xinfa Hu and Guoliang Xing,
"Real-time dynamic voltage-frequency scaling based on calculus curves,"
submitted to the sixteenth IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, April 2010.

iv

This work is dedicated to
my wife, Fan Zhou,

and to
my parents, Songbing Hu and Baoxiu Li,

all of whom have dedicated so much of their lives,
and themselves,

to me.

v

ACKNOWLEDGMENT

Many thanks to my advisor, Professor Joseph Leung, for all his help throughout my

PhD study.

Special thanks to Professor Michael A. Baltrush, Professor Vincent Oria, Professor

Edwin Hou, and Professor Jie Hu for serving as members of the Committee.

I am very grateful to the Computer Science Department of NJIT for consistent

financial support throughout my PhD study.

Special thanks to my friend, Dr. Guoliang Xing at the Michigan State University, for

his valuable and constructive advice for my papers.

Special thanks to Professor Michael A. Baltrush, for helping me improve the

presentation of my dissertation.

I wish to express my sincere gratitude to Professor Vincent Oria for his helpful

advice, friendship, and encouragement throughout my PhD study.

I appreciate the advice and encouragement from Professor Andrew Sohn and

Professor Alexander Thomasian. Without the encouragement from them and Professor

Vincent Oria, I would never be able to accomplish my PhD study here at NJIT.

Many thanks to Professor Grace Wang for correcting my English errors.

And finally, I would like to acknowledge my debt to my wife, Fan Zhou. Without

her consistent help, support, and encouragement, I would never have reached this

milestone.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Background 	 1

1.2 Objectives 	 3

2 TESTING INTERVAL TREES FOR REAL-TIME SCHEDULING SYSTEMS ... 5

2.1 Definition and Properties of the TIT tree 	 7

2.2 TIT* Tree and Its Applications to Real-Time Scheduling Systems 	 9

2.3 TIT-V Tree and Its Applications to Real-Time Scheduling Systems 	 12

2.3.1 Definition and Properties of the TIT-V Tree 	 14

2.3.2 Operation on TIT-V Tree and Its Complexity 	 15

	

2.3.3 Using TIT-V Tree to Construct Feasibility Test for DDRAA 17

2.3.4 Using TIT-V Tree to Construct Feasibility Test for a Generic Resource

	

Allocation Algorithm 20

2.4 TIT-RL Tree and Its Applications to Real-Time Scheduling Systems 	 21

	

2.4.1 Definition and Properties of the TIT-RL Tree 23

2.4.2 Operations on TIT-RL Tree and Their Complexities 	 27

2.4.3 Using TIT-RL Tree to Construct ACA 	 27

3 NEW UTILITY ACCRUAL MODEL FOR RESOURCE ALLOCATION IN
ASYNCHRONOUS REAL-TIME DISTRIBUTED SYSTEMS 	 32

3.1 System Model 	 35

3.2 Task, Message, and Scheduling Models 	 36

3.3 The New Utility Accrual Model 	 38

3.3.1 Utility Function 	 38

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.2 Utility Accrual Criteria 	 40

3.4 Interplay-Aware Utility Accrual Scheduling Algorithm 	 42

3.4.1 The Algorithm 	 42

3.4.2 Complexity Analysis 	 47

3.4.3 An Example 	 48

3.5 Simulation Analysis 	 51

3.5.1 Simulation Settings 	 52

3.5.2 Simulation Results 	 54

4 EXPLORING THE INTERPLAY BETWEEN COMPUTATION AND

	

COMMUNICATION IN DISTRIBUTED REAL-TIME SCHEDULING 60

4.1 System Model 	 61

4.2 Scheduling Element Model 	 61

4.3 Utility Function 	 63

4.4 Dynamic Deadline Adjustment 	 66

4.5 Interplay-aware Distributed Resource Allocation Algorithm 	 70

4.5.1 Two-level Scheduling Framework 	 70

4.5.2 The Algorithm 	 71

4.5.3 Complexity Analysis 	 76

4.6 Simulation Analysis 	 78

4.6.1 Simulation Settings 	 79

4.6.2 Simulation Results 	 82

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5 CALCULUS CURVE BASED ONLINE REAL-TIME DYNAMIC
VOLTAGE- FREQUENCY SCALING 	 87

5.1 Calculus Curves 	 91

5.1.1 Arrival Curve 	 91

5.1.2 Service Curve 	 92

5.2 System and Task Model 	 93

5.3 Schedulability/Feasibility Analysis 	 93

5.3.1 Schedulability/Feasibility Analysis According to Preemptive Earliest
Deadline First Policy 	 94

5.3.2 Schedulability/Feasibility Analysis According to Preemptive Fixed
Priority Policy 	 96

5.4 Online Real-Time DVS Algorithms 	 97

5.4.1 History Window Based Prediction 	 97

5.4.2 Prediction-Enabled EDF Based Online Real-Time DVS Algorithm 	 102

5.4.3 Prediction-Enabled Fixed Priority Based Online Real-Time DVS
Algorithm 	 106

	

5.4.4 Further Discussion on the Algorithms 110

5.5 Simulation Analysis 	 111

	

5.5.1 Simulation Settings 112

5.5.2 Simulation Results 	 113

6 CONCLUSION 	 119

7 FUTURE WORK 	 121

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX THE ADJUST OPERATION ON TIT-V TREE (FOR CASE 4) 	 123

REFERENCES 	 128

LIST OF TABLES

Table Page

3.1 Complexity Analysis 47

3.2 Parameters for the Task Graph in Figure 3.1 	 50

3.3 Simulation Settings(1) 	 53

3.4 Simulation Settings(2) 	 53

4.1 Complexity Analysis 77

4.2 Simulation Settings(1) 	 80

4.3 Simulation Settings(2) 	 81

4.4 Simulation Settings(3) 	 81

5.1 Simulation Settings 113

xi

LIST OF FIGURES

Figure Page

2.1 The TIT tree 	 7

2.2 A TIT tree 	 8

2.3 The TIT* tree 	 9

2.4 Schedulability test by using TIT* tree 	 10

2.5 Deadline-driven heuristic resource allocation algorithm 	 13

2.6 The feasibility test algorithm 	 13

2.7 The TIT-V tree 	 14

2.8 Four cases 	 15

2.9 The TIT-V tree based feasibility test algorithm 	 17

2.10 Compute available vacancy 	 18

2.11 (a) and (b) compute AvailableVacancy and (c) TIT-V tree after inserting T'6 	 19

2.12 The generic resource allocation algorithm 	 21

2.13 Online admission control algorithm 	 23

2.14 The TIT-RL tree 	 26

2.15 TIT-RL tree based online admission control algorithm 	 29

2.16 Feasibility test 	 30

3.1 Task graph with precedence relationships 	 37

3.2 Utility functions 	 39

3.3 IAUASA scheduling algorithm 	 44

3.4 IAUASA scheduling 	 50

3.5 Utility ratios achieved vary with the increment of data volume 	 54

xii

LIST OF FIGURES
(Continued)

Figure	 Page

3.6	 Utility ratios achieved vary with the increment of the workload of computation 55

3.7	 Utility ratios achieved vary with the increment of the number of processors 	 55

3.8	 Utility ratios achieved vary with the increment of channel speed 	 56

3.9	 Utility ratios achieved vary with the increment of system utility 57

4.1	 Task graphs 	 62

4.2	 Utility function of scheduling element Eij 	 64

4.3	 Two-level scheduling framework 70

4.4	 Interplay-aware distributed resource scheduling algorithm 	 74

4.5	 Simplified message sequence chart for the normal case 	 75

4.6	 Utility ratios achieved vary with the increment of the workload of computation 82

4.7	 Utility ratios achieved vary with the increment of data volume 	 82

4.8	 Utility ratios achieved vary with the decrement of the number of processors 83

4.9	 Utility ratios achieved vary with the increment of channel speed 83

4.10 Utility ratios achieved vary with the increment of interplay factor a 	 84

5.1	 Schedulability analysis according to preemptive EDF policy 	 95

5.2	 History window based prediction for EDF policy 	 99

5.3	 History window based prediction for Fixed Priority policy 	 100

5.4	 Power-aware prediction-enabled EDF algorithm 	 103

5.5	 Frequency analysis 	 104

5.6	 Schedulability analysis 	 106

LIST OF FIGURES
(Continued)

Figure Page

5.7 Power-aware prediction-enabled fixed priority algorithm 	 .. 107

5.8 Deadline miss with infinite levels of frequencies 	 ... 114

5.9 Energy consumption and energy saving with infinite levels of frequencies 114

5.10 Energy savings with infinite levels of frequencies under different history
window widths 	 ... 115

5.11 Energy consumption and energy savings with limited levels of frequencies 116

5.12 Energy consumption and energy savings with varying execution/computation
time 	 117

xiv

CHAPTER 1

INTRODUCTION

Real-time computer systems have wide applications in many fields in the real world, such

as digital control, signal processing, medical diagnosis and monitoring,

telecommunication, industrial automation, military command and control, and

multimedia. Unlike general purpose computer systems, the tasks to be performed by these

real-time computer systems have timing constraints, and the services provided by real-

time computer systems must be delivered in a timely way. Whether the tasks could be

accomplished within the specified timing constraints and the services could be provided

in a timely way depend on whether the resources in the systems could be managed

efficiently and the requests of resources could be always satisfied sufficiently timely.

This makes real-time resource management the core and critical task in almost all real-

time computer systems.

1.1 Background

Over the past few years, real-time resource management has been extensively studied in

various flavors. While a lot of problems could be dealt with by employing existing

techniques, many important problems are in need of exploration. Among them, how to

find appropriate data structures for building efficient real-time resource management did

not receive too much attention in the past. However, solutions to this problem are of great

importance in real-time systems in the sense that well-designed data structures not only

make resource management efficient (thus improve system performance in reducing

1

2

complexity), but also make more resources available for applications (thus improve

system performance in meeting timing constraints).

The other important problem is the model for the resource management in

asynchronous real-time distributed systems, which are emerging in many domains,

including defense, telecommunication and industrial automation, for the purpose of

strategic mission management. These systems are distinguished in the sense that they

must be able to accommodate significant run-time uncertainties that are inherent in their

application environment and system resource states. This violates the static,

deterministic, synchronous premises on which most classical/conventional real-time

computing concepts, theorems, and techniques are founded. Hence, how to establish an

appropriate model for resource management in these systems is a core task. Resource

management in asynchronous real-time distributed systems has been explored for years.

Up to now, lots of work has been conducted under Jensen's utility accrual models. These

models are constructed based on the timeliness of computation or communication.

Resource management under these models is limited due to the fact that they are

inadequate for capturing the interplay between computation and communication, which

are two main factors in asynchronous real-time distributed systems. Solutions to this

problem will establish the foundations for more effective resource management in

asynchronous real-time distributed systems.

Another important problem is concerned with the efficient power/energy

management in those embedded real-time systems with random event/task arrivals. Most

past and current work on power-efficient real-time resource management is based on

classical/conventional task models, i.e., periodic, aperiodic and sporadic task models.

3

These models, however, are incapable of accommodating random task arrivals. A more

general task model is needed to capture the characteristics of random task arrival, and

corresponding foundations are needed for building power-efficient resource management

in those embedded real-time systems.

1.2 Objectives

This dissertation explores the following techniques for the resource management in real-

time systems: (1) new data structures, (2) new model and algorithms for asynchronous

real-time distributed systems, and (3) new model, technique, and algorithms for

embedded real-time systems.

The first objective is to establish new data structures for building efficient real-

time resource management. Some new data structures are established and applied to the

resource management of several classes of real-time systems. These new data structures

not only help to construct efficient resource management, but also save processing

resource and significantly improve system performance.

The second objective is to establish new utility accrual model for the resource

management in asynchronous real-time distributed systems. The new model overcomes

the inadequacy of existing utility accrual models and can fully capture the interplay

between computation and communication, which are the two main factors in

asynchronous real-time distributed systems. New resource allocation algorithms under

the new model are developed. Extensive simulations show the excellence of these

algorithms. The results validate the effectiveness of the new model for resource

management in asynchronous real-time distributed systems.

4

The third objective is to establish new task model and foundations for power-

efficient resource management in embedded real-time systems. Conventional task models

are inadequate for accommodating the random (including burst) arrivals of tasks. The

new general model adapts the concept of calculus curve from network calculus domain

and uses calculus curves to characterize random event/task arrivals and system

processing capacity. History window based prediction technique is established under the

general task model. The prediction technique provides the foundation for online real-time

Dynamic Voltage-frequency Scaling (DVS). Two online DVS algorithms are developed

based on the prediction technique. Extensive simulations are conducted. Both algorithms

exhibit excellent performance in energy saving.

CHAPTER 2

TESTING INTERVAL TREES FOR REAL-TIME SCHEDULING SYSTEMS

In real-time systems, the efficiency of the resource Scheduling Module (SM) is of critical

importance [1, 2, 3]. An efficient SM not only implies the overhead of the SM is low but

also makes it possible to obtain better decisions on resource allocation without loss of

system performance. Better decisions usually are more time-consuming and can be

obtained only at the cost of system performance. Due to the stringent timing constraints

and the high cost of analyzing and computing the optimal resource allocation decisions,

some online real-time scheduling systems have to sacrifice the optimality of their

decisions for the speed with which the decision can be computed [5, 6].

The efficiency of a real-time SM depends not only on how efficient the

underlying algorithms employed in the SM are but also on how efficiently these

algorithms are implemented. On one hand, a good algorithm with poor implementation

may still be unacceptable in practice. On the other hand appropriate implementation of

the algorithm can further improve the efficiency of the SM. In the past, how to apply

some novel and effective data structures to the SMs so as to improve their efficiency did

not receive much attention. The author believes that by introducing effective data

structures, the efficiency of many real-time SMs could be improved, which in turn will

help to improve the performance of the system. This is of great importance in the domain

of real-time systems. The author is motivated to find novel and effective data structures

to help construct efficient SMs. Because feasibility analysis (or schedulability analysis) is

the critical part of a SM, The author will focus on how to find novel and effective data

structures for conducting efficient feasibility test. It is easy to see that the main task of the

5

6

feasibility analysis is actually to check whether a group of intervals (corresponding to the

execution of tasks) could be arranged without conflicts between them. Hence, the author

first introduces the Testing Interval Tree (TIT), a balanced binary tree that is constructed

based on intervals, and use it as the basic data structure. The author then extends this data

structure for different uses. The first extension of TIT tree is the TIT* tree, which does

not rely on any specifics of the underlying scheduling/testing algorithm, and is a general

data structure that can be applied to a wide variety of real-time scheduling systems to

reduce the average cost of the schedulability test. The second extension of TIT tree is the

Testing Interval Tree for Vacancy analysis (TIT-V), which is used to conduct vacancy

(unoccupied intervals) analysis in some parallel/distributed real-time systems; whenever

a task/message is to be added to the task/message set, the schedulability test computes the

available vacancy for that task/message according to the current TIT-V tree. Lastly, the

TIT tree is extended to the Testing Interval Tree for Release time and Laxity analysis

(TIT-RL), which is used to conduct the admission control in a uni-processor based real-

time service system; whenever a request arrives, the admission control component checks

whether the requested service could be feasibly provided according to the current TIT-RL

tree. Because the TIT trees can effectively reduce the cost of the corresponding

feasibility/schedulability tests, they provide an effective approach to constructing

efficient SMs.

7

2.1 Definition and Properties of the TIT Tree

Before proceeding to the discussion of the TIT tree, the author defines a simple task

model, under which a task T is characterized by a triple (r, d, e), where r, e and d are the

release time, the absolute deadline and the execution time of T, respectively.

Figure 2.1 The TIT tree.

The TIT tree (Figure 2.1) is based on intervals and used for interval analysis. Its

properties can be summarized as follows.

(1) It is a balanced binary tree.
(2) There are two types of nodes on it, i.e., the leaf nodes which represent tasks

and the non-leaf nodes which represent intervals.
(3) Every leaf node is characterized by a triple, which defines a valid interval for a

task to execute. For example, (rπ1, d r1, eπ1) defines a valid interval (6,- 1 , dπ1) for
7r1 with start point r id and end point 61.

(4) Every non-leaf node defines an interval. For example, (Start,, End,) defines an
interval with start point Start, and end point End,.

(5) The interval of a non-leaf node covers those of its children. For example,
(Start,, End,) covers (Start1 Endl) and (Startk, Endk), and (Startl, End') covers
(r, 1 , d,1) and (rπ2, dπ2), where 6,1 and c4, 1 are the release time and absolute
deadline of task Tπ1, respectively, and r,2 and dπ2 are the release time and
absolute deadline of task Tπ2, respectively.

(6) The leaf nodes are placed in ascending order of their release times, and if more
than one node has identical release time, they are placed in ascending order of
their deadlines.

(7) For any non-leaf node, the interval of its left child is smaller than that of its
right child, compared first on start point and then on end point if needed. For
example, for (Start,, End,), either (Start, < Startk) or ((Start, = Startk) and
(End, < Endk)) holds.

8

Figure 2.2 A TIT tree.

There are two basic operations on the TIT tree, i.e., Insert and Delete/Remove.

Insert is invoked to insert a new task into the tree. It is accomplished in two steps.
At the first step, it starts from the root of the TIT tree and searches down the tree
to find an appropriate location where the new task should be placed. This step will
identify a non-leaf node, and the new task should be inserted as its child. At the
second step, the new task is put at the location that is identified in the first step. If
the identified non-leaf node has only one child, Insert only needs to insert the new
task as the left or right child of that node; otherwise, the identified node is split
into two nodes, and the intervals of the two nodes are reset accordingly. Figure
2.2 illustrates a TIT tree. Suppose that a new task N (12, 17) is to be inserted into
the tree, node (11, 16) will be split into two nodes (say 01 and 02); one of the
nodes (say 01) and F (13, 16) will become the left and right children of the other
node (i.e., 02), respectively. E (11, 13) and N (12, 17) will become the left and
right children of 01, respectively. The intervals of 01 and 02 are both set to (11,
17) so as to cover the intervals of their children. If the split causes the TIT tree to
lose balance, rotation is needed to rebalance the tree. Throughout this chapter and
the Appendix, the rotation operation is similar to that with an AVL tree [7]. Insert
also includes a procedure to update the intervals of the nodes on the path starting
from the parent of the new task to the root of the tree.

Delete/Remove operation is invoked to delete a leaf node from the TIT tree. For
this operation, two cases may exist. In the first case, it only needs to delete the
leaf node, and no other operations are involved. In the second case, the removal of
the leaf node causes the TIT tree to lose balance, and rotation(s) is needed to
rebalance the tree. Similar to Insert, Delete also includes a procedure to update
related intervals.

It is easy to see that for a TIT tree containing n leaves, the height of the tree is

bounded by 0(logn). For both Insert and Delete, their complexities are bounded by the

height of the tree, i.e., 0(logn).

9

2.2 TIT* Tree and Its Applications to Real-Time Scheduling Systems

Schedulability tests are usually performed by calling the underlying scheduling algorithm

to preprocess the whole task/message set. (In this section, the author uses tasks to

describe TIT* tree, and illustrates how to apply TIT* tree to the schedulability test of

tasks. The basic principles also apply to the schedulability test in message scheduling.)

The main problem with this approach is that whenever a task is added to the task set, to

test the schedulability of the new task set, the system needs to process the whole task set.

The overhead of the test will be very high if the task set constantly contains a large

number of tasks (this is very likely in an online dynamic environment, where new tasks

are constantly added to the system). This overhead, however, may be reduced due to the

fact that the joining of the new task may influence only a limited number of tasks, not the

whole task set. Test on the whole task set is needed only in the worst case.

Figure 2.3 The TIT* tree.

The TIT* tree proposed here fully realizes this fact. Whenever the system

performs the test, it only needs to test the schedulability of the tasks that correspond to a

subtree of a TIT* tree, which corresponds to the whole task set. The TIT* tree (Figure

10

2.3) is an extension of the TIT tree, and inherits all the properties of TIT tree including

the following property.

(1) Every non-leaf node contains two pointers. One pointer points to the first task
that is bounded by the interval of this node, and the other pointer points to the
last task that is bounded by the interval of this node.

To see how to apply the TIT* tree to the schedulability test, let's look at the

example in Figure 2.4. For simplicity, the "first task" and "last task" pointers of all non-

leaf nodes are omitted except those of the node with interval (11, 18). Suppose that

currently there are seven unfinished tasks in the scheduling queue (i.e., A, B, C, D, E, F,

and G) and another task H (15, 20) arrives, the schedulability test is performed in two

steps.

Step 1: Find the set of tasks that may conflict with task H. This is accomplished
by a checking procedure that starts from the root. At each node, it checks
to see whether the interval of this node overlaps with that of task H. If the
two intervals overlap, it checks the children of this node. This procedure
repeats until it reaches a leaf node or a non-leaf node that satisfies: (1)
both of its children overlap with task H, or (2) one of its child overlaps
with task H and its children overlap with each other. In the case that even
the root does not overlap with H, the schedulability test is not needed at
all. (No task currently in the system conflicts with H.) For the above
example, the checking procedure ends at the node with interval (11, 18).

Step 2: Once it identifies the node and hence the corresponding set of tasks, the
schedulability test is conducted against this set of tasks plus H. In the
above example, a schedulability test on tasks E, F, G and H is performed.

Figure 2.4 Schedulability test by using TIT* tree.

11

The average cost of the TIT* tree based schedulability test is analyzed as follows.

Suppose that there are n tasks currently on a TIT* tree, and the underlying task

scheduling algorithm is preemptive Earliest Deadline First (EDF). The average cost of

the schedulability test is computed as follows. (The average cost includes two parts, i.e.,

the cost of search and that of EDF to process the specified task set. For a TIT* tree

containing n tasks, its height is bounded by (logn+2). At height i, the number of nodes on

a TIT* tree is at most 2 i . The search will take (i+1) steps, and the cost of EDF will be

0(log—).)
i 	 2'

By comparison, the average cost of the schedulability test without the TIT* tree

will be O(nlogn).

It is easy to see that the advantage of TIT* tree lies in that it helps to reduce the

number of tasks to be tested, and thus reduce the average cost of the schedulability test.

Additionally, the advantage of TIT* tree does not rely on any specifics of the underlying

scheduling algorithm, and this makes it a general data structure and applicable to a wide

variety of scheduling systems with different scheduling policies. For example, the

underlying scheduling algorithm could be the preemptive or non-preemptive version of

Highest Priority First, Least Slack Time First, Highest Utility/Benefit First, or some other

similar algorithm (the average cost of the schedulability test is still O((logn) ²)). Further

study reveals that the TIT* tree is applicable to those schedulability tests that need to

12

process the whole task set whenever a task is to be added to the task set, no matter

whether the test is conducted online or offline, and whether the underlying scheduling

algorithm is preemptive or non-preemptive.

