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Abstract: A polar coding scheme is proposed for the Wiretap Broadcast Channel with two legitimate
receivers and one eavesdropper. We consider a model in which the transmitter wishes to send
the same private (non-confidential) message and the same confidential message reliably to two
different legitimate receivers, and the confidential message must also be (strongly) secured from the
eavesdropper. The coding scheme aims to use the optimal rate of randomness and does not make any
assumption regarding the symmetry or degradedness of the channel. This paper extends previous
work on polar codes for the wiretap channel by proposing a new chaining construction that allows to
reliably and securely send the same confidential message to two different receivers. This construction
introduces new dependencies between the random variables involved in the coding scheme that
need to be considered in the secrecy analysis.

Keywords: polar codes; information-theoretic security; wiretap broadcast channel; strong secrecy

1. Introduction

Information-theoretic security over noisy channels was introduced by Wyner in [1], which
characterized the secrecy-capacity of the degraded wiretap channel. Later, Csiszár and Körner in [2]
generalized Wyner’s results to the general wiretap channel. In these settings, one transmitter wishes to
reliably send one message to a legitimate receiver, while keeping it secret from an eavesdropper, where
secrecy is defined based on a condition of some information-theoretic measure that is fully quantifiable.
One of these measures is the information leakage, defined as the mutual information I(W; Zn) between a
uniformly distributed random message W and the channel observations Zn at the eavesdropper, n
being the number of uses of the channel. Based on this measure, the most common secrecy conditions
required to be satisfied by channel codes are the weak secrecy, which requires limn→∞

1
n I(W; Zn) = 0,

and the strong secrecy, requiring limn→∞ I(W; Zn) = 0. Although the second notion of security is
stronger, surprisingly both conditions result in the same secrecy-capacity [3].

In the last decade, information-theoretic security has been extended to a large variety of contexts,
and polar codes have become increasingly popular in this area, due to their easily provable secrecy
capacity achieving property. Polar codes were originally proposed by Arikan in [4] to achieve the
capacity of binary-input, symmetric, and point-to-point channels under Successive Cancellation (SC)
decoding. Secrecy capacity achieving polar codes for the binary symmetric degraded wiretap channel
were introduced in [5] and [6], satisfying the weak and the strong secrecy condition, respectively.
Recently, polar coding has been extended to the general wiretap channel in [7–10] and to different
multiuser scenarios (for instance, see [11] and [12]). Indeed, [9] and [10] generalize their results
providing polar codes for the broadcast channel with confidential messages.

This paper provides a polar coding scheme that allows to transmit strongly confidential common
information to two legitimate receivers over the Wiretap Broadcast Channel (WTBC). Although [13]
provided an obvious lower-bound on the secrecy-capacity of this model, no constructive polar coding
scheme has already been proposed so far. Our polar coding scheme is based mainly on the one
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introduced by [10] for the broadcast channel with confidential messages. Therefore, the proposed polar
coding scheme aims to use the optimal amount of randomness in the encoding. Moreover, in order
to construct an explicit polar coding scheme that provides strong secrecy, the distribution induced
by the encoder must be close in terms of the statistical distance to the original one considered for the
code construction, and transmitter and legitimate receivers need to share a secret key of negligible
size in terms of rate. Nevertheless, the particularization for the model proposed in this paper is not
straightforward. Specifically, we propose a new chaining construction [14] (transmission will take
place over several blocks) that is crucial to secretly transmit common information to different legitimate
receivers. Indeed, this model generalizes, in part, the one described in [10], where the confidential
message is intended only for one legitimate receiver, and the one in [15], which considers only the
transmission of non-confidential messages intended for two different receivers. The proposed chaining
introduces new bidirectional dependencies between encoding random variables of adjacent blocks
that must be considered carefully in the secrecy analysis. Indeed, we need to make use of an additional
secret key of negligible size in terms of rate that is privately shared between transmitter and legitimate
receivers, which will be used to prove that dependencies between blocks can be broken and, therefore,
the strong secrecy condition will be satisfied.

1.1. Notation

Throughout this paper, let [n] = {1, . . . , n} for n ∈ Z+, an denotes a row vector (a(1), . . . , a(n)).
We write a1:j for j ∈ [n] to denote the subvector (a(1), . . . , a(j)). Let A ⊂ [n], then we write a[A]
to denote the sequence {a(j)}j∈A, and we use AC to denote the set complement with respect to the
universal set [n], that is, AC = [n] \ A. If A denotes an event, then AC also denotes its complement.
We use ln to denote the natural logarithm, whereas log denotes the logarithm base 2. Let X be a
random variable taking values in X , and let qx and px be two different distributions with support X ,
then D(qx, px) and V(qx, px) denote the Kullback–Leibler divergence and the total variation distance
respectively. Finally, h2(p) denotes the binary entropy function, i.e., h2(p) = −p log p− (1− p) log(1−
p).

1.2. Organization

The remainder of this paper is organized as follows. Section 2 introduces the channel model
formally. In Section 3, the fundamental theorems of polar codes are revisited. Section 4 describes
the proposed polar coding scheme, and Section 5 proves that this polar coding scheme achieves the
best known inner-bound on the secrecy-capacity of this model. Finally, the concluding remarks are
presented in Section 6.

