22 research outputs found

    Efficient One-Way Secret-Key Agreement and Private Channel Coding via Polarization

    Full text link
    We introduce explicit schemes based on the polarization phenomenon for the tasks of one-way secret key agreement from common randomness and private channel coding. For the former task, we show how to use common randomness and insecure one-way communication to obtain a strongly secure key such that the key construction has a complexity essentially linear in the blocklength and the rate at which the key is produced is optimal, i.e., equal to the one-way secret-key rate. For the latter task, we present a private channel coding scheme that achieves the secrecy capacity using the condition of strong secrecy and whose encoding and decoding complexity are again essentially linear in the blocklength.Comment: 18.1 pages, 2 figures, 2 table

    Strong secrecy on a class of degraded broadcast channels using polar codes

    Get PDF
    Two polar coding schemes are proposed for the degraded broadcast channel under different reliability and secrecy requirements. In these settings, the transmitter wishes to send multiple messages to a set of legitimate receivers keeping them masked from a set of eavesdroppers, and individual channels are assumed to gradually degrade in such a way that each legitimate receiver has a better channel than any eavesdropper. The layered decoding structure requires receivers with better channel quality to reliably decode more messages, while the layered secrecy structure requires eavesdroppers with worse channel quality to be kept ignorant of more messages.Postprint (author's final draft

    Universal Polar Codes for More Capable and Less Noisy Channels and Sources

    Full text link
    We prove two results on the universality of polar codes for source coding and channel communication. First, we show that for any polar code built for a source PX,ZP_{X,Z} there exists a slightly modified polar code - having the same rate, the same encoding and decoding complexity and the same error rate - that is universal for every source PX,YP_{X,Y} when using successive cancellation decoding, at least when the channel PYXP_{Y|X} is more capable than PZXP_{Z|X} and PXP_X is such that it maximizes I(X;Y)I(X;Z)I(X;Y) - I(X;Z) for the given channels PYXP_{Y|X} and PZXP_{Z|X}. This result extends to channel coding for discrete memoryless channels. Second, we prove that polar codes using successive cancellation decoding are universal for less noisy discrete memoryless channels.Comment: 10 pages, 3 figure

    Polar Coding for the General Wiretap Channel

    Full text link
    Information-theoretic work for wiretap channels is mostly based on random coding schemes. Designing practical coding schemes to achieve information-theoretic security is an important problem. By applying the two recently developed techniques for polar codes, we propose a polar coding scheme to achieve the secrecy capacity of the general wiretap channel.Comment: Submitted to IEEE ITW 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Polar coding for confidential broadcasting

    Get PDF
    A polar coding scheme is proposed for the Wiretap Broadcast Channel with two legitimate receivers and one eavesdropper. We consider a model in which the transmitter wishes to send the same private (non-confidential) message and the same confidential message reliably to two different legitimate receivers, and the confidential message must also be (strongly) secured from the eavesdropper. The coding scheme aims to use the optimal rate of randomness and does not make any assumption regarding the symmetry or degradedness of the channel. This paper extends previous work on polar codes for the wiretap channel by proposing a new chaining construction that allows to reliably and securely send the same confidential message to two different receivers. This construction introduces new dependencies between the random variables involved in the coding scheme that need to be considered in the secrecy analysis.Peer ReviewedPostprint (published version

    Separation of Reliability and Secrecy in Rate-Limited Secret-Key Generation

    Full text link
    For a discrete or a continuous source model, we study the problem of secret-key generation with one round of rate-limited public communication between two legitimate users. Although we do not provide new bounds on the wiretap secret-key (WSK) capacity for the discrete source model, we use an alternative achievability scheme that may be useful for practical applications. As a side result, we conveniently extend known bounds to the case of a continuous source model. Specifically, we consider a sequential key-generation strategy, that implements a rate-limited reconciliation step to handle reliability, followed by a privacy amplification step performed with extractors to handle secrecy. We prove that such a sequential strategy achieves the best known bounds for the rate-limited WSK capacity (under the assumption of degraded sources in the case of two-way communication). However, we show that, unlike the case of rate-unlimited public communication, achieving the reconciliation capacity in a sequential strategy does not necessarily lead to achieving the best known bounds for the WSK capacity. Consequently, reliability and secrecy can be treated successively but not independently, thereby exhibiting a limitation of sequential strategies for rate-limited public communication. Nevertheless, we provide scenarios for which reliability and secrecy can be treated successively and independently, such as the two-way rate-limited SK capacity, the one-way rate-limited WSK capacity for degraded binary symmetric sources, and the one-way rate-limited WSK capacity for Gaussian degraded sources.Comment: 18 pages, two-column, 9 figures, accepted to IEEE Transactions on Information Theory; corrected typos; updated references; minor change in titl
    corecore