2.3 TIT-V Tree and Its Applications to Real-Time Scheduling Systems

Consider a parallel/distributed real-time system containing m processors. There are n

independent tasks to be dispatched to these processors. Suppose every task has a release

time, an absolute deadline and the workload to be finished by it. Every task can be

replicated, and the workload of the task can be partitioned and distributed to these

replicas. Replicas are dispatched to processors (but more than one replica of the same

task can not be dispatched to the same processor). Tasks/replicas are preemptively

scheduled according to their deadlines on every processor. The objective is to find a

mapping of tasks/replicas to processors such that the deadline-satisfied ratio (the ratio of

the number of tasks whose deadlines are met to the total number of tasks) is maximized.

Because this problem is NP-hard, only heuristic/approximation algorithms can be

employed in the real world. A simple heuristic approach is to first sort the tasks in

ascending order of deadline and then test the feasibility of tasks one by one in that order.

On every processor, tasks are also processed according to their deadlines. It turns out that

this heuristic can be well applied to real system to solve the aforementioned and similar

problems. For example, in [8], a best-effort algorithm called DPR is constructed

according to this heuristic to maximize the deadline-satisfied ratio in a distributed real-

time system, and another algorithm based on similar heuristic is also constructed to

13

achieve the same goal. The highest level framework of this heuristic is listed in Figure

2.5, which is similar to the highest level framework in [8].

DDRAA(F)

Input: Г= {Ti, T2, . . . , TO; /*the task set to be processed*/
Output: resource allocation result;

1 Sort tasks T1, Ty, 	 T„ in ascending order of deadline;
2 For T= T1 ' to Tn ' do	 /*T1' 	 T„' are in ascending order of deadline*/
3	 Determine_Replicas_Processors(T); /*determine the number of replicas and the processors for task T *I

Figure 2.5 Deadline-driven heuristic resource allocation algorithm.

Determine_Replicas_Processors (T)

Input: T;	 /*the task to be processed */
Output:	 determine the number of replicas and the processors for T if enough resource is available for it,

otherwise do not allocate any resource for it;
Variables:

PT= 0 ;	 /*the set of processors that have NO replica of T *I
P;	 /*the set of all processors*/
PR= 0 ;	 /*the set of processors that HAVE replicas of T *I

MinResponse; /*the minimum response time*/
PID ;	 /*ID of the processor that has the minimum response time*/

1 MinResponse= 00 ;
2 PT= P — PR;

3 If (PT == 0)

4	 Return FAILURE;
5 For each processor q E PT do
6 	 ResponseTime= EDF_AnalyzeResponse (q, T, (|PR|+1)) ; /*(|PR|+1) is the current number of processors that

will get a replica of T, and the workload of the replica that is to be
tested on q is the total workload of T divided by (|||PR|+1)*/

7 	 If (ResponseTime < MinResponse)
8 	 MinResponse= ResponseTime;
9 	 PID= q;
10 PT= PT — {PID};
11 PR= PR +VIM;
12 If (MinResponse > T. d) 	 Goto step 1;
13 For each processor q E PR —{PID} do
14 If (EDF_AnalyzeResponse (q,T, |PR|) >T. d) Goto step 1;
15 Return SUCCESS;

Figure 2.6 The feasibility test algorithm.

14

The framework of the feasibility test (Determine_Replicas_Processors()) is listed

in Figure 2.6. It is similar to the feasibility test contained in [8]. The subroutine

EDF_AnalyzeResponse() contained in Determine_Replicas_Processors() uses Earliest

Deadline First (EDF) rule to perform response time analysis (because tasks on every

processor are processed according to EDF rule). It is easy to see that the complexity of

this feasibility test is O(m²nlogn), given n independent tasks and m processors. (In the

worst case, a task T may have m replicas. To decide one replica, the test tries every

processor that has no replica of T. The test takes 0(nlogn) time on every processor.

Hence the total cost is O(m ²nlogn).) In the following subsection, the TIT-V tree is

introduced to construct more efficient feasibility tests.

2.3.1 Definition and Properties of the TIT-V Tree

In a TIT-V tree, a vacancy is an interval that is not occupied by any task. Every vacancy

has a left-endpoint and a right-endpoint. The TIT-V tree (Figure 2.7) is used for vacancy

analysis. Its properties can be summarized as follows.

(S0 , E0 , vs0 , ve0 , v0)

Figure 2.7 The TIT-V tree.

(1) A TIT-V tree is an extension of the TIT tree.
(2) A node in a TIT-V tree is characterized by a 5-tuple (S 1 , Ei , vsi, vet, v,) (Figure

2.7), where Si and E, are the start and end points of interval (Si , Ei), vs i and vei

15

are the left-most and right-most points of the vacancies contained in (S i, Ei),
and v i is the total length of the vacancies contained in (vsi, ve i) (please note
that there may be more than one vacancy within (vs i, ve t), and they are
separated by some intervals that are occupied by tasks).

(3) For a non-leaf node, the interval of its left child is smaller than that of its right
child, compared on start point. For example, for node (Sk, Ek, VSk, vek, vk), the
interval of its left child ((Sa, Ea)) is smaller than the interval of its right child
((Sb, Eb)), i.e., (Sa <Sb).

(4) Given a non-leaf node in a TIT-V tree, the interval defined by its left child
never overlaps with that by its right child, and the end point of its left child is
equal to the start point of its right child. For example, in Figure 2.7, (Ea = Sb)
holds.

(5) For a non-leaf node, its parameters are decided according to those of its
child/children. For example, in Figure 2.7, for node (Sk, Ek, VSk, vek, vk), the
following holds: vsk = Min {vsa, vsb}= vsa , vek = Max{vea , veb}= veb, vk = (va+
Vb), Sk= Min{Sa, Sb}= Sa and Ek= Max{Ea, Eb}= Eb.

2.3.2 Operation on TIT-V Tree and Its Complexity

Figure 2.8 Four cases.

The main operation on the TIT-V tree is Adjust. It is invoked when a task (say T=(r, d, e))

is to be inserted into a TIT-V tree (say Titv). Titv needs to be adjusted because some

vacancies of it may be occupied by T. The main work contained in Adjust is to find the

left-most point of vacancy P1 (Figure 2.7) and the right-most point of vacancy P², such

that (r <P1 <P² <d), and the total length of the vacancies within interval (P1, P²) is equal

to e. Once P1 and P² are identified, all the vacancies within (P1, P2) will be occupied by

T. Titv needs to be adjusted according to the remaining vacancies and those vacancies,

created due to T. To be more specific, four cases may exist (Figure 2.8).

16

Case 1: T= (t7, t8, e), and (t7, t8) does not overlap with the interval defined by Titv

(i.e., (So, E0)). So, a new vacancy (i.e., (Eo, t7)) needs to be appended to the right side of

Titv. Besides, a leaf node created according to T also needs to be appended to the right

side of the tree.

Case 2: T= (t1, t3, e), and it can finish before So. A new leaf node needs to be

created and appended to the left side of the tree. Please note that if T. (t1, t6, e), another

vacancy (E0, t6) needs to be appended to the right side of Titv.

Case 3: T= t3, e), and it can not finish before So (i.e., part of the vacancies

contained in (So, E0) will be occupied by T). the system needs to find the right-most point

that will be occupied by T and adjust the tree accordingly (because all the vacancies

between t² and that right-most point will be occupied by T). Similar to case 2, if T= (t2, t6,

e) and it can finish before E0, another vacancy (E0, t6) needs to be appended to the right

side of Titv.

Case 4: T= (t4, t5, e), and T will occupy some vacancies contained in (So, E0). This

is the most complicated case. The system needs to find the left-most point and the right-

most point that will be occupied by T and adjust the tree accordingly (because the

vacancies between that left-most point and that right-most point will be occupied by T).

Similar to case 2 and case 3, if T= (t4, t6, e) and it can finish before E0, another vacancy

(E0, t6) needs to be appended to the right side of the TIT-V tree. (Please refer to the

Appendix for more details about the process on this case. For the other cases, their

processes can be easily constructed by employing subroutines in the Appendix.)

Because the complexity of every operation contained in Adjust is bounded by the

height of the TIT-V tree, the complexity of Adjust is bounded by the height of the tree.

17

Given a TIT-V tree containing n leaves, the height of the tree is bounded by O(logn).

Hence, the complexity of Adjust is O(logn).

2.3.3 Using TIT-V Tree to Construct Feasibility Test for DDRAA

Figure 2.9 The TIT-V tree based feasibility test algorithm.

Now, the TIT-V tree is employed to reconstruct the feasibility test for DDRAA (listed in

Figure 2.5). The pseudo code of the TIT-V tree based feasibility test is listed in Figure

2.9 and Figure 2.10.

Determine_Replicas_Processors(T) (Figure 2.9) is used to determine the number

of replicas of T and the processors to which these replicas can be feasibly dispatched.

18

Compute_Vacancy(p, 7) (Figure 2.10) is used to compute the total length of the available

vacancies for T on processor p.

Figure 2.10 Compute available vacancy.

It is easy to see the complexity of Compute_Vacancy() is bounded by the height

of the TIT-V tree, i.e., O(logn). Hence, the for loop (Figure 2.9) from step 2 to step 7 runs

in O(mlogn). The sorting in step 11 can be done in O(mlogm). Because the Adjust

operation on a TIT-V tree can be finished in O(logn) time, the complexity of steps 23-28

is O(mlogn). (In the worst case, every processor gets a replica of T, the corresponding

TIT-V tree is adjusted, and there are at most m processors.)

19

Thus the complexity of Determine_Replicas_Processors() is 0(mlogn+mlogm).

Compared to O(m ²nlogn), this is a big improvement.

Figure 2.11(a) and Figure 2.11(b) show the computations of available vacancies

for task 7-6 .(1 1, 19, 6) and task T'6=(3, 19, 5) based on a given TIT-V tree. (This tree is

constructed by inserting tasks T 1 = (0, 10, 2), T²= (5, 13, 2), T3= (14, 16, 1), T4= (10, 17,

2) and T5= (6, 18, 4) into an empty TIT-V tree one by one.). As is shown the total length

of the available vacancies for T6 is 5 time units while that for T'6 is 7 time units. Figure

2.11(c) is the adjusted TIT-V tree after inserting task T'6.

(a) AvailableVacancy= 5	 (b) Available Vacancy= 7

(c) TIT-V tree after inserting r 6

Figure 2.11 (a) and (b) compute AvailableVacancy and (c) TIT-V tree after inserting T'6.

Theorem 2.1 Under DDRAA, a replica T= (r, d, e) can be feasibly scheduled on a
processor p if and only if the total length of the available vacancies
returned by Compute_Vacancy(p,T) is equal to or larger than e.

Proof: 4- If T is schedulable under preemptive EDF on processor p (and no task misses
its deadline), this certainly implies that there are enough vacancies within (r,
d) for accommodating T. Because Compute_Vacancy(p,T) always computes
the total length of the available vacancies within (r, d), the AvailableVacancy
returned by Compute_Vacancy(p, T) will be equal to or larger than e.

20

---> (1) Before the process on replica T, all tasks (or replicas) on processor p are
schedulable under preemptive EDF. The process on T will have no influence
on those tasks because tasks are processed in ascending order of their
deadlines. Hence those tasks will still be schedulable, and they will occupy the
same intervals even if T is dispatched to processor p. (2)
Compute_Vacancy(p,T) always computes the total length of the available
vacancies within (r, d). If the total length returned by it is equal to or larger
than e, this implies that enough vacancies can be found for T. Obviously, it is
safe to conclude that T will be schedulable under preemptive EDF. ❑

Theorem 2.2 With TIT-V tree, the complexity of Compute_Vacancy() is O(logn), and
the complexity of Determine_Replicas_Processors() is
O(mlogn+mlogm), given n tasks and m processors.

Proof: This can be proved by previous complexity analysis.	 ❑

2.3.4 Using TIT-V Tree to Construct Feasibility Test for a Generic Resource
Allocation Algorithm

Further study shows that the TIT-V tree can be applied to a class of real-time scheduling

systems. Figure 2.12 is the framework of a generic resource allocation algorithm. It is

similar to the frameworks in [8, 9, 10, 11, 12, 13, 14]. This algorithm can be instantiated

to achieve different objectives, e.g., maximizing deadline-satisfied ratio [8], maximizing

utility/benefit [9, 10, 11, 12, 13, 14] (in this case, every task is associated with a utility

value), maximizing deadline-satisfied ratio of the tasks with high priorities (in this case,

every task is associated with a priority), etc. Accordingly, a scheduling rule is applied to

every processor. To maximize deadline-satisfied ratio, EDF is applied; to maximize

utility, a utility based discipline such as DASA [15] is applied; to maximize the deadline-

satisfied ratio of the tasks with high priorities, the highest priority first rule is applied.

The sorting in GRAA (see below) will sort tasks according to the objective. For

example, if the objective is to maximize utility, tasks are sorted in non-increasing order of

utility value; if the objective is to maximize the deadline-satisfied ratio of the tasks with

21

high priorities, tasks are sorted in non-increasing order of priority, etc. GRAA uses the

same Determine_Replicas_Processors() as that in Figure 2.9, which in turn uses the same

Compute_Vacancy() as that in Figure 2.10.

GRAA(T)

Input: 	 /= { T1, T2, . . . , 	 ; /*the task set to be processed*/
Output: resource allocation result;

1. Sort tasks T1, T2, • Tn according to the objective;
For T= T1 ' to Tn' do /* process tasks in sorted order */

Determine_Replicas_Processors(T);

Figure 2.12 The generic resource allocation algorithm.

Theorem 2.3 Under an instantiated GRAA, a replica T= (r, d, e) can be feasibly
scheduled on a processor p if and only if the total length of the available
vacancies returned by Compute_Vacancy(p,T) is equal to or larger than
e.

Proof: The proof is similar to that of Theorem 2.1 except that tasks are now processed
according to the objective of the instantiated GRAA.	 ❑

Theorem 2.4 Under an instantiated GRAA, the complexity of Compute_Vacancy() is
O(logn), and the complexity of Determine_Replicas_Processors() is
O(mlogn+mlogm), given n tasks and m processors.

Proof: Because the instantiated GRAA uses the same Compute_Vacancy() and the same
Determine_Replicas_Processors() as those used in DDRAA, Theorem 2.4 holds. ❑

2.4 TIT-RL Tree and Its Applications to Real-Time Scheduling Systems

This section studies TIT-RL tree and its application to the online admission control in a

real-time system. Previous work on how to use novel data structures to improve the

efficiency of online admission control can be found in [16]. There, an augmented red-

black tree [7] is used for a real-time service system.

Consider an open system that is designed to provide online real-time services for

customers. Customers send requests to the system and specify the types of the services

22

and the time intervals within which the services are needed. This system can be viewed as

a model extracted from some applications such as online media service, call admission

and other service [16, 17, 18, 19, 20, 21]. The system will enforce admission control over

the requests. The policy of the admission control is simple: if a requested service can be

feasibly provided, the request is admitted, and a corresponding task will be created to

provide the specified service within the specified interval, otherwise, it is rejected.

Suppose tasks are executed non-preemptively, and the system aims to (1) minimize the

max-flow (i.e., the maximum response time) [21] and (2) maximize the number of

accepted requests. Because this is an online system, and it has no idea about the future

requests, it employs some heuristics to process the requests. To achieve the first

objective, the system always processes a task (created due to a request) at the earliest

available time (but never earlier than its release time). The point behind this heuristic is

that the online First In First Out (FIFO) discipline is optimal in minimizing max-flow for

single processor [21]. To achieve the second objective, it tries to accept every request

whenever possible since the system has no idea about the future requests.

Accordingly, the online admission control algorithm (ACA) can be constructed as

Figure 2.13. ACA is used to check whether a new task T (r, d, e) (created due to a new

request) can be safely accepted (T can be finished within interval (r, d), and no accepted

tasks miss their deadlines), given that there are n accepted tasks, including those that have

already been released and those that haven't been released.

Admitted tasks will be put at the appropriate positions in the task queue.

Whenever a task completes, the task scheduler always picks the next task from the head

of the queue for execution.

23

ACA (T,)

Input:: T; 	 /*the task to be tested*/
Г= {T1 , T2, 	 TO; /*the set of the admitted tasks*/

Output: accept or reject T;

1 k= Position (T, Г); 	 /*find the appropriate position of T according to its release time*/
2 Check the feasibility of putting T at the kth position;
3 If (FEASIBLE)

Insert T into the task queue at the kth position;
5 	 Return FEASIBLE; /*T is accepted */

Else
For i= (k+1) tondo

8 	 Check the feasibility of putting T at the ith position;
If (FEASIBLE)

10 	 Insert T into the task queue at the ith position;
11 	 Return FEASIBLE; 	 /*T is accepted */
12 Return INFEASIBLE; 	 /*T is rejected */

Figure 2.13 Online admission control algorithm.

It is easy to see, the complexity of ACA is 0(n²). (Step 1 will take 0(logn) time by

using binary search; step 2 will take 0(n) time because the system needs to check all

those tasks that are ordered after T; step 7 will be executed (n-k-1) times in the worst

case; hence the complexity of steps 7 and 8 will be 0(n²).)

In the next subsection, the TIT-RL tree is introduced to reduce the complexity of

ACA.

2.4.1 Definition and Properties of the TIT-RL Tree

The TIT-RL tree (Figure 2.14) is an extension of the TIT tree, and it is used for release

time and laxity analysis. A TIT-RL tree has all the properties of a TIT tree except the

following.

(1) A non-leaf node in the TIT-RL tree is characterized by a triple (Start, End,
LR) and a 4-tuple (s_start, unoccupied, s_end, ll). Start and End are the start
and end points of interval (Start, End), and LR (Last Release time) is the
release time of the task that is last released within (Start, End). s_start and
s_end identify the start and end points of current schedule within (Start, End).
unoccupied is the total unoccupied time units within (s_start, s_end) (please
note that this interval is contained in (Start, End) and is not necessarily equal

24

to interval (Start, End)), and I (largest laxity) is the largest laxity of the
schedule within (s_start, s_end). The largest laxity of a schedule within
(s_start, s_end) is defined as the maximum number of time units that the
schedule can be pushed backwards without causing any task to lose its
deadline. This implies that a task with that much of processing time can be
safely inserted at s_start without causing any task to miss its deadline.

(2) The definition of a leaf node is similar to that of a non-leaf node except that
the triple (Start, End, LR) is replaced with a 4-tuple (r, d, e, LR) (where r, d
and e are the release time, absolute deadline and execution time of a task T,
respectively). Please note that the LR in a leaf node is always set to the r of
this node. Although it is not useful for a leaf node, it will facilitate the
operations on the TIT-RL tree.

For a leaf node, its parameters are decided as follows.

LR= s_start= r;
unoccupied= 0;
send= (r+e);
I= [d-(r+e)];

(In the following discussion, for a leaf node, its r corresponds to the Start, and its
d corresponds to the End.)

For a non-leaf node, its parameters are determined according to those of its child
(children). Given a non-leaf node Parent having two children Node1 and Node2,
its parameters are determined as follows.

Parent.Start= Min{Node1.Start, Node2.Start} 	 —(A1)
Parent.End= Max{Node1.End, Node2.End}	 —(A2)
Parent.LR= Max{Node1.LR, Node2.LR}	 —(A3)
Parent.s_start= Min{NodeLs_start, Node2.s_start}	 —(A4)

For the s_end, unoccupied and I of Parent, they depend on the relationship
between interval (Node1.s_start, Node1.s_end) and interval (Node2.s_start,
Node2.s_end). To be more specific, four cases exist.

Case 1: (Node1.s_end < Node2.s_start). They are obtained according to (A5.1),
(A6.1) and (A7.1), respectively.

Parent.s_end= Node2.s_end 	 —(A5.1)
Parent.unoccupied= (Node1.unoccupied+ Node2.unoccupied+

Node2.s_start-Node1.s_end) —(A6.1)
Parent.I= Min{Node1.I,II (Node1.unoccupied+Node2.II+

(Node2.s_start- Node1.s_end))} —(A7.1)

25

Case 2: (Node2.s_end < Node1.s_start). They are obtained according to (A5.2),
(A6.2) and (A7.2), respectively.

Parent.s_end= Node1.s_end 	 -(A5.2)
Parent.unoccupied= (Node1.unoccupied+ Node2.unoccupied+

Node 1 .s_start-Node2.s_end) -(A6.2)
Parent.II= Min{Node2.II, (Node2.unoccupied+Node1.I+

(Node1.s_start- Node2.s_end)) } -(A7.2)

Case 3: (Node2.s_end> Node1.s_start > Node2.s _start). In this case, the overlap
part of the two intervals needs to be taken into account, and they are
obtained according to (A5.3), (A6.3) and (A7.3), respectively.

Parent.unoccupied= (Max{(Node1.unoccupied+Node1.s_start
-Node2.s_end), 0 }+ Node2.unoccupied) -(A6.3)

Parent.II= Min{Node2.II, (Node2. unoccupied+Node 1.11-
(Node2.s _end- Node1 .s_start)) } -(A7.3)

if ((Node2.s_end-Node1.s_start) <Node1.unoccupied)
Parent.s_end= Node1.s_end	 -(A5.3)

else Parent.s_end= (Node1.s_end+Node2.s_end-
Node1 .s_start-Node1 .unoccupied) 	 -(A5.3)

Case 4: (Node1 .s _end > Node2.s _start > Node1.s_start). Similar to Case 3, the
overlap part of the two intervals needs to be taken into account, and they
are obtained according to (A5.4), (A6.4) and (A7.4), respectively.

Parent.unoccupied= (Max{(Node2.unoccupied+Node2.s_start
-Node1.s_end), 0}+ Node1.unoccupied) -(A6.4)

Parent.II= Min{Node1 .I, (Node 1. unoccupied+Node2. ii-
(Node1.s_end- Node2.s_start))1 	 -(A7.4)

if ((Node1.s_end-Node2.s _start) <Node2.unoccupied)
Parent.s_end= Node2.s_end 	 -(A5.4)

else Parent.s_end=(Node2.s_end+Node1.s_end-
Node2.s_start-Node2.unoccupied)	 -(A5.4)

Fi
gu

re
 2

.1
4

Th
e

TI
T-

R
L

tr
ee

.

27

2.4.2 Operations on TIT-RL Tree and Their Complexities

The basic operations on the TIT-RL tree include Insert and Delete/Remove.