2. Channel Model and Achievable Region

Formally, a WTBC (X , pY(1)Y(2)Z|X,Y(1) × Y(2) ×Z) with 2 legitimate receivers and an external
eavesdropper is characterized by the probability transition function pY(1)Y(2)Z|X , where X ∈ X denotes
the channel input, Y(k) ∈ Y(k) denotes the channel output corresponding to the legitimate Receiver k ∈
[1, 2], and Z ∈ Z denotes the channel output corresponding to the eavesdropper. We consider a
model, namely Common Information over the Wiretap Broadcast Channel (CI-WTBC), in which the
transmitter wishes to send a private message W and a confidential message S to both legitimate
receivers. A code

(
d2nRW e, d2nRSe, d2nRRe, n

)
for the CI-WTBC consists of a private message set

W ,
[
1, d2nRW e

]
, a confidential message set S ,

[
1, d2nRSe

]
, a randomization sequence set R ,[

1, d2nRRe
]

(needed to confuse the eavesdropper about the confidential message S), an encoding
function f :W ×S ×R → X n that maps (w, s, r) to a codeword xn, and two decoding functions g(1)
and g(2) such that g(k) : Yn

(k) →W ×S (k ∈ [1, 2]) maps the k-th legitimate receiver observations yn
(k)
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to the estimates (ŵ(k), ŝ(k)). The reliability condition to be satisfied by this code is measured in terms
of the average probability of error and is given by

lim
n→∞

P
[
(W, S) 6= (Ŵ(k), Ŝ(k))

]
= 0, k ∈ [1, 2]. (1)

The strong secrecy condition is measured in terms of the information leakage and is given by

lim
n→∞

I (S; Zn) = 0. (2)

This model is graphically illustrated in Figure 1. A triple of rates (RW , RS, RR) ∈ R3
+ will be achievable

for the CI-WTBC if there exists a sequence of (d2nRW e, d2nRSe, d2nRRe, n) codes such that satisfy the
reliability and secrecy conditions (1) and (2), respectively.

(W, S)
Encoder

Xn

Receiver 1

Receiver 2

Eavesdropper

WBC
pY(1)Y(2)Z|X

(Ŵ(1), Ŝ(1))

(Ŵ(2), Ŝ(2))

�AS

Figure 1. Channel model: CI-WTBC.

The achievable rate region is defined as the closure of the set of all achievable rate triples
(RW , RS, RR). The following proposition defines an inner-bound on this region.

Proposition 1 (Adapted from [13,16]). The region RCI-WTBC defined by the union over the triples of rates
(RW , RS, RR) ∈ R3

+ satisfying

RW + RS ≤ min
{

I(V; Y(1)), I(V; Y(2))
}

,

RS ≤ min
{

I(V; Y(1)), I(V; Y(2))
}
− I(V; Z),

RW + RR ≥ I(X; Z),

RR ≥ I(X; Z|V),

where the union is taken over all distributions pVX such that V − X − (Y(1), Y(2), Z) forms a Markov chain,
defines an inner-bound on the achievable region of the CI-WTBC.

In this model, the private message W introduces part of the randomness required to confuse
the eavesdropper about the confidential message S, and the randomization sequence R denotes the
additional randomness that is required for channel prefixing.

3. Review of Polar Codes

Let (X × Y , pXY) be a Discrete Memoryless Source (DMS), where X ∈ {0, 1} (Throughout this
paper, we assume binary polarization. Nevertheless, an extension to q-ary alphabets is possible [10,
17,18]) and Y ∈ Y . The polar transform over the n-sequence Xn, n being any power of 2, is defined
as Un , XnGn, where Gn ,

[
1 1
1 0
]⊗n is the source polarization matrix [19]. Since Gn = G−1

n , then
Xn = UnGn.

The polarization theorem for source coding with side information [19] (Th. 1) states that the polar
transform extracts the randomness of Xn in the sense that, as n → ∞, the set of indices j ∈ [n] can
be divided practically into two disjoint sets, namely H(n)

X|Y and L(n)X|Y, such that U(j) for j ∈ H(n)
X|Y is
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practically independent of (U1:j−1, Yn) and uniformly distributed, i.e., H(U(j)|U1:j−1, Yn)→ 1, and
U(j) for j ∈ L(n)X|Y is almost determined by (U1:j−1, Yn), i.e., H(U(j)|U1:j−1, Yn)→ 0. Formally, let

H(n)
X|Y ,

{
j ∈ [n] : H

(
U(j)

∣∣U1:j−1, Yn) ≥ 1− δn
}

,

L(n)X|Y ,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Yn) ≤ δn
}

,

where δn , 2−nβ
for some β ∈ (0, 1

2 ). Then, by Lemma 4 of [10] we have limn→∞
1
n |H

(n)
X|Y| = H(X|Y)

and limn→∞
1
n |L

(n)
X|Y| = 1− H(X|Y), which imply that limn→∞

1
n |(H

(n)
X|Y)

C \ L(n)X|Y| = 0, i.e., the number
of elements that have not been polarized is asymptotically negligible in terms of rate. Furthermore, Th.
2 of [19] states that given U[(L(n)X|Y)

C] and Yn, U[L(n)X|Y] can be reconstructed using SC decoding with
error probability in O(nδn). Alternatively, the previous sets can be defined based on the Bhattacharyya
parameters {Z(U(j)

∣∣U1:j−1, Yn)}n
j=1 because both parameters polarize simultaneously Proposition 2

of [19]. It is worth mentioning that both the entropy terms and the Bhattacharyya parameters required
to define these sets can be obtained deterministically from pXY and the algebraic properties of Gn [20–
22].