Insert is invoked to insert a new task. This operation is similar to the Insert

operation discussed in Section 2.1 except that the parameters of nodes need to be adjusted

according to the definition of TIT-RL tree. The adjustment of parameters is conducted

according to what is discussed in Section 2.4.1.

Delete/Remove is invoked to delete a leaf node from a TIT-RL tree. This

operation is similar to the Delete/Remove described in Section 2.1 except that the

parameters of related nodes need to be adjusted according to the definition of TIT-RL

tree after the removal of the leaf node. The basic idea involved in the adjustment is

similar to what is discussed in Section 2.4.1.

It is easy to see that the complexities of both Insert and Delete/Remove are

O(logn), given a TIT-RL tree containing n tasks.

2.4.3 Using TIT-RL Tree to Construct ACA

Now, the TIT-RL tree is employed to reconstruct the ACA algorithm (Figure 2.13). The

pseudo code of the TIT-RL tree based algorithm is listed in Figure 2.15. The basic idea of

the new algorithm is the same as that contained in Figure 2.13. In Figure 2.15, ACA first

checks some simple cases (steps 2-7). More complicated cases are processed by steps 8-

32. Basically, it first finds the appropriate position for a new task T (step 9) and then

checks whether it can be safely inserted into that position (steps 12-27). The checking

procedure starts from Temp (this is the task before which the new task is to be inserted)

and goes up the tree. If any node indicates deadline miss (i.e., the updated largest laxity

of the node is less than zero), ACA stops current checking procedure and attempts to

28

insert the new task before the next task (step 17). This invokes a new checking procedure.

If T can not be inserted into any position, it is rejected (steps 14 and 29). Otherwise, it is

inserted before First (step 23) or inserted at the end of the task queue (step 31). See step

23 and step 31, when the new node is inserted in the queue, its parameters may be

adjusted if needed. The adjustment is used to make the updated tree conform to the

definition of TIT-RL tree. However, it never changes the actual executions of tasks, nor

does it have any impact on the admission of future tasks.

Figure 2.16 shows how the test is conducted, given a TIT-RL tree and a new task

(6, 10, 1). Please note that ACA updates the parameters of some nodes during the test.

Whether the test succeeds or not, those parameters that are changed need to be restored.

This procedure can be avoided by using two copies of parameters. One copy is used only

for test, and its values are copied from the other one. The copy operation is needed only

for those nodes whose parameters are changed in the test. During the test, the parameters

of every related node are first copied and then changed.

Definition 2.1 (Safe Acceptance) A task T= (r, d, e) can be safely accepted if a suitable
position (on the TIT-RL tree) can be found for T, and it can be inserted
there without causing any task (including T itself) to miss its deadline.

Theorem 2.5 A new task T= (r, d, e) can be safely accepted by the system if and only if
ACA returns TRUE when it processes the corresponding TIT-RL tree.

Proof: <— (1) That T is schedulable implies that a position, which is the earliest suitable
position according to current system status, is available for T. (2) ACA
always tries to find the earliest suitable position for T. Hence, ACA will be
able to find that position, successfully insert T there and return TRUE.

—> (1) Before the test, all existing tasks are schedulable. (2) When ACA conducts
the test, it always tries to find the earliest suitable position for the new task
such that the new task can be safely inserted there (i.e., it does not cause
any existing task to miss its deadline, and there is enough vacancy to

29

accommodate it). ACA returns TRUE implies that such a position is
available for T. Hence it can be safely accepted. 	 ❑

ACA (Titrl, T)

nput: Titrl; 	 /*the TIT-RL tree that contains all accepted tasks */
T; 	 /*the new task to be tested*/

Output: TRUE/FALSE; 	 /*T is admitted/rejected */

1 Create a new node NewNode according to T;
Case 1: (T. d < Titrl. root. Start)

Insert NewNode into the front of the queue;
• Return TRUE;
5 Case 2: (T. r > Titrl. root. End)
. Insert NewNode into the end of the queue;

Return TRUE;
8 Case 3: (Other cases)
' Search down the tree, and find the first leaf node First such that

(First. r > T. r) or ((First. r == T. r) and (First. d > T. d));
10 If (NOT FOUND)
11 	 Goto step 28;
12 Temp = First;
13 If ((Temp—>Trey. send + T. e) > T. d)
14	 Return FALSE; 	 /*the new task can not be safely accepted*/
15 Push in T. e time units before Temp, and adjust its parameters;
16 	 If (Temp. 11 < 0) 	 /*implies deadline miss*/
17 	 First = First—>next; 	 /*attempt to insert the new task before the next task in the task queue*/
18 	 If (First == NULL) 	 /*implies the new task can not be inserted before ANY task in the task queue*/
19 	 Goto step 28;
0 	 Else Goto step 12;

11 Temp= Temp-->parent; 	 /*go upward the tree*/
2 If (Temp == NULL) 	 /*implies the test succeeds*/
3 	 Adjust the parameters of NewNode, and insert NewNode before First;
4 	 Return TRUE;
5 Else
6	 Adjust the parameters of Temp;

►7 	 Goto step 16;
8 	 If ((Titrl. root. send + T. e) > T. d)
9	 Return FALSE; 	 /*the new task can not be safely accepted*/

30 Else
31 	 Adjust the parameters of NewNode, and insert NewNode into the end of the queue;
32 	 Return TRUE;

Figure 2.15 TIT-RL tree based online admission control algorithm.

Fi
gu

re
 2

.1
6

Fe
as

ib
ili

ty
 te

st
.

30 0

31

Theorem 2.6 Given n existing tasks in the system, the complexity of ACA is O(nlogn).

Proof: It is easy to see from Figure 2.15, the running time of one checking procedure in
ACA is bounded by the height of the tree, i.e., O(logn). In the worst case, the
checking procedure will be invoked at most n times. Hence the complexity of
ACA is O(nlogn). ❑

The TIT-RL tree based ACA algorithm can also be applied to some

parallel/distributed scheduling systems that are designed to achieve the same objectives

as the service system described before. This can be easily accomplished by using the

TIT-RL tree based ACA as a building block on every processor.

CHAPTER 3

NEW UTILITY ACCRUAL MODEL FOR RESOURCE ALLOCATION IN
ASYNCHRONOUS REAL-TIME DISTRIBUTED SYSTEMS

In Distributed Real-Time Systems (DRTSs), communication cost is no longer negligible.

Whether activities can be completed in time depends on whether the computations and

the communications involved in them can be completed in a timely way. Hence

communication, in terms of meeting timing constraint, is as important a factor as

computation in DRTSs. Furthermore, the timeliness of computation relies on that of

communication, and vice versa. This property requires that the resource allocation in

DRTSs fully realize the interplay between computation and communication.

In the literature of resource scheduling for distributed real-time systems, a lot of

work was devoted to the issues of minimizing response time [23, 24], load balancing that

seeks to distribute the workload over nodes in a balanced way [25, 26], load sharing that

tries to transfer workload from overloaded nodes to under-loaded nodes [27, 28, 29, 30]

and maximizing the probability of meeting task deadlines [31]. Meanwhile, some work

concentrated on minimizing the execution time of computation, or minimizing the

communication cost, or both [32, 33, 34, 35].

In recent years, the utility/benefit related models have been intensively studied

and applied to many DRTSs.

In [36, 37], a model called Q-RAM (QoS-based Resource Allocation Model) is

proposed. Utility under Q-RAM is determined based on the Quality of Service (QoS)

along multiple QoS dimensions (e.g., timeliness, reliability, security, and data quality).

The QoS along every dimension depends on the amount of resource(s), the larger the

32

33

amount of resource, the higher the utility. For every application, a utility function is

defined. Resources are apportioned among applications in a way such that the system

utility is maximized. Applications are then set up according to the apportionment.

Similarly, in [38, 39], a utility mode1 is proposed for adaptive resource

management in dynamic distributed real-time systems. This model is further studied in

[40, 41]. Utility under this mode1 is defined as a function of extrinsic attributes and

service attributes (or QoS levels). Resource allocation under this model is to find some

settings of extrinsic and service attributes such that the system utility is maximized.

Applications are then set up according to these settings.

The Jensen's Utility Accrual Models (UAM) [42, 43] takes a different approach

for resource scheduling. Firstly, UAM focuses on timeliness, which is the main concern

in almost all real-time systems. Accordingly, utility under UAM is defined as a function

of the completion time of a task. For example, a utility function under UAM may be

defined as a function of the completion time of a computation (task) [15] or a

communication (task) [44]. Secondly, resource allocation under UAM is to find a

schedule through scheduling simulation analysis such that the system utility is

maximized. Extensive research has been conducted under UAM. For example, in [9, 10,

11, 12, 13, 14, 15, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59],

various techniques and algorithms are investigated under UAM. It was shown that UAM

is very effective for resource allocation in soft real-time systems [48, 49, 50], especially

under overload situations, which are usually a primary concern in most real-time systems.

To accommodate the dependency relationship between tasks, an extended UAM

called Joint Utility Accrual Model (JUAM) is proposed in [45]. Under JUAM, the joint

34

utility of a task is defined as a function of the completion-time utility and progressive

utility of some other tasks. The completion-time utility and progressive utility of a task

depend on its completion time and progress.

In DRTSs, the timeliness of activities is inherently determined by the interplay

between computations and communications. Nevertheless, the utility functions under

UAM are mostly constructed based on computation or communication, and the interplay

between computation and communication is not reflected in utility functions.

Consequently, the interplay between computation and communication is not effectively

and fully explored by resource scheduling under UAM. As resource scheduling model is

the key component for ensuring system timeliness, it must capture and characterize the

interplay between computation and communication. Motivated by this key observation,

the author proposes a new utility accrual mode1 called UAM + , which is constructed based

on the timeliness of computation and communication. A utility function under UAM + is

defined as a function of the completion times of a computation and a communication, and

the interplay between the computation and communication is also characterized in the

function. Accordingly, resource managers under UAM + are guided to perform resource

allocation by exploring the interplay between computation and communication. The

author also develops a resource allocation algorithm called IAUASA (see Section 3.4) to

validate the effectiveness of the UAM+ model. Note that the interplay relationship is

different from the joint dependency relationship under JUAM [45]. Firstly, the joint

utility of a dependent task (say a communication task) is a function of the progressive

utility and completion-time utility of a depended task (say a computation task), while

utility under UAM+ is determined based on the completion times of the computation and

35

the communication. Secondly, under JUAM, the completion-time utility and progressive

utility of the depended task depend on its completion time and progress and do not

depend on the dependent task, while under UAM + , utility can not be determined solely

based on the completion time of a computation or a communication because utility is a

function of the completion times of the computation and communication.

3.1 System Model

Assume a distributed real-time system that contains n (homogeneous or heterogeneous)

processors. These processors are interconnected by a network. There is a (logical)

channel/connection from every processor to each of the other processors. On every

processor, the tasks are preemptively scheduled according to their priorities, i.e., highest

priority first. On every channel, the messages are processed according to their tag

numbers. A message with tag number K must wait until the message with tag number (K-

1) is processed. When a message is transmitted over a channel, the end-to-end

communication cost of it is directly proportional to the volume of the data in the message.

Unless mentioned otherwise, it is assumed that it will take one unit of time to transmit

one unit of data. Note that UAM + does not rely on any specifics of the task scheduling

policy, the message scheduling policy, the processor, and the underlying network. As is

shown in Section 3.4, UAM+ only provides guidelines for resource managers by

specifying the constraints on communication and computation and characterizing the

interplay between them. The problem of how to explore the interplay and how to allocate

specific resources to meet the constraints is addressed by resource managers, and is

outside the scope of the model. Accordingly, a relatively simple system model outlined

36

above is assumed; this allows the author to focus on the evaluation of the UAM + model

rather than the discussion of the details of a complicated system. The author notes that

such a methodology is commonly adopted in the literature. For example, in [2] (and the

references therein), when the schedulability of a group of tasks is studied, only the

execution of these tasks are counted; no switching overhead, contention on resources, or

other overheads are assumed. These assumptions allow the schedulability test to be

studied without being involved in the lengthy discussion of other specifics of the system.

Similarly, when conducting dynamic voltage-frequency scaling, people assume that the

energy expense and time overhead of voltage-frequency switching is negligible [60, 61,

62]. This enables them to concentrate on their models and algorithms.

3.2 Task, Message, and Scheduling Models

Suppose groups of tasks and their precedence relationships are characterized by Directed

Acyclic Graphs (DAGs). Nodes and edges in a DAG (Figure 3.1) represent tasks and the

precedence relationships among tasks. (Throughout this chapter, node and task are used

interchangeably.) Furthermore, it is assumed the precedence relationship is established

only due to data dependence (i.e., the successor has to wait for the completion of its

predecessors only because it needs the data from its predecessors). Data is sent from a

predecessor to a successor through message transmission. The weight associated with

each edge in the graph represents the data volume that will be transmitted from the

corresponding predecessor to the corresponding successor. For example, there will be V34

units of data to be sent from T3 to T4.

37

A task Ti is characterized by a triple (ri, pi, di), where ri, pi and di are the release

time, processing time and relative deadline of T, respectively. A task is released only

after it has received all required data from its predecessors. For those tasks that have no

predecessors, their release times are set to the time when the task graph is released.

Similarly, a message Mu (corresponds to v ij) is characterized by a triple (mrij, vu , mdij),

where mrij is the time when the data is ready, and vij and mdij are the data volume and

relative deadline of Mu, respectively. For a message Mu, its release time is decided

according to mrij=(ri+fi), where ri and are the release time and relative finishing time of

respectively. For a task Ti having k predecessors, its release time is decided according

to ri=max{(mr'ji+f'ji)}, where l< j <k, mr'ji and f'ji are the release time and relative

finishing time of M j , , respectively. If Ti and T.; are dispatched to the same processor, the

communication cost is zero, i.e., f'ji =0.

Figure 3.1 Task graph with precedence relationships.

A scheduling element is defined as the combination of the computation (the task)

and communication (the message) along a directed edge (excluding the successor task) in

the DAG. If a node in the graph has no successor, the corresponding scheduling element

contains no communication. A 5-tuple is used to characterize a scheduling element E,1

38

(corresponds to Ti (rid, COMP_Dij, COMM_Dij , compij, commit), where rij is the

release time of task Ti (i.e., rid= ri), COMP_Dij and COMM Du are the relative deadlines

of the computation and communication of E, , respectively (i.e., COMP_Dij = di and

COMM Du= mdij), compij is the processing time of the computation of Eij (i.e., compij=

p i), and commit is the data volume that needs to be transmitted by Eij (i.e., commij =vi'j).

For example, in Figure 3.1, E23= (r2, d2, md23, P2, v23). For Ei = Ei,π2, • • • , &irk} (i.e.

Ei is the set of scheduling elements that originate from the same node Ti in the DAG), all

the scheduling elements in it have the same release time, processing time of computation

and relative deadline of computation but may have different relative deadlines of

communications and data volume. In addition, all scheduling elements will have the same

completion time of computation, which is decided by the completion time of task

3.3 The New Utility Accrual Model

3.3.1 Utility Function

Assume a simple utility function under UAM. Figure 3.2(a) is the utility function of a

task Ti. COMPi is the timing constraint (for achieving positive utility) on Ti. Throughout

this chapter, COMPi is assumed to be equal to the deadline of T i . (It must be pointed out

that the timing constraint on a task is not necessary equal to its deadline. In a soft real-

time system, a computation may miss its deadline but still obtain some positive utility

[43].) As is shown in Figure 3.2(a), Ti makes contribution to the system only if it could

complete no later than COMPi.

communication;
(a) Utility function (for Ti) under UAM (b)Utility function (for EIS) under UAM+

Figure 3.2 Utility functions.

Now, suppose Ti needs to send a message M11 to another task	 The deadline of

Mu is COMM DID. Under UAM+ , a scheduling element EIS will be defined, and the utility

function for it will be defined as in Figure 3.2(b). As is shown in Figure 3.2(b), the utility

function (uij(comp, comm)) of EIS is defined as a function of the completion time (the

difference between the time when a computation/communication is released and the time

when it is finished) of the computation and that of the communication. COMPij and

COMMIS are the timing constraints on computation and communication for achieving

positive utility. Note that COMPij is different from COMP Du. The latter marks the

deadline of the computation of El'j while the former marks the latest time point by which

the computation of Eij should complete so as to achieve positive utility. Similarly,

COMMIS is different from COMM_Dij. (It must be pointed out that if COMPi is not equal

to the deadline of Ti , COMP_Dij in Figure 3.2(b) should be replaced with COMPi.) The

introduction of COMPij and COMMIS will make it natural to construct more complicated

39

40

utility functions in soft real-time systems. (More complicated utility functions can be

defined according to system level analysis [43].)

From Figure 3.2(b), two features of the utility function are observed under UAM + :

(1) the utility that can be achieved relies not only on the completion time of the

computation but also on that of the communication, and (2) the interplay between

computation and communication has critical influence on determining the timeliness of

computation and that of communication (and thus the utility obtained) (for example, a

short completion time of computation will make a long completion time of

communication acceptable (without loss of utility), and vice versa). Given a point (cpij ,

cmij) (where cpij and cmij are the completion time of the computation and that of the

communication, respectively), if it is bounded in the shaded region (i.e., it satisfies

(cpij+cmij) < (COMP_Dij+COMM_Dij)), Eij will contribute positive utility (Liij) to the

system. This provides a framework for resource managers to optimize resource allocation

by exploring the interplay between computation and communication. By contrast, the

resource managers under UAM will check whether (cpij COMP_Dij) and (cmij <

COMM Dij) are met or not. If either of them can not be met, no utility can be obtained

even if (cpij+cmijj) is far less than (COMP_Dij+COMM_Dij).

Because the construction of the utility function is an engineering approach [43],

the author will not dwell on this topic in this dissertation.

3.3.2 Utility Accrual Criteria

Given a task graph containing a group of tasks T= {T l , T2, ..., TO and a processor set P.

{P1, P2, . . ., Pm} that is connected by a network, the author is interested in the goal that

the resource managers should try to achieve and how to achieve the goal. The ability of a

41

model to provide unified criteria for resource allocation is not only central to but also

critical for distributed real-time systems.

Like UAM, timing constraints under UAW are characterized in utility functions,

and the goal for resource allocation is to maximize system-wide utility. Under UAW,

this problem can be formally expressed as follows. (Suppose the utility function of an

element El'j is defined as that in Figure 3.2(b).)

cpij: the completion time of the computation of El'j;
cmijj: the completion time of the communication of Eij;

Unlike UAM, UAM+ is constructed based on the timeliness of computation and

communication. The interplay between computation and communication is also reflected

in the utility function. This requires resource managers under UAW treat computation

and communication as a whole, try to explore the interplay between them, and optimize

resource allocation along two dimensions, i.e., computation and communication.

By contrast, a utility function under UAM is defined based on the timeliness of a

computation or a communication, and the interplay between computation and

communication is not reflected in the utility function. As a result, resource managers

under UAM strive for meeting the timing constraints on computation and communication

42

separately. The following example will further illustrate this issue. Consider a simple

scenario, where there are two tasks (computations) Ti and Tj, and T, needs to send a

message Mij to Suppose T, can be finished very quickly but Mij will miss its deadline

according to current system status; however, Ti and M11 as a whole is still acceptable and

will not cause any utility loss from the system level view. This scenario will typically fail

the feasibility test under UAM.

3.4 Interplay-Aware Utility Accrual Scheduling Algorithm

To analyze, evaluate and validate the effectiveness of the UAM+ model, this section

presents a heuristic resource allocation algorithm IAUASA (Interplay-Aware Utility

Accrual Scheduling Algorithm). IAUASA is constructed under UAM+ and aims to

maximize system-wide utility. Because the optimization problem of mapping tasks to

processors is NP-hard, IAUASA attempts to find some suboptimal solutions through a

heuristic approach. The algorithm is listed in Figure 3.3. To help describe the algorithm,

the example in Figure 3.1 will be referred to throughout this section. The parameters for

Figure 3.1 are listed in Table 3.2.

3.4.1 The Algorithm

Before proceeding to the detailed discussion on the algorithm, we first introduce an

invalid node. A node is said to be invalid if the scheduling element set that is constructed

based on it is currently identified as the best candidate set, but some elements in the set

can not be feasibly scheduled. Thus the invalid flag is used to indicate that this node

should not be selected immediately after this round; otherwise the same set as last will be

constructed.

43

The frameworks of algorithm IAUASA and its subroutines are listed in Figure 3.3.

Given a task graph DAGs , IAUASA will repeatedly process the remaining part of

the task graph until every node is processed. The process is conducted according to two

cases.

Case 1: A node (BestNode), whose current predecessor element set has the largest

total utility, can be found (steps 2-8, IAUASA()). For example, in Figure 3.1, node T4 will

be selected in the first round because its predecessor element set {E01, E02, E13, E23, E24,

E34, E44} currently has the largest total utility among all predecessor element sets. (For

E44, T4 is the predecessor of itself.) The schedulability of this element set is then checked

(step 9, IAUASA()). If the schedulability test is successful, IAUASA will process related

tasks and messages according to the schedulability test result (steps 12-20, IAUASA()).

For every related task, IAUASA marks it as processed, dispatches it to the processor

determined during the schedulability test, and assigns a priority to it according to the

order it is processed on that processor during the schedulability test. For every related

message, IAUASA dispatches it to the channel determined during the schedulability test,

and assigns a tag number to it according to the order it is processed on that channel

during the schedulability test. (Note that a message will not exist until the corresponding

task creates it.)

44

Figure 3.3 IAUASA scheduling algorithm.

45

Case 2: A suitable node that meets the criteria of Case 1 can not be found. In this

case, IAUASA tries to find an unprocessed, invalid but ready node (BestNode) such that

all of its predecessors have been processed, and its successor element set currently has

the largest total utility (steps 22-27, IAUASA ()). The rationale behind this idea is that

because BestNode currently supports the largest utility, IAUASA attempts to schedule it

with the hope to achieve the largest potential utility because all utility supported by

BestNode is unachievable without processing of it. Once BestNode is found, IAUASA

tries to find a suitable processor for it. IAUASA then marks BestNode as processed,

dispatches it to that processor, and assigns a priority to it. Additionally, IAUASA also

assigns a tag number to every related message, and dispatches it to corresponding

channel.