Similarly toH(n)
X|Y and L(n)X|Y, the setsH(n)

X and L(n)X can be defined by considering that observations
Yn are absent. A discrete memoryless channel (X , pY|X,Y) with some arbitrary pX can be seen as a

DMS (X × Y , pX pY|X). In channel polar coding, first we define H(n)
X|Y, L(n)X|Y, H(n)

X and L(n)X from the
target distribution pX pY|X (polar construction). Then, based on the previous sets, the encoder somehow
constructs (since the polar-based encoder will construct random variables that must approach the
target distribution of the DMS, throughout this paper we use tilde above the random variables to
emphazise this purpose) Ũn and applies the inverse polar transform X̃n = ŨnGn with distribution q̃Xn .
Afterwards, the transmitter sends X̃n over the channel, which induces Ỹn ∼ q̃Yn . If V(q̃XnYn , pXnYn)→
0, then the receiver can reliably reconstruct Ũ[L(n)X|Y] from Ỹn and Ũ[(L(n)X|Y)

C] by using SC decoding [23].

4. Polar Coding Scheme

Let (V × X × Y(1) × Y(2) × Z , pVXY(1)Y(2)Z) denote the DMS that represents the input (V, X)

and output (Y(1), Y(2), Z) random variables of the CI-WTBC, where |V| = |X | , 2. Without loss of
generality, and to avoid the trivial case RS = 0 in Proposition 1, we assume that

H(V|Z) > H(V|Y(1)) ≥ H(V|Y(2)). (3)

If H(V|Y(1)) < H(V|Y(2)), one can simply exchange the role of Y(1) and Y(2) in the polar coding scheme
described in Section 4. We propose a polar coding scheme that achieves the following rate triple,

(RW , RS, RR) = (I(V; Z), I(V; Y(1))− I(V; Z), I(X; Z|V)), (4)

which corresponds to the one of the region in Proposition 1 such that the private and the confidential
message rate are maximum and the amount of randomness is minimum.

For the input random variable V, we define the polar transform An , VnGn and the sets

H(n)
V ,

{
j ∈ [1, n] : H

(
A(j)

∣∣A1:j−1) ≥ 1− δn
}

, (5)

H(n)
V|Z ,

{
j ∈ [1, n] : H

(
A(j)

∣∣A1:j−1Zn) ≥ 1− δn
}

, (6)

L(n)V|Y(k)
,
{

j ∈ [1, n] : H
(

A(j)
∣∣A1:j−1Yn

(k)
)
≤ δn

}
, k = 1, 2. (7)
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For the input random variable X, we define Tn , XnGn and the associated sets

H(n)
X|V ,

{
j ∈ [1, n] : H

(
T(j)

∣∣T1:j−1Vn) ≥ 1− δn
}

. (8)

H(n)
X|VZ ,

{
j ∈ [1, n] : H

(
T(j)

∣∣T1:j−1VnZn) ≥ 1− δn
}

. (9)

We have pAnTn(an, tn) = pVnXn(anGn, tnGn), due to the invertibility of Gn, and we write

pAnTn(an, tn) =

(
n

∏
j=1

pA(j)|A1:j−1(a(j)|a1:j−1)

)(
n

∏
j=1

pT(j)|T1:j−1Vn(t(j)|t1:j−1, anGn)

)
.

Consider that the encoding takes place over L blocks indexed by i ∈ [1, L]. At the i-th block, the
encoder will construct Ãn

i , which will carry the private and the confidential messages intended for
both legitimate receivers. Additionally, the encoder will store into Ãn

i some elements from Ãn
i−1 (if

i ∈ [2, L]) and Ãn
i+1 (if i ∈ [1, L− 1]), so that both legitimate receivers are able to reliably reconstruct

Ãn
1:L. Then, given Ṽn

i = Ãn
i Gn, the encoder will perform the polar-based channel prefixing to construct

T̃n
i . Finally, it will obtain X̃n

i = T̃n
i Gn, which will be transmitted over the WTBC, inducing the channel

output observations (Ỹn
(1),i, Ỹn

(2),i, Z̃n
i ).

Consider the construction of Ãn
1:L. Besides, sets in (5)–(7), define the partition ofH(n)

V :

G(n) , H(n)
V|Z, (10)

C(n) , H(n)
V ∩

(
H(n)

V|Z
)C. (11)

Moreover, we also define the following partition of the set G(n):

G(n)0 , G(n) ∩ L(n)V|Y(1)
∩ L(n)V|Y(2)

, (12)

G(n)1 , G(n) ∩
(
L(n)V|Y(1)

)C ∩ L(n)V|Y(2)
, (13)

G(n)2 , G(n) ∩ L(n)V|Y(1)
∩
(
L(n)V|Y(2)

)C, (14)

G(n)1,2 , G(n) ∩
(
L(n)V|Y(1)

)C ∩
(
L(n)V|Y(2)

)C, (15)

and the following partition of the set C(n):

C(n)0 , C(n) ∩ L(n)V|Y(1)
∩ L(n)V|Y(2)

, (16)

C(n)1 , C(n) ∩
(
L(n)V|Y(1)

)C ∩ L(n)V|Y(2)
, (17)

C(n)2 , C(n) ∩ L(n)V|Y(1)
∩
(
L(n)V|Y(2)

)C, (18)

C(n)1,2 , C(n) ∩
(
L(n)V|Y(1)

)C ∩
(
L(n)V|Y(2)

)C; (19)

These sets are graphically represented in Figure 2. Roughly speaking, A[H(n)
V ] is the nearly uniformly

distributed part of An. Thus, Ãi[H
(n)
V ], i ∈ [1, L], is suitable for storing uniformly distributed random

sequences. The sequence A[H(n)
V|Z] is almost independent of Zn and, hence, Ãi[G(n)] is suitable for

storing information to be secured from the eavesdropper, whereas Ãi[C(n)] is not. Sets in (12)–(19)
with subscript 1 (sets inside the red curve in Figure 2) form H(n)

V ∩
(
L(n)V|Y(1)

)C, while those with

subscript 2 (sets inside the blue curve) form H(n)
V ∩

(
L(n)V|Y(2)

)C. From Th. 2 of [19] and [23], recall
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that Ãi
[
H(n)

V ∩ (L(n)V|Y(k)
)C] is the nearly uniformly distributed part of the sequence Ãn

i required by

legitimate Receiver k to reliably reconstruct the entire sequence by performing SC decoding.