Given a node BestNode and its predecessor element set ElementSet, subroutine

SchedulabilityTest() is used to find suitable channels and processors for related messages

and tasks. Basically, SchedulabilityTest() first picks a task Ti (step 2,

SchedulabilityTest()), and then tries to find a processor for it. If such a processor is found,

SchedulabilityTest() removes all predecessor elements of Ti from ElementSet (step 5,

SchedulabilityTest()). This procedure repeats until all elements in ElementSet are

checked. SchedulabilityTest() then returns FEASIBILE, which indicates test success. If,

however, during the test, any element can not be successfully processed,

SchedulabilityTest() terminates, and returns INFEASIBLE, which indicates test failure.

Given a task Ti, subroutine ComputeSupportingUtility() is used to compute the

total utility of the predecessor elements of Ti. For example, in Figure 3.1, the predecessor

46

elements of T4 are E01, E02, Ei3, E23, E24, E34 and E44, and the collective utility of its

predecessor elements is 240 units according to Table 3.2.

Given a task Ti, subroutine ComputeSupportedUtility() is used to compute the

total utility of the successor elements of Ti. For example, in Figure 3.1, the successor

elements of T2 are E23, E24, E34 and E44, and the collective utility of its successor elements

is 187 units according to Table 3.2.

Given a node BestNode, subroutine DetermineProcessor() is used to find a

suitable processor for BestNode such that it will result in the minimum utility loss if

BestNode is dispatched to it. Because BestNode is an invalid node, this implies that

whichever processor it is dispatched to, at least one element (say Ex,BestNode) will lose its

utility. Hence, DetermineProcessor() tries to find a suitable processor so as to minimize

the utility loss.

Given a node Ti, subroutine FindProcessor() is used to find a suitable processor

for Ti such that all the communications between Ti and its predecessors can be finished in

a timely way (that is, for any predecessor Tj of Ti, (cpji, cmj i) is bounded in the valid

region defined by utility function uji, where cpji is the completion time of Tj and cmji is

the completion time of the communication between Tj and Ti), and Ti completes earlier

on this processor than on any of other processors. If such processor does not exist,

UNDEFINED is returned by FindProcessor().

See subroutine DetermineProcessor(). CommCompletionTime(Mji) computes the

completion time of message Mji on the channel from PP to P, where Pj is the processor to

which task Tj is dispatched. Because messages on every channe1 are processed according

to their tag numbers that are determined according to the order in which the messages are

47

dispatched to the channel, CommCompletionTime(Mj i) can obtain the absolute finishing

time of Mji by simply adding the end-to-end communication cost of Mji to the absolute

finishing time of the last message on the channel. The completion time of Mji is then

obtained by subtracting its release time from its absolute finishing time.

See subroutine FindProcessor(). CompCompletionTime(Ti, P) is used to compute

the completion time of task Ti on processor P. Specifically, CompCompletionTime()

computes the absolute finishing time of Ti by simulating a preemptive priority scheduler

to process all the tasks on processor P. The completion time of Ti is then obtained by

subtracting its release time from its absolute finishing time.

3.4.2 Complexity Analysis

Given m processors and a task graph containing n nodes and 1 edges, the complexities of

IAUASA and its subroutines are listed in Table 3.1.

Table 3.1 Complexity Analysis

IAUASA() O(lmn²(nlogn+l))
ComputeSupportingUtility() 0(l)
ComputeSupportedUtility() 0(l)
SchedulabilityTest() 0(lm(nlogn+l))
DetermineProcessor() 0(mn)
FindProcessor() 0(m(nlogn+l))
CompCompletionTime() O(nlogn)
CommCompletionTime() 0(1)

The complexity of CompCompletionTime() is O(nlogn) because the process on n

tasks according to preemptive priority policy can be done in O(nlogn) time.

The complexity of CommCompletionTime() is 0(1) because it can be done within

constant number of steps.

48

The complexity of DetermineProcessor() is O(mn) because there are m

processors, there are at most n immediate predecessor elements for a given node or task,

and the complexity of CommCompletionTime() is 0(1).

The complexity of FindProcessor() is O(mnlogn) because there are m processors,

there are at most n immediate predecessor elements for a given node/task, the complexity

of CompCompletionTime() is O(nlogn), and the complexity of CommCompletionTime() is

0(1).

The complexity of ComputeSupportingUtility() is 0(l) because there are at most 1

predecessor elements for a given node/task.

The complexity of ComputeSupportedUtility() is 0(l) because there are at most 1

successor elements for a given node/task.

The complexity of SchedulabilityTest() is O(lmnlogn) because there are at most 1

elements in ElementSet, and the complexity of FindProcessor() is O(mnlogn).

The complexity of IAUASA() is 0(lmn³logn) because the Repeat-Until loop can

be repeated at most n2 times, and the complexity of SchedulabilityTest() is O(lmnlogn).

3.4.3 An Example

Given three processors and the task graph in Figure 3.1 with parameter settings in Table

3.2, the scheduling result produced by IAUASA is shown in Figure 3.4. Note that the

utility associated with element e 55 is lost because its computation can not be finished by

time 8. The whole process is conducted as follows.

At the first round, node T4 is selected since its predecessor element set {E01, E02,

E1³, E2³, E24, E³4, E44} currently has the largest total utility. The schedulability of this set

is then checked. At first, task To is picked because it has no unprocessed predecessor. To

49

can be dispatched to processor Po, and it can be completed at time 3. After To is

processed, T1 and T² can be picked (because their predecessor To is processed). Suppose

that T1 is picked first, and it is dispatched to processor Po. (In this way, the

communication cost between T1 and To could be avoided, and T1 has the same completion

time on Po as it has on P 1 or P².) For element E01, the completion times of the

computation and communication of it are 3 and 0. It is easy to see that point (3, 0) is

bounded in the valid region of utility function U01. Next, T² can be picked. This task can

be dispatched to either Pi or P² because it will have identical completion time on P 1 and

P² and its completion time on Pi or P² will be less than that on Po due to T1. Suppose that

T² is dispatched to P 1 . The communication cost between T2 and To will be 2 time units

according to Table 3.2. Hence, T² is released at time (3+2)=5. For element E0², the

completion times of the computation and communication of it are 3 and 2. It is easy to

see that point (3, 2) is bounded in the valid region of utility function UO². After T² is

processed, T³ can be picked, and it is dispatched to Pi to avoid the communication cost

between T² and it. Because the communication cost between T1 and T³ is 2, T³ is released

at time 9. Next, T4 is dispatched to P1 to avoid the communication cost between T³ and it.

It is easy to check that the completion times of the computation and communication of

every element (E1³, E²³, E²4, E³4 and E44) is bounded in the valid region of the

corresponding utility function.

At the second round, node T6 is selected since the total utility of its predecessor

element set {E06, E66} is larger than that of T5's predecessor element set {E05, E55 }. T6 is

dispatched to processor P².

50

At the third round, node T5 is selected, and the schedulability of element set {E05,

E55 is checked. Unfortunately, E55 can not be successfully processed due to T5.

At the last round, node T5 is selected, and the schedulability of element set {E05 }

is checked (note that E55 is not in the element set). T5 is dispatched to processor Po

because its completion time on Po is the smallest.

Table 3.2 Parameters for the Task Graph in Figure 3.1

(In Table 3.2, every 7-tuple (Uij, COMM IS, COMPij, COMP_Dij,
compij, comm ij) defines the parameters for a scheduling element E 11 . For example,
7-tuple (1, 8, 2, 8, 6, 3, 2) in Table 3.2 defines the parameters for E 01 with U01 = 1,
COMM0 1 = 8, COMM_D0 1 = 2, COMP01 = 8, COMP_D01= 6, comp01= 3 and
comm01 = 2.)

Figure 3.4 IAUASA scheduling.

51

3.5 Simulation Analysis

To see how well resource allocation can be achieved under UAM +, extensive simulations

were conducted with IAUASA, and its performance is compared with that of two other

resource allocation algorithms, i.e., DASA_variant and COMM.

DASA_variant is developed according to UAM model, and is a variant of DASA

[15]. DASA is constructed under UAM and has been widely used for resource allocation

in distributed real-time systems [9, 10, 11, 12, 13, 14]. DASA_variant works in a similar

way to IAUASA except: (1) whenever feasible, it seeks to allocate resources to the task set

that currently has the highest collective utility density, and (2) it is concerned about

meeting deadlines when processing communications. The abovementioned task set is

constructed by first selecting an unprocessed task and then recursively adding all its

direct and indirect predecessors to the set. The collective utility density is defined as the

ratio of the total utility of the tasks in the set to the total processing time of them. The

goal of DASA_variant is also to maximize system-wide utility. It is worthy of mention

that in [15], when DASA processes tasks (phases), it first computes collective utility

densities based on every task and then processes tasks according to the collective utility

densities associated with them. It never recomputes utility densities later on. By contrast,

DASA_variant will dynamically recompute collective utility densities based on

unprocessed tasks, and the utility associated with those processed tasks will not be

included in later computation of collective utility densities. This is similar to how

IAUASA computes collective utility.

COMM is developed based on traditional idea, which attempts to optimize

resource allocation in distributed environments through minimizing communication cost.

52

Because this approach is widely adopted in both distributed systems [4] and real-time

systems [2], the author is interested in whether IAUASA is preferable when compared

with COMM. COMM works in a similar way to IAUASA except that it seeks to minimize

system-wide communication cost whenever feasible. Specifically, when it processes a

task graph, it repeatedly selects the task set that currently contains the highest collective

communication cost, and tries to find a processor such that this set of tasks can be

successfully scheduled on it. This process is repeated until all tasks in the graph are

processed. Like DASA_variant, COMM treats computation and communication

separately, and aims to meet their timing constraints.

The complexities of DASA_variant and COMM are in the same order as that of

IAUASA. The simulations are conducted along five dimensions, namely, data volume (or

load of communication), (workload of) computation, number of processors, channel

speed, and system utility.

3.5.1 Simulation Settings

The simulations are classified into two groups. One group consists of 100 tasks. The task

graph is taken from the STG (Standard Task Graph) lib of [63]. It is generated by

samepred [63] with random seed 6. The method is described in [64]. The other group

consists of 88 tasks. The corresponding task graph is also taken from the STG lib of [63].

This task graph is built from a real-world robot control application.

The corresponding simulation settings for these groups are listed in Table 3.3 and

Table 3.4. Settings in Table 3.3 are used for the simulations along computation, data

volume, number of processors, and system utility. Settings in Table 3.4 are used for the

simulations along channel speed.

53

Table 3.3 Simulation Settings(1)

Group-1 Group-2
Number of tasks: 100 Number of tasks: 88
Task graph: samepred Task graph: robot control
Channel speed: 1
COMM_Dij : uniformly distributed between [200, 300];

COMP_Dij : uniformly distributed between [200, 300];

COMMij= (COMM_Dij + COMP_Dij);

COMP u= (COMM_Dij + COMP_Dij);

compij : (1) initially generated uniformly from [1, 100];
(p i)	 (2) varies from (Initial Value+0) to (Initial Value+ 100), with step length 10;

comm it : (1) initially generated uniformly from [200, 300];
(vu)	 (2) varies from (Initial Value+0) to (Initial Value+100),with step length 10;

Uij: (1) initially generated uniformly from [1, 100];
(2) varies from (Initial Value+0) to (Initial Value+100), with step length 10;

Number of processors:
(1) initially 10;
(2) varies from 10 to 2;

Table 3.4 Simulation Settings(2)

Group-1 Group-2
Number of tasks: 100 Number of tasks: 88
Task graph: samepred Task graph: robot control

Channel speed: varies from 1.0, 1.1, 1.2, ..., until 2.0;
COMM_Dij : uniformly distributed between [200, 300];

COMP_Dij : uniformly distributed between [200, 300];

COMMij= (COMM Du + COMP_Dij);
COMPij= (COMM_Dij + COMP_D ;

compij :	 uniformly distributed between [1, 100];
(P1)

commit: (100+v), where v is uniformly distributed between [200, 300];
(vu)

Uij :	 uniformly distributed between [1, 100];
Number of processors: 10;

Because DASA_variant allocates resources based on utility functions defined

under UAM, to facilitate comparison and analysis, it is assumed that if a task in a DAG

has k outgoing edges, it contains k virtual independent subtasks, which correspond to the

computations of the k scheduling elements. These virtual subtasks have the same release

Data Volume=
(Initial Value+10xx)

(a) robot control

Data Volume=
(Initial Value+10xx)

(b) samepred

54

time, processing time and relative deadline. The utility defined (under UAM +) along an

edge is the utility defined (under UAM) for the corresponding subtask, and the utility

inputted to DASA_variant is of the same amount as the utility inputted to IAUASA though

they have different meanings. For example, subtask T01 (Figure 3.1) is associated with

U01 (see Table 3.2). To construct the utility function for T0 1 , only U0 1 , COMP_D01 and

comp01 of the corresponding 7-tuple in Table 3.2 are needed. In addition, it is assumed

that for a given task if there is an edge entering it, the corresponding predecessor (of

Ti) will be the predecessor of all its virtual subtasks.

3.5.2 Simulation Results

Figure 3.5 Utility ratios achieved vary with the increase of data volume.

Figure 3.5 shows that the utility ratios (defined as the ratio between the utility

obtained and the utility available) achieved by IAUASA, DASA_variant and COMM

decrease with the increase of data volume. For DASA_variant and COMM, the increasing

data volume causes more and more communications to miss their deadlines, thus

resulting in the loss of utility. For IAUASA, the increasing data volume causes more and

more scheduling elements to be unable to complete in a timely way.

Computation=

(Initial Value+10xx)

(b) samepred

Computation=

(Initial Value+10xx)

(a) robot control

Number of Processors

(a) robot control
Number Of Processors

(b) samepred

Figure 3.6 Utility ratios achieved vary with the increase of the workload of computation.

Figure 3.7 Utility ratios achieved vary with the increase of the number of processors.

Figure 3.6 shows that the utility ratios achieved by the three algorithms also

decrease with the increase of the workload of computation. For DASA_variant and

COMM, the increasing workload of computation causes more and more computations to

be unable to meet their timing constraints (for achieving utility), thus resulting in the loss

of utility. For IAUASA, the increasing workload of computation causes more and more

scheduling elements to be unable to complete in a timely way.

(a) robot control (b) samepred

56

From Figure 3.7(b), it is easy to see that with the increase of the number of

processors, the utility obtained by three algorithms increases. The reason is

straightforward: for DASA_variant and COMM, more processors imply that more

computations can meet their timing constraints, and for IAUASA, more processors allow

more scheduling elements to be finished in a timely way. In Figure 3.7(a), three

algorithms exhibit similar behavior: there is almost no utility increment even if the

number of processors is increased. This is because there are very few parallel

tasks/scheduling elements in robot control, and hence the parallel resources (i.e.,

processors) can not be fulfilled. Therefore, the utility ratios achieved by three algorithms

do not increase with the increase in the number of processors.

Figure 3.8 Utility ratios achieved vary with the increase of channel speed.

From Figure 3.8, it is easy to see that with the increase in channel speed, the

utility obtained by three algorithms increases. The reason is that for DASA_variant and

COMM, the increasing channel speed allows more and more communications to finish

before their deadlines, and for IAUASA, the increasing channel speed makes more and

more scheduling elements finish in a timely way. Also, as shown in both Figure 3.8(a)

System Utility=

(Initial Value+10xx)

(a) robot control

System Utility=

(Initial Value+10xx)

(b) samepred

57

and Figure 3.8(b), with the increase of channel speed, both IAUASA and DASA_variant

eventually obtained all available utility while COMM only achieves this in the simulation

with robot control. The main reasons are as follows. (1) Unlike that in robot control, the

task graph in samepred contains lots of parallel tasks, which implies more competition on

resources; thus tasks should be scheduled in an appropriate way so as to achieve the

maximum utility ratio. (2) COMM conducts resource allocation according to

communication cost, and at any time, it always tries to allocate resources for the task set

that currently contains the largest collective communication cost; this heuristic eventually

causes the unschedulability of some tasks and hence the loss of some utility in samepred.

Figure 3.9 Utility ratios achieved vary with the increase of system utility.

In Figure 3.9, both Figure 3.9(a) and Figure 3.9(b) indicate that the utility ratios

achieved by COMM experienced a small increment. The main reason is that with the

increase of system utility, the ratio of the collective utility of the task sets selected by

COMM to the whole system utility increased a small amount. In Figure 3.9(b), the utility

ratio achieved by lAUASA always stabilizes at a high level while that by DASA_variant

experienced a decrease. The reason is that with the increase of system utility, the amount

58

of unachievable utility also increases. Although DASA_variant strived for keeping the

obtained utility ratio from decreasing by adjusting resource allocation, its ability is

limited because it can not explore the interplay between computation and communication.

By contrast, IAUASA is able to explore the interplay between computation and

communication, and accordingly can adjust the resource allocation so as to keep the

achieved utility ratio stabilized at a high level. In Figure 3.9(a), even the utility ratio

obtained by IAUASA experienced a decrease. This is because the task graph of robot

control is almost a chain with very few parallel tasks/scheduling elements (thus very few

choices). This eventually limited IAUASA's ability to adjust resource allocation.

Figure 3.5 and Figure 3.9 show that the difference between the utility ratio

achieved by IAUASA and those by DASA_variant and COMM in robot control is not as

great as it is in samepred. The main reason is that the task graph in robot control is

almost a chain, with very few branches. This results in very limited parallel

tasks/scheduling elements and very few choices, and forces three algorithms to proceed

nearly along the same path.

Figure 3.5 and Figure 3.9 show that the utility ratios achieved by IAUASA are

always much higher than those by DASA_variant and COMM. The reason is that while

DASA_variant and COMM strive for meeting the timing constraints on computation and

communication separately, IAUASA processes computation and communication as a

whole, and explores the interplay between them. Consequently, a communication that

misses its deadline under DASA_variant or COMM may be acceptable under IAUASA if

the corresponding computation completes early enough. Similarly, a computation that can

not meet its timing constraint under DASA_variant or COMM may still be acceptable

59

under IAUASA if the corresponding communication completes early enough. As a result,

a communication or computation that results in utility loss under DASA_variant or

COMM may not necessarily cause utility loss under IAUASA. In Figure 3.8, like IAUASA,

DASA_variant eventually obtained all system utility. This is due to the high channel

speed, which enables every communication to finish before its deadline. This is the only

situation under which DASA_variant may be comparable with IAUASA. For COMM, it

can not even achieve all system utility under this situation (Figure 3.8(b)). This indicates

that UAM, which is constructed based on the timeliness of computation or

communication, is inadequate for capturing the interplay between computation and

communication from the system level view. This eventually causes resource allocation

under UAM to be unable to approach the optimal point as close as possible. Likewise, the

traditional idea to optimize resource allocation by minimizing communication cost is also

unable to approach the optimal point as close as possible because of its inability to

explore the interplay between computation and communication.

Figure 3.5 to Figure 3.9 also show an important feature of IAUASA: the more

choices (implies more parallelism among tasks/scheduling elements), the more IAUASA

outperforms DASA_variant and COMM. This indicates the advantage of IAUASA in the

resource allocation in parallel and distributed environments. This result conforms to the

author's prediction and clearly demonstrates the motivation of proposing the UAM+

model, i.e., in distributed real-time systems, the interplay between computation and

communication has critical influence on system timeliness. Optimizing resource

allocation in a distributed real-time environment along one dimension (i.e., computation

or communication) is thus inadequate for achieving system-wide objective.

CHAPTER 4

EXPLORING THE INTERPLAY BETWEEN COMPUTATION AND
COMMUNICATION IN DISTRIBUTED REAL-TIME SCHEDULING

In Chapter 3, an extended utility accrual model called UAM+ was proposed and both

computation and communication are integrated into the model. More importantly, the

interplay between computation and communication is also captured in the model. Utility

obtained under UAM+ depends on the completion times of computation and

communication and the interplay between them. Similar to [42, 43], under UAM+ ,

resource is allocated through task/message scheduling, and feasibility analysis is

conducted through schedulability simulation analysis. Furthermore, resource managers

under UAM+ are guided to conduct resource allocation by exploring the interplay

between computation and communication rather than separately processing them. It is

shown that the UAM + is very effective for resource allocation in DRTSs [65].

This chapter furthers the study on UAM+ by exploring the online resource

allocation under UAM+ . In this chapter, the author proposes a class of General Utility

Functions (GUFs) under the UAM + mode1 to fully capture and characterize the interplay

between computation and communication in DRTSs. Accordingly, a technique called

Dynamic Deadline Adjustment (DDA) is proposed to fully explore the interplay and help

resource managers proceed towards utility accrual. An online algorithm called IDRSA,

which integrates DDA technique, is then developed to perform resource scheduling for

DRTSs. IDRSA adopts a two-level scheduling framework to decompose resource

scheduling into subprocesses and distribute them to processing nodes so as to reduce the

cost of resource scheduling through parallel processing. In addition, IDRSA incorporates

60

61

the Testing Interval Tree* (TIT*) (proposed in Chapter 2) to effectively reduce the costs

of the schedulability tests for tasks and messages.

4.1 System Model

Assume a DRTS, where there are m processing nodes connected by a network. Tasks are

dispatched to nodes, and messages are transmitted over the network. One of the nodes

works as a coordinator and the others are subordinates. Every subordinate has a local

scheduler to process the tasks dispatched to it, and tasks are scheduled according to the

preemptive Earliest Deadline First (EDF) rule [2]. There is a logical channel (or

connection) connecting every pair of nodes. For every channel, there is a message

scheduler to process the messages on it, and messages are scheduled according to non-

preemptive EDF rule. In addition, it is assumed that there is a control channel connecting

every pair of nodes. The control channels are dedicated to the transmission of control

information. By exchanging control information, the coordinator and subordinates

cooperate to perform resource scheduling. Furthermore, it is assumed that control

channels provide guaranteed service and the cost of transmitting a control message from

a source node to a destination node is bounded by a constant Cc.

4.2 Scheduling Element Model

Assume that groups of real-time tasks arrive at the system randomly. For every group of

tasks, there are precedence relationships among them due to data dependences. Tasks and

precedence relationships are depicted by Directed Acyclic Graphs (DAGs). In Figure 4.1,

62

DAG1 arrives at t 1 , and DAGi arrives at ti. There is precedence relationship between task

T1 ,0 and task T1,³ because T1 , ³ needs some data from T 1 ,0 to start its execution.

Figure 4.1 Task graphs.

A task Ti is denoted by a triple (ri, p i , di), where ri, pi, and di are the release time,

processing time, and relative deadline of Ti , respectively. A task is released only after it

has received all required data from its predecessor(s). Similarly, a message M11 (sent to T.;

by Ti) is denoted by a triple (mrij , commit, mdij), where mrij is the time when the data is

ready, and comm it and mdij are the data volume and relative deadline of Mij, respectively.