C(n)0

C(n)2 C(n)1C(n)1,2

G(n)0

G(n)2
G(n)1

G(n)1,2

Figure 2. Graphical representation of the sets in (10)–(19). The indices inside the soft and dark gray
area form G(n) and C(n) respectively. The indices that formH(n)

V ∩ (L(n)V|Y(1)
)C are those inside the red

curve, while those inside the blue curve formH(n)
V ∩ (L(n)V|Y(2)

)C.

For sufficiently large n, assumption (3) imposes the following restriction on the size of the previous
sets: ∣∣G(n)1

∣∣− ∣∣C(n)2

∣∣ ≥ ∣∣G(n)2

∣∣− ∣∣C(n)1

∣∣ > ∣∣C(n)1,2

∣∣− ∣∣G(n)0

∣∣. (20)

The left-hand inequality in (20) holds from the fact that∣∣C(n)1 ∪ G(n)1

∣∣− ∣∣C(n)2 ∪ G(n)2

∣∣
=
∣∣∣H(n)

V ∩
(
L(n)V|Y(1)

)C \ H(n)
V ∩

(
L(n)V|Y(2)

)C
∣∣∣− ∣∣∣H(n)

V ∩
(
L(n)V|Y(2)

)C \ H(n)
V ∩

(
L(n)V|Y(1)

)C
∣∣∣

=
∣∣∣H(n)

V ∩
(
L(n)V|Y(1)

)C
∣∣∣− ∣∣∣H(n)

V ∩
(
L(n)V|Y(2)

)C
∣∣∣ ≥ 0,

where the positivity holds by Lemma 4 of [10] because, for any k ∈ [1, 2], we have

1
n

∣∣∣H(n)
V ∩

(
L(n)V|Y(k)

)C
∣∣∣ = 1

n
∣∣H(n)

V|Y(k)

∣∣+ 1
n

∣∣∣H(n)
V ∩

(
L(n)V|Y(k)

)C \ H(n)
V|Y(k)

∣∣∣ n→∞−−−→ H(V|Y(k))

Similarly, the right-hand inequality in (20) holds by Lemma 4 of [10] and the fact that∣∣G(n)0 ∪ G(n)2

∣∣− ∣∣C(n)1 ∪ C(n)1,2

∣∣ = ∣∣∣H(n)
V|Z \ H

(n)
V ∩

(
L(n)V|Y(1)

)C
∣∣∣− ∣∣∣H(n)

V ∩
(
L(n)V|Y(1)

)C \ H(n)
V|Z

∣∣∣
=
∣∣H(n)

V|Z
∣∣− ∣∣∣H(n)

V ∩
(
L(n)V|Y(1)

)C
∣∣∣.

Thus, according to (20), we must consider four cases:

A. |G(n)1 | > |C
(n)
2 |, |G

(n)
2 | > |C

(n)
1 | and |G(n)0 | ≥ |C

(n)
1,2 |;

B. |G(n)1 | > |C
(n)
2 |, |G

(n)
2 | > |C

(n)
1 | and |G(n)0 | < |C

(n)
1,2 |;

C. |G(n)1 | ≥ |C
(n)
2 |, |G

(n)
2 | ≤ |C

(n)
1 | and |G(n)0 | > |C

(n)
1,2 |;

D. |G(n)1 | < |C
(n)
2 |, |G

(n)
2 | < |C

(n)
1 | and |G(n)0 | > |C

(n)
1,2 |.

4.1. General Polar-Based Encoding

The generic encoding process for all cases is summarized in Algorithm 1. For i ∈ [1, L], let Wi be a
uniformly distributed vector of length |C(n)| that represents the private message. The encoder forms
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Ãi[C(n)] by simply storing Wi. Indeed, if i ∈ [1, L− 1], notice that the encoder forms Ãi+1[C(n)] before
constructing Ãn

i entirely. From Ãi[C(n)], i ∈ [1, L], we define

Ψ(V)
i , Ãi[C

(n)
2 ], (21)

Γ(V)
i , Ãi[C

(n)
1,2 ], (22)

Θ(V)
i , Ãi[C

(n)
1 ]. (23)

Notice that [Ψ(V)
i , Γ(V)

i ] = Ãi[C
(n)
2 ∪ C(n)1,2 ] is required by legitimate Receiver 2 to reliably estimate

Ãn
i and, thus, the encoder will repeat [Ψ(V)

i , Γ(V)
i ], if i ∈ [1, L − 1], conveniently in Ãi+1[G(n)] (the

function form_AG is responsible of the chaining construction and is described later). On the other hand,
[Θ(V)

i , Γ(V)
i ] = Ãi[C

(n)
1 ∪ C(n)1,2 ] is required by legitimate Receiver 1. Nevertheless, in order to satisfy the

strong secrecy condition in (2), [Θ(V)
i , Γ(V)

i ], i ∈ [2, L], is not repeated directly into Ãi−1[G(n)], but the

encoder copies instead Θ̄(V)
i and Γ̄(V)

i obtained as follows. Let κ
(V)
Θ and κ

(V)
Γ be uniformly distributed

keys with length |C(n)1 | and |C(n)1,2 | respectively that are privately shared between transmitter and both
legitimate receivers. For any i ∈ [2, L], we define the sequences

Θ̄(V)
i , Ãi[C

(n)
1 ]⊕ κ

(V)
Θ ,

Γ̄(V)
i , Ãi[C

(n)
1,2 ]⊕ κ

(V)
Γ .

Since these secret keys are reused in all blocks, their size becomes negligible in terms of rate for L large
enough. The need of these secret keys may not be obvious at this point, but a further discussion of
this question can be found in Section 5.4. Indeed, they are required to prove independence between an
eavesdropper’s observations of adjacent blocks (see Lemma 3), which is crucial to prove that the polar
coding scheme satisfies the strong secrecy condition in (2).
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Algorithm 1 Generic encoding scheme

Require: Private and confidential messages W1:L and S1:L; randomization sequences R1:L; random

sequence Λ(X)
0 ; and secret keys κ

(V)
Θ , κ

(V)
Γ , κ

(V)
ΥΦ(1)

and κ
(V)
ΥΦ(2)

.

1: Ψ(V)
0 , Γ(V)

0 , Π(V)
0 , Λ(V)

0 , Θ̄(V)
L+1, Γ̄(V)

L+1 ← ∅
2: Ã1[C(n)]←W1

3: Ψ(V)
1 , Γ(V)

1 ← Ã1[C(n)]
4: for i = 1 to L do

5: if i 6= L then

6: Ãi+1[C(n)]←Wi+1

7: Ψ(V)
i+1, Γ(V)

i+1, Θ̄(V)
i+1, Γ̄(V)

i+1 ←
(

Ãi+1[C(n)], κ
(V)
Θ , κ

(V)
Γ
)

8: end if

9: Ãi
[
G(n)

]
, Π(V)

i , Λ(V)
i ← form_AG

(
i, Si, Θ̄(V)

i+1, Γ̄(V)
i+1, Ψ(V)

i−1, Γ(V)
i−1, Π(V)

i−1, Λ(V)
i−1

)
10: if i = 1 then Υ(V)

(1) ← Ã1
[
H(n)

V ∩
(
L(n)V|Y(1)

)C]
11: if i = L then Υ(V)

(2) ← ÃL
[
H(n)

V ∩
(
L(n)V|Y(2)

)C]
12: for j ∈

(
H(n)

V
)C do

13: if j ∈
(
H(n)

V
)C \ L(n)V then

14: Ãi(j)← pA(j)|A1:j−1
(

Ãi(j)
∣∣Ã1:j−1

i
)

15: else if j ∈ L(n)V then

16: Ãi(j)← arg maxa∈V pA(j)|A1:j−1
(
ãi(j)

∣∣Ã1:j−1
i

)
17: end if

18: end for

19: Φ(V)
(1),i ← Ãi

[(
H(n)

V
)C ∩

(
L(n)V|Y(1)

)C]
20: Φ(V)

(2),i ← Ãi
[(
H(n)

V
)C ∩

(
L(n)V|Y(2)

)C]
21: X̃n

i , Λ(X)
i ← pb_ch_pref

(
Ãn

i Gn, Ri, Λ(X)
i−1

)
22: end for

23: Send
(
Φ(V)

(k),i, Υ(V)
(k)

)
⊕ κ

(V)
ΥΦ(k)

to Receiver k ∈ [1, 2]

24: return X̃n
1:L

The function form_AG in Algorithm 1 constructs sequences Ã1:L[G(n)] differently depending on
which case, among cases A, B, C or D described before, characterizes the given CI-WTBC. This part of
the encoding is described in detail in Section 4.2 and Algorithm 2.

Then, given Ãi[C(n) ∪ G(n)], the encoder forms the remaining entries of Ãn
i , i.e., Ãi[(H

(n)
V )C],

as follows. If j ∈ L(n)V , where L(n)V ,
{

j ∈ [1, n] : H
(

A(j)
∣∣A1:j−1) ≤ δn

}
, it constructs Ãi(j)

deterministically by using SC encoding [24], and only Ãi[(H
(n)
V )C \ L(n)V ] is constructed randomly.

Finally, given Ṽn
i = Ãn

i Gn, a randomization sequence Ri and a uniformly distributed random

sequence Λ(V)
0 , the encoder performs polar-based channel prefixing (function pb_ch_pref in

Algorithm 1) to obtain X̃n
i , which is transmitted over the WTBC inducing

(
Ỹn
(1),i, Ỹn

(2),i, Z̃n
i
)
. This

part of the encoding is described in detail in Section 4.3.
Furthermore, the encoder obtains the sequence

Φ(V)
(k),i , Ãi

[(
H(n)

V
)C ∩

(
L(n)V|Y(k)

)C]
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for any k ∈ [1, 2] and i ∈ [1, L], which is required by legitimate Receiver k to reliably estimate Ãn
i

entirely. Since Φ(V)
(k),i is not nearly uniform, the encoder cannot make it available to the legitimate

Receiver k by means of the chaining structure. Furthermore, the encoder obtains

Υ(V)
(1) , Ã1

[
H(n)

V ∩ (L(n)V|Y(1)
)C],

Υ(V)
(2) , ÃL

[
H(n)

V ∩ (L(n)V|Y(2)
)C].

The sequence Υ(V)
(k) is required by legitimate Receiver k ∈ [1, 2] to initialize the decoding process.

Therefore, the transmitter additionally sends
(
Υ(V)
(k) , Φ(V)

(k),i

)
⊕ κ

(V)
ΥΦ(k)

to legitimate Receiver k, where

κ
(V)
ΥΦ(k)

is a uniformly distributed key with size

L
∣∣∣(H(n)

V
)C ∩

(
L(n)V|Y(k)

)C
∣∣∣+ ∣∣∣H(n)

V ∩
(
L(n)V|Y(k)

)C
∣∣∣

that is privately shared between transmitter and the corresponding receiver. In Section 5.1 we show
that the length of κ

(V)
ΥΦ(1)

and κ
(V)
ΥΦ(2)

is asymptotically negligible in terms of rate.