For a message Mij, its release time is determined according to mrij=(ri+fi), where ri and f

are the release time and relative finishing time of T i , respectively. For a task Ti having k

predecessors, its release time is determined according to r i=max {(mrli+fli)}, where 1<l<k,

and mil and fli are the release time and relative finishing time of A i , respectively. If T,

and T1 are dispatched to the same processor, the communication cost is zero, =0.

A scheduling element is defined as the combination of the computation (i.e., the

task) and the communication (i.e., the message) along a directed edge. A 5-tuple is used

to denote a scheduling element Eij (corresponds to Ti (r11, COMP_Dij, COMM_Dij.

63

compij, commit), where rij is the release time of task Ti (i.e., rd= ri), COMP_D ij and

COMM_Dij are the deadlines of the computation and communication of Eij, respectively

(i.e., COMP_Dij= di and COMM_Dij= mdij), compij is the computation time of Eij (i.e.,

compij= pi), and commit is the data volume that needs to be transmitted by E. For E, =

Ei,π2, . . ., E, is the set of scheduling elements that originate from the

same task Ti in a DAG), all scheduling elements in E, have identical release times,

computation times, and deadlines of computations (because their computations are the

same, i.e., task Ti), but they may have different data volume and deadlines of

communications. In addition, all scheduling elements will have identical completion

times of computations, which are determined by the completion of task Ti .

4.3 Utility Function

Because the interplay between computation and communication is the key factor in

determining the timeliness of activities in DRTSs, resource scheduling must be interplay-

aware. In this chapter, the author proposes a class of General Utility Functions (GUFs)

under UAM+ to capture and characterize the interplay. These GUFs will provide

guidelines for optimizing resource allocation by exploring the interplay between

computation and communication.

The utility function of a scheduling element Eij is depicted in Figure 4.2. COMPij

and COMMij are the timing constraints on computation and communication for achieving

positive utility. Note that COMPij is different from COMP_Dij in that the latter marks the

deadline of the computation of Eij while the former marks the latest time point by which

the computation of Eij should finish so as to achieve utility. COMP ij may be less or

64

greater than COMP_Dij. Similarly, COMM ij is different from COMM_Dij . As shown in

Figure 4.2, if the completion times of computation and communication are bounded

within the shaded region, uniform utility Uij can be achieved; otherwise, no utility can be

obtained. To be more specific, there are four cases contained in this figure.

h (comp, comm): Aij×comp+Bij×comm=Cij

comp axis: completion time of computation;
comm axis: completion time of communication;

Figure 4.2 Utility function of scheduling element

Case 1: if the communication completes no later than comm2, (hi units of utility

can be achieved if only the computation finishes no later than COMPij.

Case 2: if the computation completes no later than comp2, Uij units of utility can

be achieved if only the communication finishes no later than COMMij .

Case 3: If the computation completes after comp2 (say comp]) and the

communication completes after comm2 (say comma), comp] and comm1 must meet the

constraint defined by fij(comp, comm), i.e., Aij×comp1+Bij×comm1 < Cij, so as to make

contribution to the system.

65

Case 4: The completion times of computation and communication are not

bounded within the shaded region, and no utility can be obtained.

The existence of fi(comp, comm) sets a constraint on the combined completion

times of computation and communication, and it is used to characterize the interplay

between computation and communication. On one hand, the interplay between

computation and communication reflects the fact that computation and communication

function together to determine the timeliness of activities in DRTSs, and the completion

of one side may force some constraint(s) on that of the other side; on the other hand, the

interplay provides a space for exploring more flexible solutions, which makes it possible

to adjust resource allocation for computation and communication as a whole based on the

loads of computation and communication and currently available resources for

computation and communication, rather than seeking to meet the constraints on

computation and communication separately. This is of critical importance for DRTSs,

where due to the interplay between computation and communication, resource scheduling

must be interplay-aware and resource optimization should be performed by exploring a

two-dimensional space, i.e., computation and communication.

Combined with utility function, the previous definition of Eij can be extended to

(rij, COMP_Dij, COMM_Dij, comp ly , comma, COMPij, COMMIS, Ulj, fij(comp, comm)).

Given a task graph containing n tasks 	 Tn, and for every scheduling element

EIS, its utility function is defined as Figure 4.2, the optimization goal of resource

scheduling is to maximize system utility. This can be formally expressed as follows.

Find a mapping M: Set of tasks Set of processors s.t.
n 	 n

Utility = max{ E E (U × X u)}
1=1

cpij: the completion time of the computation of EIS;
cmij: the completion time of the communication of E6

Because the derivation and the construction of the utility functions are

application-specific and are subject to a system-wide engineering process [43], the author

will not dwell into this topic in this dissertation.

4.4 Dynamic Deadline Adjustment

Dynamic Deadline Adjustment (DDA) under UAW is critical in the sense that resource

scheduling in a DRTS must take the interplay between computation and communication

into account, and computation and communication separately meeting their timing

constraints is inadequate for system utility accrual. In Figure 4.2, suppose the

computation of 4 completes at time comps, and the communication of Eli completes at

some time after comma but before COMMij. It is easy to see that both computation and

communication meet their timing constraints, but the obtained utility is zero. The reason

is due to the interplay between computation and communication, neither the computation

nor the communication can individually determine the timeliness of a scheduling

element. Thus, to determine the final deadlines of computation and communication, the

interplay between them needs to be taken into account. When the computation and

communication of 4 are dispatched to a processor and a channel, simply assigning

COMP_Dij and COMM_D to their deadlines is inadequate for utility accrual. Their

67

deadlines should be adjusted in a way towards utility accrual. The DDA technique

observes the following two rules.

Rule 1: DDA should be performed towards utility accrual.
Rule 2: The deadline adjustment of a task/message should not adversely influence those

existing tasks/messages on a node/channel. This rule should be observed;
otherwise the adjustment will invalidate previous process on tasks/messages.

Consider a scheduling element Eij= (rd, COMP_Dij, COMM Dij, compij, comma,

COMPij, COMMA, Uij, fij(comp, comm)). If it could be successfully scheduled, there

exists at least one scheme s satisfying the following conditions (I), (II), and (III). (In the

following, resp _compsij is the response time of the computation of 4, and resp _comms ij

is the response time of the communication of E l'j.)

(resp _comp;; COMPij) A (resp _commsij COMM

(Ai x resp _ comp + B tu x resp _commsij) C,7

No scheduling elements processed before are adversely influenced

In this case, the deadlines of the computation and communication of Ea are

adjusted according to (Al) and (A2) (see below), and they are then dispatched to

corresponding processor and channel. The rationales behind this idea are as follows.

(1) Intuitively, a larger adjustment slot Air implies that processor and that channe1

as a whole are the least loaded. It is desirable to distribute some load to them from a

balance point of view.

(I)

(II)

(III)

68

(2) There will be a larger space for adjusting the deadlines of the computation and

communication of Eij, which makes it possible to leave more capacity to those elements

that will be processed after El; so as to obtain as much utility as possible.

(Al)

(A2)

In the case that only condition (III) is unsatisfiable due to the communication of

Eli, Ti and 7) should be dispatched to the same processor if feasible. In all other cases, Eij

will be put aside until the second time it is selected, and its utility is set to zero.

When Eij is processed the second time, the deadlines of its computation and

communication are adjusted according to the following cases.

Case 1: Condition (III) is unsatisfiable. In this case, the deadline of its

computation and the release time and deadline of its communication are first adjusted

according to (A3)—(A5) (see below), and the final deadlines of its computation and

communication are then determined according to (A6) and (A7) (see below).

In the following, ds comp (1<s<(m-1)) is the deadline of the computation of the last

element adversely influenced by Eij, and miss'. is the missed time interval of the

computation of that element. rs comm.and ds comm are the release time and deadline of the

69

communication of the last element adversely influenced by

Eij, and ds is obtained by Comm+applying a small adjustment to d dscomm . speed s is the channe1 speed.

(A3)

(A4)

(A5)

Case 2: All other cases. The deadlines of its computation and communication are

adjusted according to (A6) and (A7) (see below). The rationales behind this idea are as

follows.

(1) Because all currently ready scheduling elements have zero utility, assigning

smaller deadlines to one element will not cause utility loss of the other elements.

(2) This will help to minimize the response times of those scheduling elements

that violate conditions (I), (II) and (III).

In all other cases the deadline of computation and that of communication are

adjusted according to (A6) and (A7).

(A6)

(A7)

70

4.5 Interplay-aware Distributed Resource Scheduling Algorithm

This section discusses a distributed resource scheduling algorithm, which integrates the

DDA technique to explore the interplay between computation and communication.

Because resource scheduling in DRTSs is inherently complicated, this algorithm adopts

some effective approaches to reduce its complexity. These approaches include the two-

level scheduling framework and the Testing Interval Tree* (TIT*). The two-level

scheduling framework is adopted to decompose resource scheduling into subprocesses

and perform resource allocation in parallel manner. The TIT* tree is adopted to reduce

the cost of the schedulability tests contained in the algorithm. Because TIT* tree is

discussed in Chapter 2, the description of it will not be repeated in this chapter. Before

discussing the algorithm in detail, we first describe two-level scheduling framework.

4.5.1 Two-leve1 Scheduling Framework

Under two-level scheduling framework, a distributed system contains a coordinator (or

global manager) and some subordinates (or local managers). Although subordinates may

apply some node-specific policies to local resource management, the global manager

coordinates their actions and performs resource management from a system point of

view.

Coordinator

Node 1
Subordinate

(Local Manager)

Node 2
Subordinate

(Local Manager)

Node (to- I)
Subordinate

(Local Manager)

Figure 4.3 Two-level scheduling framework.

71

Whenever a group of tasks arrive, the coordinator and subordinates work together

to perform resource allocation for them. To be more specific, the coordinator will pick

the scheduling elements one by one, dispatch them to subordinates to perform

schedulability tests for computation and communication, collect and analyze the results

obtained from subordinates, optimize resource allocation, and distribute elements to

appropriate nodes and channels. Accordingly, subordinates will perform schedulability

tests for computation and communication in parallel, return test results to the coordinator,

and accommodate specified scheduling elements.

This two-leve1 scheduling framework provides an effective approach for reducing

the complexity of distributed real-time scheduling system. Resource scheduling under

this framework is decomposed into subprocesses, which are distributed to and processed

in paralle1 by subordinates. Hence, the complexity of resource scheduling is reduced

through parallelism.

The roles of coordinator and subordinate are dynamically reconfigurable. For

example, to avoid single point failure of the coordinator and improve the fault-tolerance

of the two-leve1 scheduling framework, every node is capable of working as coordinator

when necessary; in case of the failure of current coordinator, an active node is selected as

the new coordinator. Current coordinator and a subordinate may also switch roles when

necessary.

4.5.2 The Algorithm

Before proceeding to the details of the algorithm, we assume that every subordinate

maintains a task TIT* tree containing all unfinished tasks on it, and for every

72

communication channel connecting it and another subordinate, it also maintains a

message TIT* tree containing all unfinished messages on that channel.

In Figure 4.4, the whole algorithm consists of two parts, i.e., GM and LM. GM

resides on the coordinator, and LM resides on every subordinate. In Figure 4.4 (a), the

coordinator processes scheduling elements according to their utility, and always picks a

ready element (all of its predecessors have been processed) currently having the largest

utility. By this way, the coordinator attempts to maximize system-wide utility. Once a

suitable element, say exy , is identified, the coordinator dispatches it to subordinates to

perform schedulability tests for the computation and communication of it. In Figure 4.4

(b), if the currently processed element has no predecessor, every subordinate needs to

perform tests for both computation and communication; otherwise, one subordinate needs

to perform the test for computation and the other subordinates only need to perform the

test for communication because elements are processed according to their precedence

relationships. For example, once the node and channel for an element ex), are determined,

the node for another element e yz is accordingly predetermined. Thus, a test for the

computation of eyz on other nodes is unnecessary. In Figure 4.4 (a) and Figure 4.4 (c),

once a suitable node and a suitable channel are determined, the computation and

communication of exy are dispatched to them, and the corresponding TIT* trees are

updated.

In Figure 4.4 (a), ChooseElement() is used to find a ready scheduling element

currently having the largest utility. DispatchForTest (ex))) is used to dispatch exy to

subordinates to perform schedulability tests. CollectFeedback () is used to collect test

results from subordinates. AnalyzeOptimize() is used to analyze the results and optimize

73

resource allocation from a system's point of view. DDA technique is integrated into this

part. If the completion times of computation and communication are bounded within the

valid region (the shaded region, Figure 4.2) defined by the corresponding utility function,

and the joining of current element has no adverse influence on other elements processed

so far, the scheme with the maximal adjustment slot (see Section 4.4) is chosen;

otherwise, the utility of ex), is set to zero, and it is put aside until the second time it is

selected. After a global analysis, the coordinator will decide which node and which

channel the computation and communication of ex, should be dispatched to.

DispatchForExecution() is used to send out the final decision.

In Figure 4.4 (b), the normal case (i.e., the element under test has predecessor(s)),

if this subordinate is specified for performing the test for computation, it first invokes

ScheduabilityTestComp(), and then invokes ReplyFeedbackComp() to send out the test

result to coordinator and other nodes; otherwise, it first calls CollectFeedbackComp() to

obtain the test result of computation, and then invokes ScheduabilityTestComm() to

perform the test for communication (on the channel connecting this node and the node

specified for performing the test for computation). ReplyFeedbackComm() is used to send

the test result to coordinator. The test result simply contains the information about

whether the computation/communication is schedulable on that node/channel, what is the

response time and whether other tasks/messages are adversely influenced or not, and

other information. In the special case (i.e., the element under test has no predecessor),

every subordinate needs to perform the test for computation and the test for

communication on every channel connecting this node and another node.

ReplyFeedback() is then invoked to send out the test result.

LM (Part-I)

/*on receiving a Schedulability Test Message (STM)*/

NormalProcess:
Case 1:

SN1.1 SchedulabilityTestComp 0;
SN1.2 ReplyFeedbackComp 0;

Case 2:
SN2.1 CollectFeedbackComp 0;
SN2.2 SchedulabilityTestComm 0;
SN2.3 ReplyFeedbackComm 0;

SpecialProcess:
SS1.1 SchedulabilityTestComp 0;
SS1.2 For p=1 to m-2 do
SS1.3 SchedulabilityTestComm 0;
SS1.4 ReplyFeedback 0;

/*this node IS the specified node in STM*/
/*schedulability test for computation*/
/*send out test result*/
/*this node is NOT the specified node in STM*/
/*collect test result of computation*/
/*schedulability test for communication*/
/*send out test result*/

/*schedulability test for computation*/

/*schedulability test for communication*/
/*send out test result*/

74

GM (DAGk)

Repeat
1 exy = ChooseElement (DAGk); 	 /*exy is the scheduling element currently having the largest utility*/
2 DispatchForTest (exy); 	 /*schedulability test message is broadcasted to all subordinates*/
3 CollectFeedback 0; 	 /*collect test results from subordinates*/
4 AnalyzeOptimze 0;	 /*analyze the results and choose the best scheme*/
5 DispatchForExecution (exy); 	 /*send out the final decision*/

Until all scheduling elements are processed;

(a)

(b)

LM (Part-II

/*on receiving an Execution Message (EM)*/

NormalProcess:
Case 1:

EN1.1 InsertTask 0;
EN1.2 InsertComm 0;

Case 2:

EN2.1 InsertComm 0;

SpecialProcess:
Case 1:

ES 1.1 InsertTask 0;
ES1.2 InsertComm 0;

Case 2:

ES2.1 InsertComm 0;

/*this node is specified for accommodating the task*/
/*update task TIT* tree*/
/*update message TIT* tree*/
/*this node is specified for updating its message TIT* tree (of the channel connecting it

and the node accommodating the task)*/
/*update message TIT* tree*/

/*this node is specified for accommodating the task*/
/*update task TIT* tree*/
/*update message TIT* tree*/
/* this node is specified for updating its message TIT* tree (of the channel connecting it

and the node accommodating the task)*/
/*update message TIT* tree*/

Figure 4.4 Interplay-aware distributed resource scheduling algorithm.

75

In Figure 4.4 (c), the normal case, if this subordinate is specified for

accommodating the computation of exy , it invokes InsertTask() and InsertComm() to add

the computation and communication of e xy to its task and message TIT* trees; otherwise,

if this subordinate is specified for updating its message TIT* tree, it invokes

InsertComm() to add the communication of exy to its message TIT* tree. In the special

case, similar actions are taken by specified subordinates.

LM: Local Manager; GM: Global Manager; STM: Schedulability Test Message; EM: Execution Message.
LM,: The local manager specified for performing the schedulability test for computation.
LM k : The local manager specified for updating its message TIT* tree.
RComp: Test result of computation; RComm: Test result of communication;

Figure 4.5 Simplified message sequence chart for the normal case.

To help understand the algorithm, a simplified Message Sequence Chart (MSC)

(Figure 4.5) is used to demonstrate the interactions among managers. Figure 4.5 is for the

normal case. The MSC for the special case is similar to Figure 4.5 except that it contains

phases 1, 2, and 4, and in phase 2 every subordinate sends a control message containing

the test results of computation and communication to the coordinator.

76

4.5.2 Complexity Analysis

Because IDRSA is an online algorithm, it needs to consider the newly arrived DAG as

well as those DAGs that have already been processed by IDRSA but have not finished

(some tasks/messages of these DAGs have not completed, and they are still in the

system). Suppose that DAGt, which contains N tasks and E edges, arrives at the system at

time t, and currently the maximum number of tasks on a node is bounded by Nt and the

maximum number of messages on a channel is bounded by N e , the cost of processing

DAGt by the algorithm and its subroutines is computed in Table 4.1.

Subroutine ChooseElement() is used to find the scheduling element currently

having the largest utility. This can be done in O(logE) time because the number of

currently ready elements is at most E.

Subroutines DispatchForTest(), DispatchForExecution(), ReplyFeedbackComp(),

ReplyFeedbackComm(), and ReplyFeedback() are used to deliver control information.

Hence the cost of each of them is in O(Cc) time.

Subroutine SchedulabilityTestComp() is used to perform the schedulability test for

computation. Its cost is in 0(log²(Nt+N)) because there are at most (Nt+N) tasks on a task

TIT* tree, and the test will take 0(log ²(Nt+N)) time.

Subroutine SchedulabilityTestComm() is used to perform the schedulability test

for communication. Its cost is in O(log ²(Ne+E)) because there are at most (Ne+E)

messages on a message TIT* tree, and the test will take 0(log ²(Ne+E)) time.

Subroutine CollectFeedbackComp() is used to collect the test result of

computation. Its cost depends on how fast the specified subordinate can finish the test.

77

Because the cost of SchedulabilityTestComp() is in 0(log²(Nt+N)), the cost of

CollectFeedbackComp() is in O(log²(Nt+N)+Cc).

Table 4.1 Complexity Analysis

Subroutine/Algorithm Cost
DispatchForTest()
DispatchForExecution()
ReplyFeedbackComp()
ReplyFeedbackComm()
ReplyFeedback()

O(Cc)

ChooseElement() O(logE)
CollectFeedback() O(log²(Nt+N)+m×log²(Ne+E))
AnalyzeOptimize() O(logm)
SchedulabilityTestComp() O(log²(Nt+N))
SchedulabilityTestComm() O(log2(Ne+E))
CollectFeedbackComp() O(log²(Nt+N))
InsertTask() O(log(Nt+N))
InsertComm() O(log(Ne+E))
Algorithm IDRSA O(E(log²(Nt+N)+m×log²(Ne+E)))

Subroutine CollectFeedback() is used to collect test results. Its cost depends on

how fast LMs can finish tests. Because the costs of SchedulabilityTestComp(),

SchedulabilityTestComm(), CollectFeedbackComp(), ReplyFeedbackComp(),

ReplyFeedbackComm(), and ReplyFeedback() are in O(log²(Nt+N)), O(log²(Ne+E)),

O(log²(Nt+N) +Cc), O(Cc), O(Cc), and O(Cc), respectively, the cost of

CollectFeedback() is in O(log²(Nt+N)+m×log²(Ne+E)). (Note that in the special case,

every subordinate needs to perform the test for communication on (m-2) channels

connecting it to the other (m-2) nodes.)

It is easy to see that the costs of InsertTask() and InsertComm() are in O(log

(N t+N)) and O(log (Ne+E)), respectively.

78

Subroutine Analyze Optimize() is used to find the best scheme among all available

schemes. Its cost is in O(logm) because there are at most (m-1) schemes received by the

coordinator. (Note that in the special case, although every node needs to perform the test

for communication on (m-2) channels, it only needs to choose and send out the best

result.)

The complexity of IDRSA is in O(E(log²(Nt+N)+m×log² (Ne+E))) because the cost

of CollectFeedback() is in O(log²(Nt+N)+m×log²(Ne+E)), which dominates the cost of

IDRSA, and the Repeat-Until loop in GM will be executed at most 2E times.

4.6 Simulation Analysis

The simulations are designed to test how well IDRSA performs in the presence of

overload of computation, overload of communication, or both, and tight interplay

between computation and communication. Accordingly, the simulations are performed

along five dimensions, i.e., (load of) computation, (load of) communication or data

volume, (channel) speed, number of processors, and interplay factor. To evaluate the

performance of IDRSA, another scheduling algorithm called DASA_variant (discussed in

Chapter 3) is also included in these simulations. DASA_variant is a variant of DASA [15].

DASA is constructed under UAM and has been widely applied to the resource scheduling

in distributed real-time systems [9, 10, 11, 12, 13, 14]. Like DASA, DASA_variant is

constructed based on UAM. DASA_variant seeks to maximize system-wide utility by

greedily picking and allocating resources for the task set currently having the highest

collective utility density (defined as the ratio of the total utility of the tasks in the task set

to the total processing time of them); this procedure repeats until all tasks are processed.

79

When performing resource scheduling, DASA_variant processes computation and

communication separately. For computation, DASA_variant tries to meet its timing

constraint for achieving utility, and for communication, DASA_variant tries to meet its

deadline. It is worthy of mention that the complexity of DASA_variant is much higher

than that of IDRSA.

4.6.1 Simulation Settings

The simulations are classified into two groups. One group consists of 100 tasks. The task

graph is taken from the Standard Task Graph (STG) lib of [63], and it is generated by

samepred [63] with random seed 6 according to the method described in [64]. The other

group consists of 88 tasks. The corresponding task graph is also taken from the STG lib

of [63] and it is built from a robot control application. Each group contains a series of

simulations along the dimensions mentioned before.