Algorithm 2 Function form_AG

Require: i, Si, Θ̄(V)
i+1, Γ̄(V)

i+1, Ψ(V)
i−1, Γ(V)

i−1, Π(V)
i−1, Λ(V)

i−1

1: DefineR(n)
1 ,R′(n)1 ,R(n)

2 ,R′(n)2 ,R(n)
1,2 ,R′(n)1,2 , I (n),R(n)

S ,R(n)
Λ (depending on the case)

2: if i = 1 then Ã1[I (n) ∪ G
(n)
1 ∪ G(n)1,2 ]← S1

3: if i ∈ [2, L− 1] then Ãi[I (n)]← Si

4: if i = L then ÃL[I (n) ∪ G
(n)
2 ]← SL

5: Ψ(V)
1,i−1, Ψ(V)

2,i−1 ← Ψ(V)
i−1 (depending on the case)

6: Γ(V)
1,i−1, Γ(V)

2,i−1 ← Γ(V)
i−1 (depending on the case)

7: Θ̄(V)
1,i+1, Θ̄(V)

2,i+1 ← Θ̄(V)
i+1 (depending on the case)

8: Γ̄(V)
1,i+1, Γ̄(V)

2,i+1 ← Γ̄(V)
i+1 (depending on the case)

9: Ãi[R
(n)
1,2 ]← Γ(V)

1,i−1 ⊕ Γ̄(V)
1,i+1

10: Ãi[R
′(n)
1,2 ]← Ψ(V)

2,i−1 ⊕ Θ̄(V)
2,i+1

11: if i ∈ [1, L− 1] then

12: Ãi[R
(n)
1 ]← Θ̄(V)

1,i+1

13: Ãi[R
′(n)
1 ]← Γ̄(V)

2,i+1

14: end if

15: if i ∈ [2, L] then

16: Ãi[R
(n)
2 ]← Ψ(V)

1,i−1

17: Ãi[R
′(n)
2 ]← Γ(V)

2,i−1

18: Ãi[R
(n)
S ]← Π(V)

i−1

19: Ãi[R
(n)
Λ ]← Λ(V)

i−1

20: end if

21: Π(V)
i ← Ãi[I (n) ∩ G

(n)
2 ]

22: Λ(V)
i ← Ãi[R

(n)
Λ ]

23: return the sequences Ãi
[
G(n)

]
, Π(V)

i and Λ(V)
i
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4.2. Function form_AG

The function form_AG encodes the confidential messages S1:L and builds the chaining construction.
Based on the sets in (10)–(19), let R(n)

1 ⊆ G(n)0 ∪ G(n)2 , R′(n)1 ⊆ G(n)2 , R(n)
2 ⊆ G(n)1 , R′(n)2 ⊆ G(n)1 ,

R(n)
1,2 ⊆ G

(n)
0 , R′(n)1,2 ⊆ G

(n)
0 , I (n) ⊆ G(n)0 ∪ G(n)2 , R(n)

S ⊆ G(n)1 and R(n)
Λ ⊆ G(n)1 form an additional

partition of G(n). The definition ofR(n)
1 ,R′(n)1 ,R(n)

2 ,R′(n)2 ,R(n)
1,2 andR′(n)1,2 will depend on the particular

case (among A to D), while

I (n) ,
(
G(n)0 ∪ G(n)2

)
\
(
R(n)

1 ∪R′(n)1 ∪R(n)
1,2 ∪R

′(n)
1,2
)
, (24)

R(n)
S , any subset of G(n)1 \

(
R(n)

2 ∪R′(n)2
)

with size
∣∣I (n) ∩ G(n)2

∣∣, (25)

R(n)
Λ , G(n)1,2 ∪

(
G(n)1 \

(
R(n)

2 ∪R′(n)2 ∪R(n)
S
))

. (26)

For i ∈ [1, L], let Si denote a uniformly distributed vector that represents the confidential message.
The message S1 has size

∣∣I (n) ∪ G(n)1 ∪ G(n)1,2

∣∣; for i ∈ [2, L − 1], Si has size
∣∣I (n)∣∣; and SL has size∣∣I (n) ∪ G(n)2

∣∣. Furthermore, for i ∈ [1, L], we write Ψ(V)
i ,

[
Ψ(V)

1,i , Ψ(V)
2,i
]
, Γ(V)

i ,
[
Γ(V)

1,i , Γ(V)
2,i
]
, Θ̄(V)

i ,[
Θ̄(V)

1,i , Θ̄(V)
2,i
]

and Γ̄(V)
i ,

[
Γ̄(V)

1,i , Γ̄(V)
2,i
]
, where we define Ψp,i, Γp,i, Θ̄p,i and Γ̄p,i, for any p ∈ [1, 2],

accordingly in each case.
This function, which is used in Case A to Case D, is described in Algorithm 2.

4.2.1. Case A

In this case, recall that |G(n)1 | > |C
(n)
2 |, |G

(n)
2 | > |C

(n)
1 | and |G(n)0 | ≥ |C

(n)
1,2 |. We define

R(n)
1 , any subset of G(n)2 with size

∣∣C(n)1

∣∣, (27)

R(n)
2 , any subset of G(n)1 with size

∣∣C(n)2

∣∣, (28)

R(n)
1,2 , any subset of G(n)0 with size

∣∣C(n)1,2

∣∣, (29)

andR′(n)1 = R′(n)2 = R′(n)1,2 , ∅. By the assumption of Case A, it is clear thatR(n)
1 ,R(n)

2 andR(n)
1,2 exist.