To facilitate the performance analysis of the two algorithms in the presence of the

interplay between computation and communication, the interplay factor a (1<α<∞) is

introduced; a is used to denote how tightly computation and communication are

constrained together, the larger the a, the tighter the constraint on the combined

completion times of computation and communication. As shown in Table 4.2, Table 4.3,

and Table 4.4, for those simulations along computation, data volume, speed, and number

of processors, a is set to 5/4 if condition (I1) (see below) is satisfied; otherwise, a is set to

a value such that condition (II) is satisfiable. This actually sets a loose constraint on the

combined completion times of computation and communication. Thus the interplay

between computation and communication will play a very limited role in these

simulations. By contrast, for those simulations along interplay factor, much tighter

80

constraints are set by condition (12) (see below). This implies that the interplay will play

an important role in these simulations.

(Max { COMPij, COMMij}+ 1)<(1/α)×(COMPij+COMM ij ×(COMP+COMM ij) (11)

(where 41 is an adjustment factor)

compi'j<(1/a)×(COMPij+COMMij)<1×(COMPij+COMMij) 	 (12)

Table 4.2 Simulation Settings(1)

Table 4.3 Simulation Settings(2)

81

Table 4.4 Simulation Settings(3)

Because DASA_variant allocates resources based on utility functions defined

under UAM, to facilitate comparison and analysis, it is assumed that if a task in a DAG

has k outgoing edges, it contains k virtual independent subtasks. The utility defined under

82

UAW along an edge is the utility defined under UAM for the corresponding subtask, and

the utility input to DASA_variant is of the same amount as the utility input to IDRSA

though they have different meanings. In addition, it is assumed that for a given task if

there is an edge entering it, the corresponding predecessor (of Ti) will be the predecessor

of all its virtual subtasks.

4.6.2 Simulation Results

(a) robot control	 (b) samepred

Figure 4.6 Utility ratios achieved vary with the increase of computation workload.

(a) robot control	 (b) samepred

Figure 4.7 Utility ratios achieved vary with the increase of data volume.

83

As shown in Figure 4.6, the utility ratios (defined as the utility obtained versus the

utility available) obtained by the two algorithms decrease with the increase of

computation workload. For DASA variant, the increasing computation workload makes

more and more computations unable to complete within their constraints, and for IDRSA,

the increasing computation workload makes more and more scheduling elements unable

Figure 4.8 Utility ratios achieved vary with the decrease of the number of processors.

(a) robot control 	 (b) samepred

Figure 4.9 Utility ratios achieved vary with the increase of channel speed.

84

(a) robot control	 (b) samepred

Figure 4.10 Utility ratios achieved vary with the increase of interplay factor a.

Figure 4.7(b) shows that the utility ratio obtained by IDRSA experienced a small

decrease with the increase of data volume. This is because the increasing data volume (or

load of communication) eventually makes some elements unable to complete in a timely

way. Although IDRSA is interplay-aware and able to adjust resource allocation according

to the loads of computation and communication, its ability to adjust is not unlimited. For

example, to alleviate the problem of the increasing data volume, IDRSA may dispatch a

pair of communicating tasks to the same processor, but the power of this approach is

limited due to the fact that if too many computations are dispatched to one processor.

This will eventually lead to overload of computation on this processor. As a result, some

scheduling elements can not finish in time, and the corresponding utility is lost. For

DASA_variant, it experienced an even smaller decrease of utility ratio. The reason is that

its unawareness of the interplay between computation and communication results in low

utility ratio before the increase of data volume, which implies that some utility has

already been lost due to its unawareness of the interplay; hence the increasing data

volume has very little impact on the utility it obtained. From Figure 4.7 (a), it is easy to

85

see that DASA_variant exhibits good performance though it is unaware of the interplay

between computation and communication. This is because the DAG of robot control is

almost a chain, with very few parallel tasks, and DASA_variant dispatched almost all

computations to one processor. Obviously, in this case the increasing data volume has

very little impact on the utility it obtained.

Figure 4.8(b) indicates that the utility ratios obtained by the two algorithms

decrease with the decreasing number of processors. For DASA_variant, fewer processors

will make fewer computations complete within their timing constraints, and for IDRSA,

fewer processors make fewer scheduling elements processed in a timely way. In Figure

4.8 (a), the utility ratios obtained by the two algorithms almost do not vary with the

decreasing number of processors, and even DASA_variant exhibits good performance.

The reason is similar to what is mentioned before, i.e., the DAG of robot control is

almost a chain, which implies that one can dispatch almost all computations to one

processor (hence some processors are unoccupied). Obviously, removing those

unoccupied processors results in no utility loss.

Figure 4.9 shows that the utility ratios achieved by the two algorithms increase

with the increasing channel speed. For DASA_variant, the increasing speed makes more

and more communications able to complete before their deadlines, and for IDRSA, the

increasing speed makes more and more scheduling elements processed in a timely way.

Figure 4.10 shows that the utility ratio obtained by DASA_variant drops a lot with

the increase of interplay factor, while that by IDRSA maintains at a high level though a

small decrease is also seen. The reason is that the interplay between computation and

communication becomes tighter and tighter with the increasing interplay factor, and

86

DASA_variant loses more and more utility due to its unawareness of the interplay. By

contrast, IDRSA fully realizes the interplay, and is able to adjust the allocation of

processors and channels according to the interplay and the loads of computations and

communications.

In Figure 4.6 and Figure 4.8 (b), compared to its counterpart, IDRSA performs

very well when the load of computation is heavy or the processing capacity for

computation is low. This is because IDRSA is an interplay-aware algorithm, and is able to

adjust the allocation of processors and channels according to the loads of computations

and the processing capacity for computations so as to meet the constraints on the

combined completion times of computations and communications. These results suggest

the excellence of IDRSA in the presence of heavy computation load or low processing

capacity for computation.

From Figure 4.6 to Figure 4.10, it is easy to see that IDRSA performs much better

than DASA_variant. The reason is that DASA_variant is constructed based on traditional

UAM, and its unawareness of the interplay between computation and communication in a

DRTS leads to the loss of a large amount of utility. IDRSA, however, fully realizes the

interplay, and is able to flexibly adjust the allocation of processors and channels

according to the interplay, the loads of computations and communications, and the

available processing capacity for computations and communications. This indicates that

due to the interplay between computation and communication in a DRTS, separately

meeting the timing constraints on computation and communication is inadequate for

utility accrual from a system's point of view.

CHAPTER 5

CALCULUS CURVE BASED ONLINE REAL-TIME DYNAMIC VOLOTAGE-
FREQUENCY SCALING

Power/energy consumption is a critical issue in the system design of the battery-powered

devices such as mobile, portable and embedded devices, as well as the desktop and server

systems (because high power consumption produces high heat, which causes high

temperature and eventually reduces system performance and reliability).

Over the past few years, the Dynamic Voltage-frequency Scaling (DVS)

technique has been applied to many systems to reduce energy consumption by reducing

the supply voltage and operating frequency at run time. The DVS technique is based on

the fact that the energy dissipated per cycle with CMOS circuitry scales quadratically to

the supply voltage (E oc V ²), and over the range of allowed voltages the highest

frequency at which the processor will run correctly drops approximately proportional to

the voltage (f cc V). (Hence the energy dissipated per cycle also scales quadratically to

the frequency (E a f ²).)

DVS has been proven to be a powerful technique for reducing energy

consumption, and thus has been extensively studied not only in general-purpose

computing systems [61, 66, 67, 68, 69] (and the references therein) but also in real-time

systems, where the DVS technique is extended to reduce energy consumption while

meeting timing constraints. In this aspect, extensive work has been done under the

periodic task model (where every task is associated with a period and the task is invoked

periodically) [60, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], or the sporadic

task model (where every task is associated with a minimum interarrival time and the

87

88

interval between two consecutive invocations of a task is at least of that length) [84]. In

addition, some work also studied the real-time DVS techniques under a more general task

model, where tasks have arbitrary arrival times and arbitrary deadlines [62, 75, 85, 86]. In

[62, 86], DVS algorithms are proposed to reduce the energy consumption of a set of tasks

with arbitrary arrival times and arbitrary deadlines; but the proposed algorithms are

static/offline. In [75], an online DVS algorithm called OLDVS is proposed; but the

algorithm is mainly based on Worst Case Execution Time (WCET) analysis, and the

basic idea behind the algorithm is to exploit the unfilled WCET slices. Energy saving

with this approach is limited. Consider a simple scenario where there is only one task

T=(r, e, d) (where r, e and d are the release time, the WCET and the relative deadline of

task T, respectively), and d > e. According to [75], T will be executed under full speed

even if a slower speed is fast enough for T to complete no later than its deadline. In [85],

an online algorithm called AVR is proposed; nevertheless, this algorithm relies on an

assumption, i.e., the computed speed is always available, no matter how high it is. This

assumption is impractical in real world because the highest speed of a specific processor

is limited. Besides, the approaches proposed in [75] and [85] can only be applied to those

real-time systems where tasks/jobs are scheduled according to Earliest Deadline First

(EDF) rule [2].

In this dissertation, the author advances the research on online real-time DVS by

applying new method and theory, i.e., Network Calculus curve [87], to hard real-time

systems under a general task model, where events/tasks may arrive randomly, and no

assumptions are made about their periodicity, minimum inter-arrival time and so on. This

work is motivated by the following observations.

89

(1) Network calculus curves will make it possible to establish a more general task

model, which can capture the characteristics of a wide spectrum of tasks, including burst

arriving tasks and the traditional periodic and sporadic tasks, and characterize them in a

general way. This will make it possible to study real-time DVS under a more general task

model and investigate some general real-time DVS techniques and algorithms.

(2) While static/offline real-time DVS can be performed with all necessary

information in hand, dynamic/online real-time DVS has to be conducted with very

limited information, which makes online real-time DVS hard to tackle. The network

calculus curves inherently have the ability to accommodate random/dynamic system

features. This will make it possible to investigate online real-time DVS through an

effective and rigorous approach.

(3) Real-time systems with random/dynamic characteristics are tough to design

and verify. Network calculus curves help alleviate this difficulty, and they provide an

effective and powerful approach for system design, validation, and verification, which is

hard but of critical importance for real-time systems. The calculus curve approach will

make it possible to formally analyze and verify the schedulability/feasibility of a

random/dynamic real-time system. This will also make it possible to analyze and verify

the feasibility of applying the new online real-time DVS technique and algorithms to

those random/dynamic real-time systems.

To capture the characteristics of those events/tasks arriving randomly, the concept

of calculus curve from network calculus domain is adapted, and arrival calculus curves

are used to characterize the random arrivals of events/tasks. The arrival calculus curve

makes it possible to establish a more general task model, where no periodicity and

90

minimum inter-arrival time are assumed. More importantly, this task model is able to

accommodate burst arrivals of events/tasks. Similarly, service calculus curves are also

used to characterize the random and dynamic processing capacity dedicated to

events/tasks. Based on calculus curves, the author first proposes a history window based

prediction technique, which is used to predict future computational requirement

according to calculus curves and history records. The author then develops energy-

efficient online real-time DVS algorithms, which incorporate the history window based

prediction technique, and are capable of dynamically adjusting system operating voltage-

frequency according to the predicted computational requirement. The author validates

and verifies the feasibility and correctness of the new technique and algorithms in a

formal way.

The new algorithms are constructed on EDF and fixed priority policies, and have

the capability to predict the computational requirement due to the random arrivals of

future events/tasks. This implies that the real-time DVS proposed in this dissertation is

based not only on the existing computational requirement but also on that which may be

requested in the future. This feature distinguishes the new algorithms from existing

online real-time DVS algorithms. Predicting the future computational requirement is

critically important in a dynamic random hard real-time environment. In such an

environment, conducting DVS without predicting future computational requirement may

lead to system failure even if feasibility analysis is well conducted at the system design

stage.

The new algorithms are also able to accommodate and respond to not only the

variation between the predicted and the actual event/task arrivals but also the variation

91

between the predicted and the actual execution times of tasks. This feature distinguishes

the new algorithms from those static/offline real-time DVS algorithms that are based on

static information.

5.1 Calculus Curves

In this section, the concept of calculus curves from network calculus domain is adapted to

characterize the arrivals of events/tasks and the system processing capacity for

events/tasks. Network calculus is a mathematical approach originally intended to model,

analyze, and design networks. The foundation of network calculus is the mathematical

Min-Plus and Max-Plus algebras, which are useful for constructing mathematical models

of discrete event systems. In recent years, network calculus has been intensively studied

for flow processing in a variety of areas such as network, multimedia, embedded systems

and so on. One of the important features of the network calculus approach is that it

facilitates system design, validation, and verification, and enables system design to be

formally proved and verified. The network calculus approach has led to many important

research outcomes that provide deep insights into communication networks, multimedia

systems, and embedded systems.

In the network calculus domain, network calculus curves are used to characterize

flows and the processing capacity of network nodes. In this dissertation, they are adapted

to characterize random arriving events/tasks and the processing capacity of real-time

systems.

5.1.1 Arrival Curve

92

The arrival curve is used to characterize the random arrivals of events/tasks in a hard

real-time system. If a function R(t) (t > 0) is used to denote the number of a class of

events that may arrive at the system within [0, t], the arrival curve for this class of events

is defined as follows.

Definition 5.1 Arrival Curve a(t) is a wide-sense increasing function (i.e., a(t) < a(s) for
all t < s). For Vs 0 it satisfies: R(s+t) - R(s) < a(t), and a(t) =0
for alt < 0.

According to this definition, a(t) (t > 0) is the upper bound of the number of a

class of events that may arrive in any time interval of length t, although the arrivals of

events may be random (including burst arrivals).

5.1.2 Service Curve

The service curve is used to characterize the processing capacity (in terms of processor

cycles) of a hard real-time system. If a function C(t) (t > 0) is used to denote the number

of cycles that a system can offer to the process of a class of events within [0, t], the

service curve for this class of events is defined as follows.

Definition 5.2 Service Curve /3(t) is a wide-sense increasing function (i.e., /3(t) β(s) for
all t < s). ForVs0,t 0 it satisfies: C(s+t) - C(s) > /3(t), and /3(t) =0
for alt < 0.

According to this definition, /3(t) (t > 0) is the lower bound of the number of

cycles that the system can offer to the process of a class of events in any time interval of

length t.

93

5.2 System and Task Model

Consider a hard real-time system that is designed to process m classes of events. The total

capacity for processing these events is characterized by a service curve β(t) (which is the

minimum service curve that makes class 1 to class m schedulable), and the corresponding

frequency is 	 Given an i (1<i<m), the arrivals of the events of class i are characterized

by an arrival curve αi(t) (t >0). To facilitate later analysis, an αo(t) is defined as αo(t) =0

for t >0. Events of every class arrive at the system randomly. For every event of a class i,

a task Ti will be invoked and executed once. For every task T i , it is characterized by a

triple (ri , ei, di), where ri is the release time (this is set when an event arrives), e i is the

predicted WCET according to a benchmark processor with operating frequency fs , and di

is the relative deadline. Multiple instances of a task may exist in the system concurrently.

5.3 Schedulability/Feasibility Analysis

In a hard real-time environment, all tasks must be finished no later than their deadlines;

DVS in such environment must take the timing constraints into account, and guarantee

that all deadlines are met. The schedulability analyses conducted in this section are used

to find the minimum necessary voltage-frequency level for processing events, and are the

foundations for the new online real-time DVS algorithms.

The schedulability analysis according to EDF policy is conducted in Section 5.3.1

and that according to fixed priority policy is conducted in Section 5.3.2

94

5.3.1 Schedulability/Feasibility Analysis According to Preemptive Earliest Deadline
First Policy

With this policy, events from all classes are processed according to their deadlines (i.e.,

earliest deadline first). Tasks with earlier deadlines can preempt the executions of those

with later deadlines. Tasks with identical deadlines will be processed in First Come First

Serve (FCFS) fashion. Given m classes of events with arrival curves α i (t) to αm(t) and the

total processing capacity that is characterized by f(t), the following Theorem 5.1 gives a

necessary and sufficient condition for the schedulability test according to preemptive

EDF policy.

Figure 5.1 Schedulability analysis according to preemptive EDF policy.

By contradiction.
Suppose that class 1 to class m are unschedulable, t' is the arrival time of the
first task (say Ti) that misses its deadline, and it belongs to class i.

Case 1: t' is the start point of a busy period (Figure 5.1). (Suppose that class
1, class 2, ..., class m are in increasing order of relative deadline.)
Because the events whose deadlines are later than that of Ti will have
no influence on Ti, the following holds:

=

This contradicts the given condition.

Case 2: t' is not the start point of a busy period, but t" is the nearest (from
the left side of t') start pint of a busy period (Figure 5.1). (Suppose
that class 1, class 2, ..., class m are in increasing order of relative
deadline.) Because the events whose deadlines are later than that of
T, will have no influence on the following holds:

95

This contradicts the given condition.

96

Theorem 5.1 states that for all the events of class 1 to class m to be feasibly

processed in time according to EDF policy, the processing capacity 13(t) must satisfy the

above condition, and that the processing capacity 13(t) that satisfies the above condition is

high enough for processing the events of class 1 to class m.

5.3.2 Schedulability/Feasibility Analysis According to Preemptive Fixed Priority
Policy

With this policy, a priority Pi (1<i<m) is assigned to every event of class i. Throughout

this chapter, it is assumed that for any Pi, 1<Pi<m. For any pair of priorities (Pi, P'j), class

i has higher priority than class j if (Pi < P'j). Events from all classes are processed

according to their corresponding priorities (i.e., highest priority first), and tasks with

higher priorities can preempt the executions of those tasks with lower priorities. Tasks

with identical priorities will be executed in FCFS fashion. Given m classes of events with

arrival curves αi(t) to αm(t) and the total processing capacity that is characterized by β(t),

the following Theorem 5.2 gives a necessary and sufficient condition for the

schedulability test according to preemptive fixed priority policy.

97

< k). This implies that k tasks from class i will miss their deadlines in interval
[t1, t²]. But this contradicts the given condition.

By induction.
Step 1: Base case, k=1. It can be proved by contradiction. Suppose that class 1

is unschedulable. 	 3 t' (f3' 1 (t'+d 1) < α1(t')×)× e 1 ×	 . But this
contradicts with the given condition. Thus Theorem 5.2 holds for k=1.

Step 2: Suppose that Theorem 5.2 holds for k=1 to i.
Step 3: Prove Theorem 5.2 holds for k=(i+1) by contradiction. Suppose that

class 1 to class (i+1) are unschedulable. To be more specific, class
(i+1) is unschedulable (because class 1 to class i are schedulable
according to assumption and have higher priorities than class (i+1),
they will not be influenced by class (i+1)).

at' (β'i+1(t+d j+1) < αi+1(t')× ei+1 × f 	 . But this contradicts the
given condition. Thus Theorem 5.2 holds for k=(i+1). 	 ❑

Theorem 5.2 states that for all the events of class 1 to class m to be feasibly

processed in time according to fixed priority policy, the processing capacity 13(t) must

satisfy the above condition, and that the processing capacity β(t) that satisfies the above

condition is high enough for processing the events of class 1 to class m.

5.4 Online Real-Time DVS Algorithms

5.4.1 History Window Based Prediction

The history window based prediction technique is employed to predict the requirement of

computation within a future time interval (i.e., the prediction interval, see Figure 5.2 and

Figure 5.3) based on history records.

Let t, be the current time. Suppose there are n existing tasks T'1, T², 	 n in that

order in the task queue. The absolute deadlines of T'1, 	 T, are D'1,

respectively. To predict the computational requirement, both the EDF based algorithm

and the fixed priority based algorithm use a history window, which contains w recording

98

points (t 1 ,	 tw) (see Figure 5.2 and Figure 5.3). The history window will slide with the

advance of time, and the recording points will be updated accordingly. At every

recording point tq (1< q < w), the number of cycles that have been offered to every class

is recorded. These records can be easily constructed if a counter is used for every class.

The counter is used to record the number of cycles devoted to the process of the events of

that class. Suppose that 13, is used to denote the number of cycles that were offered to

class j within interval [tq , tw). B, can be easily obtained according to the information

recorded at the recording points. To facilitate later analysis, a remaining computational

requirement function δ(t — tc) is defined as follows.

Definition 5.3 (remaining computational requirement function 8(t — tc)) Given a time

point tc, the remaining computational requirement (due to a set of
specified ready tasks) function at t c is defined as δ(t —t,), which is the
minimum computational requirement that the system should satisfy at
time t (t > tc), so as to make every task (in the task set) finish no later
than its deadline.

In addition, to facilitate later description, S(f, t) is used to denote the number of

cycles a system can offer within an interval of length t under operating frequency f.

The objective of the prediction is to find an upper bound as low as possible for the

computational requirement that may be requested in a specified future time interval. The

rationale behind this idea is that a lower upper bound implies less computational

requirement, and hence a lower frequency is sufficient enough for completing the

computations in a timely way.

5.4.1.1 History Window Based Prediction for EDF Policy

99

In Figure 5.2, suppose that tasks T' 1 ,	 T'„ are in non-decreasing order of deadline, and

their deadlines are D	 D'„.

Figure 5.2 History window based prediction for EDF policy.

Consider a prediction interval [tc, D'i] (1<i<n). Under EDF policy, the

computational requirement due to future arrivals of events from class j (1<j<m) that

should be satisfied by a time point t (t(< t <D'i) can be computed as

(αj(t—tc—dj)×ej×fs).

Given a recording point tk in the history window, it can also be computed as

(αj(t —t k —dj)× e i × f,— B 1;) .

The smallest one computed according to the history window can be obtained as

min (α(t—tk—dj)× e
1 <_1c. (w-1)

Thus, under EDF policy, the total computational requirement that should be

satisfied by time t can be computed as

(mi n { (a j (t — t, — d j)× e j ×), 151<k<(w-1)min (αj(t—tk—dj)×e 	 f,— 13 1;)1 +	 —t,)),
.k5(

i=1

100

where 4157— , (t — t c) is the remaining computational requirement function (at tc) due

to tasks T'1,	 T',. In particular, δT'(t—tc)= 8 (t — t c) , which is the remaining

computational requirement due to tasks T' 1 ,	 T'„.

Suppose the system is operating under frequency f,. The following condition

should be satisfied so as to meet the computational requirement:

5.4.1.2 History Window Based Prediction for Fixed Priority Policy

Figure 5.3 History window based prediction for Fixed Priority policy.

In Figure 5.3, suppose that tasks T'1, 	 T'„ are in non-increasing order of priority, and

their priorities are P' 1 < ...< P'„, i.e.,	 has the highest priority and T'„ has the lowest

priority.

Consider a task T'i (1<i<n). To make	 to T'i finish no later than their deadlines

under fixed priority policy, the computational requirement due to the future arrivals of

101

events from class j (1<j<(P'i -1)) that should be satisfied by a time point t < t <D's) can

be computed as

Given a recording point tk in the history window, it can also be computed as

The smallest one computed according to the history window can be obtained as

The computational requirement due to the future arrivals of those tasks that have

priorities not higher than T'i that should be satisfied at a time point t < t <D'i) can be

computed as .

where ,3' P , (t — t c) is the minimum service curve for class P'i to class m to be

schedulable.

Given a recording point tk, it can also be computed as

The smallest one computed according to the history window can be obtained as

Thus, to make tasks T' 1 to T'i finish no later than their deadlines under fixed

priority policy, the total computational requirement that should be satisfied by time t can

be computed as

102

where 8T ' , (t tc) is the remaining computational requirement function (at te) due

to tasks T'1, 	 In particular, 87.'(t t c) = 8 (t t c) , which is the remaining

computational requirement due to tasks T'1, . . ., Tn.

Suppose the system is operating under frequency fi. The following condition

should be satisfied so as to meet the computational requirement due to to Ti and the

tasks that may arrive in the future:

5.4.2 Prediction-Enabled EDF Based Online Real-Time DVS Algorithm

In Figure 5.4, PAEDF_P works in a similar way to EDF except that it employs the

history window based prediction technique to predict computational requirement, and has

the capability to adjust voltage-frequency level according to computational requirement

so as to save energy. Basically, whenever PAEDF_P is invoked, it first constructs the

remaining computational function 87.. , (t —tc) (1<i<n) (step 2). This is accomplished by

computing the computational requirement that must be satisfied by every deadline,

starting from D' 1 until D'„. δT'1(t — tc), 	 8T'”(1. — tc) can be obtained by one round of

scanning tasks T'1, ..., T'n.

103

Figure 5.4 Power-aware prediction-enabled EDF algorithm.

Frequency fi (1<i<n) is derived according to the computational requirement due to

the remaining computational requirement and the computational requirement that may

arise in the future (steps 4-11). It is easy to see from Figure 5.4, frequency fi (1<i<n) is

computed as the smallest value that satisfies the following inequality:

104

where Bkj = (Window; - Window"), and Window; and Window" are the history

records for class j at tw and tk, respectively.

fc is set to the maximum fi (I< i < n) (step 12). Steps 13-19 are used to update the

history window. Note that between two consecutive frequency adjustment points, the

processor cycles devoted to every class j (I< j < m) will be added to Window; . This

operation is incorporated into step 21. After the history window is updated, current

frequency is set to fc, and tasks are processed according to the EDF rule until Tx

completes (step 21). T'x is the last task (in the sequence of	 T'„) that the frequency

computed with respect to its deadline D'x is equal to L. (Note that T'1,	 T'„ are in non-

decreasing order of deadline.)

Proof: In Figure 5.5, assuming that the frequency setting is f„,,, before time tc .
Because the remaining computational requirement at t, is less than or equal to the
theoretical remaining computational requirement at tc. (due to the fact that the
number of the actual arrivals of tasks is always less than or equal to the theoretical
upper bound number), the following holds:

(t — t,)	 (t — t,))	 (t, 	 t),

where 8 * (t — t c) is the theoretical remaining computational requirement at time tc .

Figure 5.5 Frequency analysis.

the following inequality must hold:

Thus, a frequency fi that is not higher than fns can be found to satisfy the above
inequality, i.e., f is less than or equal to fmax and it satisfies the following
condition:

The following proves that under frequency fc, the remaining computational
requirement at D', is less than or equal to the theoretical remaining computational
requirement at D ix.
Because

this indicates that the frequency fc (fc > fn) is high enough to satisfy the predicted
(theoretical) computational requirement within [tc, Dix] and the computational
requirement due to tasks T'1,..., T. Thus, the remaining computational
requirement at D', must be less than or equal to the theoretical remaining
computational requirement, i.e., there is no unreasonable remaining computational
requirement at D', under frequency fi. In particular, if x is equal to n, the
frequency fc is high enough to satisfy the predicted theoretical computational
requirement within [tc , D'n] and the computational requirement due to tasks
T'„, and there is no unreasonable remaining computational requirement at D',
under frequency fc.
Now, the assumption made at the very beginning of the proof can be removed. ❑

Theorem 5.3 If class 1 to class m with arrival curve αi(t) to αm(t) are schedulable with
service curve β(t) under EDF rule, then they are schedulable under
D 	 D

105

106

Figure 5.6 Schedulability analysis.

Proof: In Figure 5.6, td and tc2² are two consecutive frequency adjustment points, and the
frequency setting at tc 1 is fc1. For interval [td, 4²], only the following needs to be
proved: (1) frequency fc1 is high enough to satisfy the predicted theoretical
computational requirement plus the remaining computational requirement at 41

throughout [td, 4²] (so, no deadline miss happens throughout [4 1 , tc2]), and (2)
under frequency fc1, no unreasonable remaining computational requirement at tc²,
i.e., the remaining computational requirement at time t c2 is less than or equal to
the theoretical computational requirement at tc2 (so, no deadline miss is caused
due to the frequency adjustment at td). It is easy to see from the proof of
Proposition 5.1, both (1) and (2) are true. Because this holds at every frequency
adjustment point, Theorem 5.3 holds. ❑

5.4.3 Prediction-Enabled Fixed Priority Based Online Real-Time DVS Algorithm

In Figure 5.7, PAPRI_P works in a similar way to fixed priority policy except that it uses

the history window based prediction technique to predict the computational requirement,

and is able to adjust the voltage-frequency level according to the computational

requirement so as to save energy. Basically, whenever PAPRI_P is invoked, it first

constructs the remaining computational function 8T . , 	tc) (1<i<n) (step 2). Similar to

PAEDF_P, δT'1(t—tc) , 	 δT'n(t—tc) can be obtained by one round of scanning the

tasks T' 1 ,	 T'„. To compute fi, PAPRI_P first computes the computational requirement

due to those future events that have higher priorities than T', (steps 5-10). It then

computes the computational requirement due to those future events that have priorities

not higher than T'i (steps 11-16). Frequency fi is then determined according to

107

Figure 5.7 Power-aware prediction-enabled fixed priority algorithm.

the total computational requirement (step 18). It is easy to see from Figure 5.6, frequency

ft is computed as the smallest value that satisfies the following inequality:

108

where B^ _ (Window - Windows), and Window and Window are the history

records for class j at tw and tk, respectively, and β' P'i (t —) is the minimum service

curve for class P'i to class m to be schedulable. Note that /3',. , (u) can be constructed in

the system design stage.

fc is set to the maximum fi (I< i < n) (step 19). Steps 20-26 are used to update

history window. Note that between two consecutive frequency adjustments, the processor

cycles devoted to every class j (I‹ j < m) will be added to Windowwj . This operation is

incorporated into step 28. After the history window is updated, current frequency is set to

fc, and the tasks are processed according to the highest priority first rule until Tx

completes (step 28). T'x is the last task (in the sequence of T'1, T'n) that the frequency

computed with respect to its deadline D'x is equal to fc . Note that T'1, T'n are in non-

increasing order of priority.

Proof: In Figure 5.5, assuming that the frequency setting is fm ax before time tc .
Because the remaining computational requirement at to is less than or equal to the
theoretical remaining computational requirement at tc (due to the fact that the
number of the actual arrivals of tasks is always less than or equal to the theoretical
upper bound number), the following holds:
87• (t t c) 	 * (t -- tc) 	 (t c 	t)

where 8 * (t —) is the theoretical remaining computational requirement at time tc .

109

Thus the following must hold:

Because class 1 to class m are schedulable under fmax, at any time point t (tc<t
<D'i), the following holds:

the following inequality must hold:

Thus, a frequency fi that is not higher than fmax can be found to satisfy the above
inequality, i.e., f is less than or equal to fmax and it satisfies the following
condition:

The following proves that under frequency fc , the remaining computational
requirement at Dix is less than or equal to the theoretical remaining computational
requirement at Dix .
Because

110

this indicates that the frequency", (fc > f„) is high enough to satisfy the predicted
(theoretical) computational requirement within 	 Dix] and the computational
requirement due to tasks 	 Tx. Thus, the remaining computational
requirement at D', must be less than or equal to the theoretical remaining
computational requirement at D',, i.e., there is no unreasonable remaining
computational requirement at D', under frequency In particular, if x is equal to
n, the frequency is high enough to satisfy the predicted theoretical
computational requirement within [tc , D'„] and the computational requirement due
to tasks T'n, and there is no unreasonable remaining computational
requirement at D'n under frequency fc.
Now, the assumption made at the very beginning of the proof can be removed. ❑

Theorem 5.4 If class 1 to class m with arrival curve 6(1(0 to α m(t) are schedulable with
service curve β(t) under fixed priority rule, then they are schedulable
under PAPRI P.

Proof: The proof can be accomplished in a way similar to Theorem 5.3. 	 ❑

5.4.4 Further Discussion on the Algorithms

• Complexity analysis. It is easy to see from Figures 5.4 and 5.7 that the

complexities of both PAPRI P and PAEDF P are O(wnm), given m classes of

events, n tasks in the task queue, and a history window of width w. Because w is

usually a small constant, the complexities of both PAPRI P and PAEDF_P are

dominated by n and m.

• Online real-time DVS without prediction. So far the author discussed the

online real-time DVS based on history window based prediction. An interesting

problem is whether the online real-time DVS could be conducted without

prediction, i.e., frequency is determined solely based on existing computational

requirement. Unfortunately, this naive idea does not work. In Section 5.5, two

algorithms (PAPRI NP and PAEDF_NP) that attempt to conduct DVS without

prediction are constructed, and both of them failure. This indicates that in a

111

random hard real-time environment, online DVS without prediction may cause

system fail. This is of great importance for conducting online DVS in hard real-

time systems.

• Accommodate and respond to variations. From Figure 5.4 and Figure 5.7, it is

easy to see that both PAEDF_P and PAPRI P conduct frequency adjustment at

a time point when a specified existing task actually completes, and the

completion of this task depends on the actual execution times of other tasks and

the actual arrival of events. If the actual execution times of those tasks are less

than the predicted WCETs of them, the specified task will complete earlier than

it is predicted. Similarly, if the actual number of arrived events is less than that

of the predicted events, the specified task will also complete earlier than is

predicted. This implies that the frequency adjustment contained in both

PAPRI P and PAEDF_P depends on the actual rather than the predicted

execution times of tasks and the actual rather than the predicted arrival of

events. Therefore, both PAPRI P and PAEDF_P are able to accommodate and

respond to the variation between the WCETs (predicted execution time) and the

actual execution times, and the variation between the predicted arrivals of events

and the actual arrivals of events.

5.5 Simulation Analysis

This section studies the effectiveness of the online real-time DVS algorithms by

simulation. To facilitate the evaluation, it is assumed that (1) the time overhead and

energy expense of voltage-frequency switching is negligible [61, 62], and (2) the time

112

overhead and energy expense of the algorithms are negligible. As a matter of fact, these

assumptions are made, explicitly or implicitly, in almost all real-time DVS research

except those that specifically address those issues. As mentioned before, although energy

saving is the objective, meeting timing constraints is required in hard real-time

environments. So, these algorithms are evaluated along two dimensions, i.e., energy

consumption and deadline miss. It is necessary to check how well these algorithms

perform in energy saving when compared to those algorithms that do not conduct DVS.

To check how well these algorithms perform in meeting timing constraints, they are

compared with two other algorithms (i.e., PAPRI_NP and PAEDF_NP), which are

constructed in a similar way to PAPRI P and PAEDF_P except that they conduct DVS

without prediction.

5.5.1 Simulation Settings

The simulation contains 9 classes of events, and the settings for every class are listed in

Table 5.1. The priorities assigned to class 1, class 2, ..., class 9 are Pi, P2, P9, and

they satisfy: P1 < P2 < ...< P9, i.e., class 1 has the highest priority and class 9 has the

lowest priority. See Table 5.1, when infinite levels of frequencies is assumed, the highest

frequency is set to 90MHZ, and the corresponding voltage is 5.2V. Under this

assumption, frequency can be set to any value between the highest frequency and the

lowest frequency (0MHZ), and the voltage will be adjusted accordingly. When limited

levels of frequencies is assumed, there are four optional frequencies, i.e., 90MHZ,

54MHZ, 36MHZ and 18MHZ, and the corresponding voltages are 5.2V, 3.3V, 2.2V and

1.0V. Hence, the frequency and voltage adjustment is limited. The width of the history

113

window is set to 5 except in Figure 5.10, where it is also set to 10 so as to study the

energy savings under different widths of history window.

Table 5.1 Simulation Settings

class
.processing

task

WCET
(under
benchmark
frequency
fs=1MHZ)

relative
deadline

. 	 .priority

a(t) 	 (t
> 0)

(a(t)=0
for t<0)

1 T1 8ms 10ms P1 250t+5

2 T2 8ms 10ms P2 250t+5

3 T3 5ms 8ms P3 400t+8

4 T4 5ms 8ms P4 400t+8
5 T5 5ms 8ms P5 400t+8
6 T6 3ms 12ms P6 500t+10
7 T7 3ms 12ms P7 500t+10
8 T8 3ms 12ms P8 500t+10
9 T9 3ms 12ms P9 500t+10

infinite
levels of
frequencies

Limited
levels of
frequencies

β(t) 	 (t
> 0)

43(1)=0

<O)t<

90×106t

90× 106t

54×106t

36×106t

18×106t

voltage
(V)

5.2
5.2
3.3
2.2
1.0

5.5.2 Simulation Results

Figure 5.8 (a) and (b) are the simulation results under infinite levels of frequencies

assumption. As it is shown that no task misses its deadline with both PAEDF P and

PAPRI P while lots of tasks miss their deadlines with PAEDF NP and PAPRI NP. The

reason is that while PAEDF P and PAPRI P conduct frequency adjustment based on the

computational requirement of existing tasks and that of the predicted future tasks,

PAEDF_NP and PAPRI_NP conduct frequency adjustment solely based on the

computational requirement of existing tasks. These results indicate that in a random hard

real-time environment, conducting DVS without considering future computational

requirement may lead to system failure (deadline miss). Please note that the setting of β(t)

is high enough for all events to be feasibly processed in time. (This can be verified by the

114

pure EDF and pure PRIORITY algorithms. With both of them, no task misses its

deadline.) Please also note that because there is no deadline miss with PAEDF_P, EDF,

PAPRI_P and PRIORITY, the "number of tasks" with each of them is zero (Figure 5.8).

Figure 5.8 Deadline miss with infinite levels of frequencies.

Figure 5.9 Energy consumption and energy saving with infinite levels of frequencies.

115

Figure 5.9 (a) and (b) are the simulation results under infinite levels of

frequencies assumption. It is easy to see that the energy consumptions under both

PAEDF_P and PAPRI_P are much less than those under pure EDF and pure PRIORITY

throughout the simulation interval. Compared to EDF, PAEDF_P constantly saves 10%

or more energy (see the bottom figure of Figure 5.9(a)). For PAPRIP, it saves more than

61% energy when compared to its counterpart (see the bottom figure of Figure 5.9(b)).

(a)	 (b)

(a) Energy saving by PAEDF_P under different widths of history window

(b) Energy saving by PAPRI_P under different widths of history window

Figure 5.10 Energy savings with infinite levels of frequencies under different history
window widths.

Figure 5.10 shows that both PAEDF_P and PAPRI_P save more energy under

history window of width 5 than that under history window of width 10. This indicates

that wider history window cause more energy saving. The reason is that a wider history

window provides more points for prediction, and thus provides more opportunities for

adjusting frequency to lower levels.

Figure 5.11 is the simulation result under limited levels of frequencies

assumption. It is also shown that the energy consumptions under both PAEDF_P and

116

PAPRI_P are much lower than those under their corresponding counterparts. Compared

to EDF and PRIORITY, the energy constantly saved by PAEDF_P and PAPRI_P is above

2% and 55%, respectively.

(a)	 (b)

Figure 5.11 Energy consumption and energy savings with limited levels of frequencies.

Figure 5.9 and Figure 5.11 show that both PAEDF_P and PAPRI_P outperform

their corresponding counterparts. The reason is that while PAEDF_P and PAPRI_P have

the capability to dynamically adjust the operating frequency according to computational

requirement, EDF and PRIORITY always work at the highest frequency. As a result,

PAEDF_P and PAPRI_P finish the same computational work as their counterparts but at

reduced energy consumption. This result holds even with limited levels of frequencies

constraint (Figure 5.11).

Figure 5.9 and Figure 5.11 show that the energy saved by both PAEDF_P and

PAPRI_P under limited levels of frequencies is less than that under infinite levels of

117

frequencies. The reason is that with limited levels of frequencies constraint, they can only

choose from a limited set of frequencies. As a result, they can not always find the most

suitable frequency (i.e., the computed frequency), and most of the time they have to pick

a frequency that is close to but higher than the computed frequency, so as to avoid

deadline misses. This limitation eventually results in less energy saving.

Figure 5.12 Energy consumption and energy savings with varying
execution/computation time.

With the simulations in Figure 5.12 (a) and 5.12 (b), the actual execution times of

tasks vary from 10% to 100% of their corresponding WCETs. These simulations are used

to test how well PAEDF_P and PAPRI_P perform when the actual execution times of

tasks are different from their WCETs. As shown in Figure 5.12 (a) and 5.12 (b), both

PAEDF_P and PAPRI_P perform much better than their corresponding counterparts in

118

all simulations. Compared with pure EDF, PAEDF_P saves more than 15% of the

energy, and PAPRI P saves more than 61% of the energy compared with pure

PRIORITY. It is also easy to see that PAEDF_P and PAPRI P perform well even when

the actual execution times of tasks are as low as only 10% of their corresponding

WCETs. This indicates that both PAEDF_P and PAPRI_P can accommodate and well

adapt to the variation between the predicted and the actual execution times of tasks.

CHAPTER 6

CONCLUSION

In this dissertation, new data structures, models, algorithms, and techniques for real-time

resource management are explored. The main contributions of this dissertation are

summarized as follows.

A class of TIT trees is constructed. The TIT* tree is a general data structure that

can be applied to a wide variety of real-time scheduling systems to perform the

schedulability test of tasks (or messages). It can effectively reduce the average costs of

the schedulability tests. The TIT-V tree can be applied to the schedulability tests of a

class of parallel/distributed real-time systems, and the complexity of the corresponding

schedulability tests can be reduced from O(m2nlogn) to O(mlogn+mlogm). The TIT-RL

tree can be applied to the online admission control in a uni-processor based real-time

system, and the complexity of the online admission control can be reduced from O(n 2) to

O(nlogn). The TIT-RL tree can also be used as the building block for a class of

parallel/distributed real-time systems. Compared to those non-TIT tree based scheduling

modules, the TIT tree based ones are much more efficient. Therefore, the TIT trees are

effective approaches to efficient real-time scheduling modules. More details about TIT

trees can be found in [22].

A new utility accrual model called UAM + is established for the resource

allocation in asynchronous real-time distributed systems. The model is constructed based

on the timeliness of both computation and communication. Moreover the interplay

between computation and communication is also captured and characterized in the model.

A resource allocation algorithm called IAUASA is developed under UAM+ . The

119

120

performance of IAUASA is much superior to two other resource allocation algorithms that

are developed according to conventional UAM and conventional idea. Therefore, UAM +

provides a more effective framework for resource managers to optimize resource

allocation along two dimensions, i.e., computation and communication, rather than

conventional one dimension, i.e., computation or communication, in distributed real-time

systems. More details about UAM+ model can be found in [65].

An online distributed algorithm called IDRSA is developed under the UAM +

model to conduct resource allocation in a distributed real-time system. IDRSA integrates

DDA technique to explore the interplay between computation and communication.

Extensive simulations reveal the excellent performance of IDRSA, especially when the

interplay between computation and communication is tight. This not only proves the

excellence of IDRSA in the resource allocation in distributed real-time systems, but also

further validates the effectiveness of the UAM+ model for the resource management in

distributed real-time systems. More details about IDRSA can be found in [88].

Calculus curve based real-time DVS technique is established. This technique is

able to accommodate random event/task arrivals. Novel real-time DVS algorithms based

on the technique are developed. These algorithms are able to accommodate and respond

to the variation between the predicted and the actual execution times of tasks as well as

the variation between the predicted and the actual arrivals of events, and they are

excellent in energy saving. Therefore, the calculus curve based real-time DVS technique

is an effective approach to energy-efficient real-time resource management in random

hard real-time environments. More details about this technique can be found in [89].

CHAPTER 7

FUTURE WORK

The preceding chapters demonstrate that the proposed data structures, models,

algorithms, and techniques can benefit real-time systems. This chapter discusses some

directions that further work may take in the future.

In Chapter 2, the TIT tree is studied. Because the TIT tree is a basic data

structure, more extensions of it could be explored and applied to more real-time systems

to improve their efficiency and performance. Some TIT trees may be specifically

designed for some specific systems, others may be applicable to a number of systems.

Because efficiency and performance are always of critical importance for real-time

systems, how to find and construct more TIT trees and effectively apply them to more

real-time systems in the real world is an interesting work and deserves further

exploration.

In Chapter 3, UAM+ model is studied. Because UAM + well captures and

characterizes the interplay between computation and communication in distributed real-

time systems, it provides an effective approach to constructing effective resource

management in such systems. In the future, more effective resource allocation algorithms

and techniques under UAM + can be developed and applied to different distributed real-

time systems.

In Chapter 4, a two-level scheduling framework is discussed. It can effectively

decompose resource scheduling into subprocesses and reduce system complexity through

parallelism. In the future, the two-level scheduling framework can be further investigated

to improve system scalability and fault-tolerance.

121

122

In Chapter 5, calculus curve based real-time DVS technique is studied. This

technique is able to accommodate random event/task arrivals, and it has been

successfully integrated into two real-time scheduling algorithms. In the future, it will be

an interesting work to integrate this technique into more real-time algorithms to conduct

energy-efficient resource management. This is of special significance for those embedded

real-time systems that need to deal with random event/task arrivals. In addition, how to

integrate leakage power optimization into the history window based prediction technique

is also worthy of further investigation.