Furthermore, by (20), the set I (n) exists, and so willR(n)
S because

∣∣G(n)1 \
(
R(n)

2 ∪R′(n)2
)∣∣− ∣∣I (n) ∩ G(n)2

∣∣ = ∣∣G(n)1 \
(
R(n)

2 ∪R′(n)2
)∣∣− ∣∣(G(n)2 \ R(n)

1 ∪R′(n)1
)∣∣

=
∣∣G(n)1

∣∣− ∣∣C(n)2

∣∣− ∣∣G(n)2

∣∣− ∣∣C(n)1

∣∣ ≥ 0.

These sets that form the partition of G(n) in Case A can be seen in Figure 3, which also displays
the encoding process that aims to construct Ã1:L

[
H(n)

V
]
= Ã1:L

[
C(n) ∪ G(n)

]
.

For i ∈ [1, L], we define Ψ(V)
1,i , Ψ(V)

i , Γ(V)
1,i , Γ(V)

i , Θ̄(V)
1,i , Θ̄(V)

i , Γ̄(V)
1,i , Γ̄(V)

i and, therefore, we

have Ψ(V)
2,i = Γ(V)

2,i = Θ̄(V)
2,i = Γ̄(V)

2,i , ∅.

From (18), we have C(n)2 ⊆ L(n)V|Y(1)
\ L(n)V|Y(2)

. Thus, the sequence Ψ(V)
1,i−1 = Ãi−1

[
C(n)2

]
is needed by

legitimate Receiver 2 to reliably reconstruct Ãn
i−1, but can be reliably inferred by legitimate Receiver 1

given Ãi−1
[
(L(n)V|Y(1)

)C]. Hence, according to Algorithm 2, the encoder repeats the entire sequence

Ψ(V)
1,i−1 in Ãi

[
R(n)

2 ] ⊆ Ãi[L
(n)
V|Y(2)

\ L(n)V|Y(1)

]
.

Similarly, from (17), we have C(n)1 ⊆ L(n)V|Y(2)
\ L(n)V|Y(1)

. Thus, Θ(V)
1,i+1 = Ãi+1

[
C(n)1

]
is needed by

Receiver 1 to form Ãn
i+1 but can be inferred by Receiver 2 given Ãi+1

[
(L(n)V|Y(2)

)C]. Hence, the encoder

repeats the sequence Θ̄(V)
1,i+1 in Ãi[R

(n)
1 ] ⊆ Ãi

[
L(n)V|Y(1)

\ L(n)V|Y(2)

]
.



Entropy 2020, 22, 149 11 of 28

Finally, from (19), C(n)1,2 ⊆ (L(n)V|Y(2)
)C ∩ (L(n)V|Y(1)

)C. Thus, sequences Γ(V)
1,i−1 = Ãi−1

[
C(n)1,2

]
and

Γ(V)
1,i+1 = Ãi+1

[
C(n)1,2

]
are needed by both receivers to form Ãn

i−1 and Ãn
i+1 respectively. Hence, the

encoder repeats Γ(V)
1,i−1 and Γ̄(V)

1,i+1 in Ãi
[
R(n)

1,2
]
⊆ Ãi

[
L(n)V|Y(1)

∩ L(n)V|Y(2)

]
. Indeed, both sequences are

repeated in the same entries of Ãi[G
(n)
0 ] by performing Γ(V)

1,i−1 ⊕ Γ̄(V)
1,i+1. Since Γ(V)

1,0 = Γ̄(V)
1,L+1 = ∅, only

Γ̄(V)
1,2 is repeated at Block 1 and Γ(V)

1,L−1 at Block L.

Block 1 Block 2

Block 3 Block 4

Figure 3. For Case A, graphical representation of the encoding that leads to the construction of
Ã1:L[H

(n)
V ] when L = 4. Consider the Block 2: R(n)

1 , R(n)
2 , R(n)

1,2 , R(n)
S and R(n)

Λ are those areas
filled with yellow squares, blue circles, blue and yellow diamonds, pink crosses, and gray pentagons,
respectively, and the set I (n) is the green filled area. At Block i ∈ [1, L], Wi is represented by symbols
of the same color (e.g., red symbols at Block 2), and Θ(V)

i , Ψ(V)
i and Γ(V)

i are represented by squares,

circles and triangles respectively. Furthermore, Θ̄(V)
i and Γ̄(V)

i are denoted by squares and triangles,

respectively, with a line through them. At Block i ∈ [2, L− 1], the diamonds denote Γ(V)
1,i−1 ⊕ Γ̄(V)

1,i+1. In
Block i ∈ [1, L], Si is stored into those entries whose indices belong to the green area. For i ∈ [1, L− 1],
Π(V)

i is denoted by crosses (e.g., purple crosses at Block 2), and is repeated in Ãi+1[R
(n)
S ]. The sequence

Λ(V)
1 is represented by gray pentagons and is replicated in all blocks. The sequences Υ(V)

(1) and Υ(V)
(2) are

those entries inside the red at Block 1 and the blue curve at Block L, respectively.