APPENDIX

THE ADJUST OPERATION ON TIT-V TREE (FOR CASE 4)

The Adjust algorithm (for the process on case 4) and its subroutines are illustrated in

Figure A.1 to A.6. Note that the process described here does not include how to append a

leaf node to the right side of a TIT-V tree, because this can be easily accomplished by

inserting the node to the tree at the right-most position. Figure A.1 is the top level

framework of the algorithm. Figure A.2 and A.3 are the frameworks for adjusting the left

subtree and the right subtree of CommonParent, respectively. Figure A.4 illustrates how

to merge and balance two subtrees X and F where the height of X is less than that of F,

i.e. ,
 IX' < In Figure A.4(a), the tree rooted from X is the left subtree, and that rooted

from F is the right subtree. In the case that the tree rooted from X is the right subtree, and

that rooted from F is the left subtree, the process is similar to A.4. Figure A.4(a) shows

the two subtrees to be processed. At first, Adjust needs to find the left-most node B, such

that 1X1 = Once B is found, a new node BX will be created (Figure A.4(b)). If this

cause A loses balance, a LL rotation is needed (the LL and LR rotations are similar to

those with AVL tree [7], and LL rotation is applied to a node when the Left subtree of the

Left child of that node cause unbalance and LR rotation is applied to a node when the

Right subtree of the Left child of that node cause unbalance). Figure A.4(c) is the tree

obtained after applying a LL rotation to A in Figure A.4(b). If C loses balance after the

LL rotation, a LR rotation is needed. Figure A.4(d) is the tree obtained after applying a

LR rotation to C in Figure A.4(c). In the case that A is balanced but C lose balance in

Figure A.4(b), a LL rotation is needed, and the resulting tree will be the same as that in

Figure A.4(d).

123

Ro ation

Node 1 <—the node whose interval of vacancy contains
point P I (see Figure 2.7).

Node2<—thenode whose interval of vacancy contains
point P2 (see Figure 2.7).

CommonParent —Find the nearest common parent of
Node, and Node2

Adjust the left subtree of CommonPare

Adjust the right subtree of CommonParent
Temp<—CommonParent

Tree rooted
from Temp
is balanced

H1—heightof the left subtree ofTemp
H2<—height of the right subtree ofTemp

Merge and_ Balance the two subtrees

Root of the resulting subtree replaces Temp

Temp <—root of the resulting subtree

Subtree rooted from Temp is a balanced subtree

Temp is the
root of the
whole tree

Temp <—Temp parent

End

124

Figure A.1 Adjust algorithm (for the process on case 4).

125

Return

Current 1 <—Node,

Current,==CommonParent.left

Current2<—Node2

Current2==
CommonParentright

Return

Rotation

Right_Cut until Current, becomes: the right child of
its parent, or the left child of CommonParent.

Left_Cut until Current 2 becomes: the left child of
its parent, or the right child of CommonParent.

Current,==
CommonParent.left

N

Current, is the right child of its parent

Current1—Current, parent

Current2==
CommonParent.right

N
Current2 is the left child of its parent

Current2<—Current2 .parent

Subtree rooted
from Current 2 is

N

H1 <—height of the left subtree of Current,
H2<—height of the right subtree of Current,

H 1 <—height of the left subtree of Current2

H2<—height of the right subtree of Current2

RotationMerge_and_Balance the two subtrees

Root of the resulting subtree replaces Current,

Current, <—The root of the resulting subtree

Subtree rooted from Current, is a balanced subtree

Merge_and_Balance the two subtrees

Root of the resulting subtree replaces Current2

Current2 4—The root of the resulting subtree

Subtree rooted from Current2 is a balanced subtree

Figure A.2 Adjust the left subtree.	 Figure A.3 Adjust the right subtree.

126

left subtree right subtree

If A loses balance (original IE < IBI)
apply LL rotation

If C loses balance (original |C > |E| <|B|)
apply LR rotation

(a) Two subtrees to be processed (b) A new node BX is created

	(c) Tree obtained from (b) by	 (d) Tree obtained from (c) by

	

applying LL rotation to A	 applying LR rotation to C

Figure A.4 Merge_and_Balance two subtrees.

Figure A.5 Right_Cut.	 Figure A.6 Left_Cut.

127

REFERENCES

[1] C. Krishna and K. Shin, Real-Time Systems, McGraw-Hill, 1997.

[2] J. Liu, Real-Time Systems, Prentice Hall, 2000.

[3] F. Cottet, J. Delacroix, C. Kaiser and Z. Mammeri, Scheduling in Real-Time
Systems, John Wiley & Sons, 2002

[4] Andrew S. Tanenbaum, Distributed Operating Systems, Prentice Hall, 1995.

[5] B. Ravindran, "Engineering dynamic real-time distributed systems: architecture,
system description language, and middleware," IEEE Transactions on Software
Engineering, Volume 28, Issue 1, pp. 30-57, Jan. 2002.

[6] D. Rosu, K. Schwan, S. Yalamanchili and R. Jha, "On adaptive resource allocation
for complex real-time applications," Proc. of the 18th IEEE Real-Time Systems
Symposium, Dec. 1997.

[7] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, the
MIT Press, 2001.

[8] B. Ravindran and P. Li, "DPR, LPR: proactive resource allocation algorithms for
asynchronous real-time distributed systems," IEEE Transactions on Computers,
Volume 53, Issue 2, pp. 201-216, Feb. 2004.

[9] T. Hegazy and B. Ravindran, "Using application benefit for proactive resource
allocation in asynchronous real-time distributed systems," IEEE Transactions
on Computers, Volume 51, Issue 8, pp. 945-962, Aug. 2002.

[10] B. Ravindran, P. Li and T. Hegazy, "Proactive resource allocation for asynchronous
real-time distributed systems in the presence of processor failures," Journal of
Parallel and Distributed Computing, Volume 63, Issue 12, pp. 1219-1242, Dec.
2003.

[11] P. Li and B. Ravindran, "Proactive QoS negotiation in asynchronous real-time
distributed systems," The Journal of Systems and Software, Volume 73, Issue 1,
pp. 75-88, Sept. 2004.

[12] P. Li and B. Ravindran, "Efficiently tolerating failures in asynchronous real-time
distributed systems," Journal of Systems Architecture: the EUROMICRO
Journal, Volume 50, Issue 10, pp. 607-621, Oct. 2004.

[13] B. Ravindran and T. Hegazy, "RBA: a best effort resource allocation algorithm for
asynchronous real-time distributed systems," Journal of Research and Practice
in Information Technology, Volume 33, Issue 2, pp. 158-172, Aug. 2001.

128

129

[14] T. Hegazy and B. Ravindran, "On decentralized proactive resource allocation in
asynchronous real-time distributed systems," Proc. of the 7th IEEE
International Symposium on High Assurance Systems Engineering, Oct. 2002.

[15] R. Clark, Scheduling Dependent Real-Time Activities, PhD Thesis, Carnegie Mellon
Univ., CMU-CS-90-155, 1990.

[16] M. Goldwasser and B. Kerbikov, "Admission control with immediate notification,"
Journal of Scheduling, Volume 6, Issue 3, pp. 269-285, May - Jun. 2003.

[17] R. Lipton and A. Tomkins, "Online interval scheduling," Proc. of the 5th Annual
ACM-SIAM Symposium on Discrete Algorithms, Jan. 1994.

[18] S. Goldman, J. Parwatikar and S. Suri, "Online scheduling with hard deadlines,"
Journal of Algorithms, Volume 34, Issue 2, pp. 370-389, Feb. 2000.

[19] M. Goldwasser, "Patience is a virtue: the effect of slack on competitiveness for
admission control," Journal of Scheduling, Volume 6, Issue 2, pp. 183-211,
Mar.- Apr. 2003.

[20] A. Kolen, J. Lenstra, C. Papadimitriou and F. Spieksma, "Interval scheduling: a
survey," Naval Research Logistics, Volume 54, Issue 5, pp. 530-543, Mar.
2007.

[21] M. Bender, S. Chakrabarti and S. Muthukrishnan, "Flow and stretch metrics for
scheduling continuous job streams," Proc. of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, Jan. 1998.

[22] X. Hu and J. Leung, "Testing interval trees for real-time scheduling systems," Proc.
of the 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Aug. 2008.

[23] D. Peng, K. Shin and T. Abdelzaher, "Assignment and scheduling communicating
periodic tasks in distributed real-time systems," IEEE Transactions on Software
Engineering, Volume 23, Issue 12, pp. 745-758, Dec. 1997.

[24] D. Peng and K. Shin, "Static allocation of periodic tasks with precedence
constraints in distributed real-time systems," Proc. of the 9th International
Conference on Distributed Computing Systems, Jun. 1989.

[25] Y. Wei, S. Son, J. Stankovic and K. Kang, "QoS management in replicated real-
time databases," Proc. of the 24th IEEE Real-Time Systems Symposium, Dec.
2003.

[26] M. Hailperin, Load Balancing Using Time Series Analysis for Soft Real-Time
Systems with Statistically Periodic Loads, PhD Thesis, Stanford University,
1993.

130

[27] C. Hou and K. Shin, "Load sharing with consideration of future task arrivals in
heterogeneous distributed real-time systems," IEEE Transactions on
Computers, Volume 43, Issue 9, pp. 1076-1090, Sept. 1994.

[28] K. Shin and Y. Chang, "Load sharing in distributed real-time systems with state-
change broadcasts," IEEE Transactions on Computers, Volume 38, Issue 8, pp.
1124-1142, Aug. 1989.

[29] K. Shin and C. Hou, "Analytic models of adaptive load sharing schemes in
distributed real-time systems," IEEE Transactions on Parallel and Distributed
Systems, Volume 4, Issue 7, pp. 740-761, Jul. 1993.

[30] K. Shin and C. Hou, "Design and evaluation of effective load sharing in distributed
real-time systems," IEEE Transactions on Parallel and Distributed Systems,
Volume 5, Issue 7, pp. 704-719, Jul. 1994.

[31] C. Hou and K. Shin, "Allocation of periodic task modules with precedence and
deadline constraints in distributed real-time systems," IEEE Transactions on
Computers, Volume 46, Issue 12, pp. 1338-1356, Dec. 1997.

[32] W. Chu and M. Lan, "Task allocation and precedence relations for distributed real-
time systems," IEEE Transactions on Computers, Volume 36, Issue 6, pp.667-
679, Jun. 1987.

[33] C. Houstics, "Module allocation of real-time applications to distributed systems,"
IEEE Transactions on Software Engineering, Volume 16, Issue 7, pp. 699-709,
Jul. 1990.

[34] T. Tia and J. Liu, "Task and resource assignment in distributed real-time systems,"
Proc. of the 2nd Workshop on Parallel and Distributed Real-Time Systems, Apr.
1994.

[35] V. Lo, "Heuristic algorithms for task assignment in distributed systems," IEEE
Transactions on Computers, Volume 37, Issue 11, pp. 1384-1397, Nov. 1988.

[36] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, "A resource allocation mode1
for QoS management," Proc. of the 18th IEEE Real-Time Systems Symposium,
Dec. 1997.

[37] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, "Practical solutions for
QoS-based resource allocations," Proc. of the 19th IEEE Real-Time Systems
Symposium, Dec. 1998.

[38] K. Ecker, D. Juedes, L. Welch, D. Chelberg, C. Bruggeman, F. Drews, D. Fleeman,
D. Parrott and B. Pfarr, "An optimization framework for dynamic, distributed
real-time systems," Proc. of the 17th International Parallel and Distributed
Processing Symposium, Apr. 2003.

131

[39] F. Drews and L. Welch, "An architecture and a general optimization framework for
resource management in dynamic, distributed real-time systems," Proc. of the
9th IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems, Oct. 2003

[40] D. Andrews, L. Welch and S. Brandt, "A framework for using benefit functions in
complex real time systems," Proc. of the 16th International Parallel and
Distributed Processing Symposium, Apr. 2002.

[41] F. Drews, L. Welch, D. Juedes, D. Fleeman, A. Bruening, K. Ecker and M. Hoefer,
"Utility-function based resource allocation for adaptable applications in
dynamic, distributed real-time systems," Proc. of the 18th International Parallel
and Distributed Processing Symposium, Apr. 2004.

[42] E. Jensen, C. Locke and H. Tokuda, "A time-driven scheduling model for real-time
systems," Proc. of the 6th IEEE Real-Time Systems Symposium, Dec. 1985

[43] E. Jensen, "Asynchronous decentralized real-time computer systems," W.A. Halang
and A.D. Stoyenko (Eds.), Real-Time Computing, NATO ASI series, Series F:
Computer and System Sciences, Volume 127, 1994.

[44] J. Wang and B. Ravindran, "Time-utility function-driven switched ethernet: packet
scheduling algorithm, implementation, and feasibility analysis," IEEE
Transactions on Parallel and Distributed Systems, Volume 15, Issue 2, pp. 119-
133, Feb. 2004.

[45] H. Wu, B. Ravindran and E. Jensen, "On the joint utility accrual model," Proc. of
the 18th International Parallel and Distributed Processing Symposium, Apr.
2004.

[46] P. Li and B. Ravindran, "Fast, best-effort real-time scheduling algorithms," IEEE
Transaction on Computers, Volume 53, Issue 9, pp. 1159-1175, Sep. 2004.

[47] H. Wu, B. Ravindran, E. Jensen and P. Li, "Time/utility function decomposition
techniques for utility accrual scheduling algorithms in real-time distributed
systems," IEEE Transactions on Computers, Volume 54, Issue 9, pp. 1138-
1153, Sept. 2005.

[48] B. Ravindran, E. Jensen and P. Li, "On recent advances in time/utility function real-
time scheduling and resource management," Proc. of the 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, May 2005.

[49] E. Jensen, "Timeliness in mesosynchronous real-time distributed systems," Proc. of
the 7th IEEE International Symposium on Object-Oriented Real-Time
Computing, May 2004.

132

[50] E. Jensen, "A timeliness paradigm for mesosynchronous real-time systems," Proc.
of the 9th Embedded and Real-Time Applications and Systems Symposium, May
2003.

[51] C. Locke, Best-Effort Decision Making for Real-Time Scheduling, PhD Thesis,
Carnegie Mellon Univ., CMU-CS-86-134, 1986.

[52] B. Ravindran, J. Anderson and E. Jensen, "On distributed real-time scheduling in
networked embedded systems in the presence of crash failures," Proc. of the 5th
IFIP Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems, May 2007.

[53] J. Anderson, B. Ravindran and E. Jensen, "Consensus-driven distributable thread
scheduling in networked embedded systems," Proc. of the 2007 IFIP
International Conference on Embedded and Ubiquitous Computing, Dec. 2007.

[54] S. Fahmy, B. Ravindran and E. Jensen, "Scheduling distributable real-time threads
in the presence of crash failures and message losses," Proc. of the ACM
Symposium on Applied Computing, Track on Real-Time Systems, Mar. 2008.

[55] K. Han, B. Ravindran and E. Jensen, "Probabilistic, real-time scheduling of
distributable threads under dependencies in mobile, ad hoc networks," Proc. of
the IEEE Wireless Communications and Networking Conference, Mar. 2007.

[56] K. Han, B. Ravindran and E. Jensen, "Exploiting slack for scheduling dependent,
distributable real-time threads in mobile ad hoc networks, Proc. of the
International Conference on Real-Time and Network Systems, Mar. 2007.

[57] K. Han, B. Ravindran and E. Jensen, "RTG-L: dependably scheduling real-time
distributable threads in large-scale, unreliable networks," Proc. of the IEEE
Pacific Rim International Symposium on Dependable Computing, Dec. 2007.

[58] F. Huang, K. Han, B. Ravindran and E. Jensen, "Integrated real-time scheduling
and communication with probabilistic timing assurances in unreliable
distributed systems," Proc. of the IEEE International Conference on
Engineering of Complex Computer Systems, Mar./Apr. 2008.

[59] S. Fahmy, B. Ravindran and E. Jensen, "Fast scheduling of distributable real-time
threads with assured end-to-end timeliness," Proc. of the 13th International
Conference on Reliable Software Technologies - Ada-Europe 2008, Jun. 2008.

[60] C. Krishna and Y. Lee, "Voltage-clock-scaling adaptive scheduling techniques for
low power in hard real-time systems," IEEE Transactions on Computers,
Volume 52, Issue 12, pp. 1586-1593, Dec. 2003.

[61] M. Weiser, B. Welch, A. Demers, and S. Sherker, "Scheduling for reduced CPU
energy," Proc. of the 1st Symposium on Operating Systems Design and
Implementation, Nov. 1994.

133

[62] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava, "Power optimization
of variable voltage core-based systems," Proc. Of ACM Design Automation
Conference, Jun. 1998.

[63] http://www.kasahara.elec.waseda.ac.jp/schedule/index, Sept. 2005.

[64] V. Almeida, I. Vasconcelos, J. Árabe and D. Menascé, "Using random task graphs
to investigate the potential benefits of heterogeneity in parallel systems," Proc.
of IEEE Supercomputing, Nov. 1992.

[65] X. Hu and J. Leung, "Integrating communication cost into the utility accrual model
for the resource allocation in distributed real-time systems," Proc. of the 14th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, Aug. 2008.

[66] K. Govil, E. Chan and H. Wasserman, "Comparing algorithms for dynamic speed-
setting of a low-power CPU," Proc. of the 1st Annual International Conference
on Mobile Computing and Networking, Nov. 1995.

[67] J. Lorch and A. Smith, "Improving dynamic voltage scaling algorithms with
PACE," Proc. of the 2001 ACM SIGMETRICS International Conference, Jun.
2001.

[68] Y. Lin, C. Hwang and A. Wu, "Scheduling techniques for variable voltage low
power designs," ACM Transactions on Design Automation of Electronic
Systems, Volume 2 , Issue 2, pp. 81-97, Apr. 1997.

[69] F. Xie, M. Martonosi and S. Malik, "Compile time dynamic voltage scaling
settings: opportunities and limits," ACM SIGPLAN Notices, Volume 38, Issue 5,
SESSION: power-aware compilation, pp. 49-62, May 2003.

[70] P. Pillai and K. Shin, "Real time dynamic voltage scaling for low power embedded
operating systems," Proc. of the 8th ACM Symposium on Operating Systems
Principles, Oct. 2001.

[71] A. Manzak and C. Chakrabarti, "Variable voltage task scheduling algorithms for
minimizing energy/power," IEEE Transactions on Very Large Scale Integration
Systems, Volume 11, Issue 2, pp. 270-276, Apr. 2003.

[72] S. Lee and T. Sakurai, "Run-time voltage hopping for low-power real-time
systems," Proc. of the 37th Design Automation Conference, Jun. 2000.

[73] H. Aydin, R. Melhem, D. Mossé and P. Mejía-Alvarez, "Determining optimal
processor speeds for periodic real-time tasks with different power
characteristics," Proc. of the 13th Euromicro Conference on Real-Time Systems,
Jun. 2001.

134

[74] Y. Liu and A. Mok, "An integrated approach for applying dynamic voltage scaling
to hard real-time systems," Proc. of the 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, May 2003.

[75] C. Lee and K. Shin, "On-line dynamic voltage scaling for hard real-time systems
using the EDF algorithm," Proc. of the 25th IEEE International Real-Time
Systems Symposium, Dec. 2004.

[76] B. Mochocki, X. Hu and G. Quan, "Practical on-line DVS scheduling for fixed-
priority real-time systems," Proc. of the 11th IEEE Real-Time and Embedded
Technology and Applications Symposium, Mar. 2005.

[77] F. Gruian, "Hard real-time scheduling for low-energy using stochastic data and
DVS processors," Proc. of the International Symposium on Low-Power
Electronics and Design, Aug. 2001.

[78] R. Jejurikar, C. Pereira, and R. Gupta, "Leakage aware dynamic voltage scaling for
real-time embedded systems," Proc. of the 41th Design Automation Conference,
Jun. 2004.

[79] R. Jejurikar and R. Gupta, "Dynamic voltage scaling for system-wide energy
minimization in real-time embedded systems," Proc. of the International
Symposium on Low Power Electronics and Design, Aug. 2004.

[80] R. Xu, D. Mossé and R. Melhem, "Minimizing expected energy in real-time
embedded systems," Proc. of the 5th ACM International Conference on
Embedded Software, Sep. 2005

[81] Y. Shin, K. Choi and T. Sakurai, "Power optimization of real-time embedded
systems on variable speed processors," IEEE/ACM International Conference on
Computer-Aided Design, Nov. 2000.

[82] M. Schmitz, B. Al-Hashimi and P. Eles, "Energy-efficient mapping and scheduling
for DVS enabled distributed embedded systems," Proc. of the Conference on
Design, Automation and Test in Europe, Mar. 2002.

[83] J. Luo and N. Jha, "Static and dynamic variable voltage scheduling algorithms for
real-time heterogeneous distributed embedded systems," Proc. of the 15th
International Conference on VLSI Design, Jan. 2002.

[84] A. Qadi, S. Goddard and S. Farritor, "A dynamic voltage scaling algorithm for
sporadic tasks," Proc. of the 24th IEEE International Real-Time Systems
Symposium, Dec. 2003.

[85] F. Yao, A. Demers and S. Shenker, "A scheduling model for reduced CPU energy,"
Proc. of the 36th Annual Symposium on Foundations of Computer Science, Oct.
1995.

135

[86] G. Quan and X. Hu, "Energy efficient DVS schedule for fixed-priority real-time
systems," ACM Transactions on Embedded Computing Systems, Volume 6,
Issue 4, Article 29, Sep. 2007.

[87] J. Boudec and P. Thiran, NETWORK CALCULUS: A Theory of Deterministic
Queuing Systems for the Internet, Online Version of the Book Springer Verlag -
LNCS 2050, Version Jan. 7, 2004.

[88] X. Hu, G. Xing and J. Leung, "Exploring the interplay between computation and
communication in distributed real-time scheduling," submitted to IEEE
Transactions on Computers, October 2009.

[89] X. Hu and G. Xing, "Real-time dynamic voltage-frequency scaling based on
calculus curves," submitted to the sixteenth IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, April 2010.

	New data structures, models, and algorithms for real-time resource management
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract (1 of 3)
	Abstract (2 of 3)
	Abstract (3 of 3)�

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Testing Interval Trees for Real-Time Scheduling Systems
	Chapter 3: New Utility Accrual Model for Resource Allocation in Asynchronous Real-Time Distributed Systems
	Chapter 4: Exploring the Interplay Between Computation and Communication in Distributed Real-Time Scheduling
	Chapter 5: Calculus Curve Based Online Real-Time Dynamic Volotage-Frequency Scaling
	Chapter 6: Conclusion
	Chapter 7: Future Work
	Appendix: The Adjust Operation on TIT-V Tree (for Case 4)
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