Moreover, part of secret message Si, i ∈ [1, L], is stored into some entries of Ãn
i whose indices

belong to G(n)2 . Thus, in any Block i ∈ [2, L], the encoder repeats

Π(V)
i−1 , Ãi−1

[
I (n) ∩ G(n)2

]
in Ãi[R

(n)
S ] ⊆ Ãi[L

(n)
V|Y(2)

\ L(n)V|Y(1)
]. Furthermore, it repeats

Λ(V)
i−1 , Ãi−1

[
R(n)

Λ
]

in Ãi[R
(n)
Λ ]. Hence, notice that Λ(V)

1 is replicated in all blocks.
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4.2.2. Case B

In this case,
∣∣G(n)1

∣∣ > ∣∣C(n)2

∣∣, ∣∣G(n)2

∣∣ > ∣∣C(n)1

∣∣ and
∣∣G(n)0

∣∣ < ∣∣C(n)1,2

∣∣. We define R(n)
1 and R(n)

2 as in

(27) and (28) respectively, and R′(n)1,2 , ∅. Now, since
∣∣G(n)0

∣∣ < ∣∣C(n)1,2

∣∣, only a part of Γ(V)
i−1 and Γ̄(V)

i+1,

i ∈ [1, L], can be repeated in Ãi
[
G(n)0

]
. Thus, we defineR(n)

1,2 , G(n)0 and

R′(n)1 , any subset of G(n)2 \ R(n)
1 with size

∣∣C(n)1,2

∣∣− ∣∣G(n)0

∣∣, (30)

R′(n)2 , any subset of G(n)1 \ R(n)
2 with size

∣∣C(n)1,2

∣∣− ∣∣G(n)0

∣∣. (31)

Obviously,R(n)
1,2 exists and, by the assumption of Case B, so doR(n)

1 andR(n)
2 . By (20),R′(n)1 exists and

so does I (n). Indeed, since G(n)0 \ R(n)
1,2 = ∅, then I (n) ⊆ G(n)2 . Again, by the property in (20), R′(n)2

exists and so doesR(n)
S because

∣∣G(n)1 \
(
R(n)

2 ∪R′(n)2
)∣∣− ∣∣(G(n)2 \ R(n)

1 ∪R′(n)1
)∣∣

=
∣∣G(n)1

∣∣− ∣∣C(n)2

∣∣− (∣∣C(n)1,2

∣∣− ∣∣G(n)0

∣∣)− (∣∣G(n)2

∣∣− ∣∣C(n)1

∣∣− (∣∣C(n)1,2

∣∣− ∣∣G(n)0

∣∣))
=
∣∣G(n)1

∣∣− ∣∣C(n)2

∣∣− ∣∣G(n)2

∣∣+ ∣∣C(n)1

∣∣ ≥ 0.

Indeed, since I (n) ⊆ G(n)2 , notice that
∣∣R(n)

S

∣∣ = ∣∣I (n)∣∣. These sets that form the partition of G(n)
in Case B can be seen in Figure 4, which also displays the encoding process that aims to construct
Ã1:L

[
H(n)

V
]
= Ã1:L

[
C(n) ∪ G(n)

]
.

Block 1 Block 2

Block 3 Block 4

Figure 4. For Case B, graphical representation of the encoding that leads to the construction of
Ã1:L[H

(n)
V ] when L = 4. Consider the Block 2: the sets R(n)

1 , R′(n)1 , R(n)
2 , R′(n)2 , R(n)

1,2 , R(n)
S and R(n)

Λ
are those areas filled with yellow squares, yellow triangles, blue circles, blue triangles, blue and
yellow diamonds, pink crosses, and gray pentagons, respectively, and I (n) is the green filled area with
purple crosses. At Block i ∈ [1, L], Wi is represented by symbols of the same color (e.g., red symbols
at Block 2), and Θ(V)

i , Ψ(V)
i and Γ(V)

i are represented by squares, circles, and triangles, respectively.

Furthermore, Θ̄(V)
i and Γ̄(V)

i are denoted by squares and triangles, respectively, with a line through

them. At Block i ∈ [2, L− 1], the diamonds denote Γ(V)
1,i−1 ⊕ Γ̄(V)

1,i+1. In Block i ∈ [1, L], Si is stored into
those entries whose indices belong to the green area. For i ∈ [2, L− 1], Π(V)

i = Si and, therefore, Si is
repeated entirely into Ãi+1[R

(n)
S ]. The sequence Λ(V)

1 from S1 is represented by gray pentagons and is
repeated in all blocks. The sequences Υ(V)

(1) and Υ(V)
(2) are the entries inside the red curve at Block 1 and

the blue curve at Block L, respectively.
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In this case, for any i ∈ [1, L], Ψ(V)
1,i , Ψ(V)

i , Θ̄(V)
1,i , Θ̄(V)

i and Ψ(V)
2,i = Θ̄(V)

2,i , ∅; and we define

Γ(V)
1,i and Γ̄(V)

1,i as any part of Γ(V)
i and Γ̄(V)

i , respectively, with size
∣∣G(n)0

∣∣, and Γ(V)
2,i and Γ̄(V)

2,i as the

remaining parts with size
∣∣C(n)1,2

∣∣− ∣∣G(n)0

∣∣. Now, the encoder copies Γ(V)
1,i−1 ⊕ Γ̄(V)

1,i+1 into Ãi
[
R(n)

1,2
]
, and

Γ(V)
2,i−1 and Γ̄(V)

2,i+1 into Ãi
[
R′(n)2

]
and Ãi

[
R′(n)1

]
respectively. Moreover, since I (n) ⊆ G(n)2 , notice that

Π(V)
i = Si for any i ∈ [2, L− 1].

4.2.3. Case C

In this case, recall that
∣∣G(n)1

∣∣ ≥ ∣∣C(n)2

∣∣, ∣∣G(n)2

∣∣ ≤ ∣∣C(n)1

∣∣ and
∣∣G(n)0

∣∣ > ∣∣C(n)1,2

∣∣. Hence, we define

R(n)
2 and R(n)

1,2 as in (28) and (29) respectively, and R′(n)1 = R′(n)2 = R′(n)1,2 , ∅. On the other hand,

since
∣∣G(n)2

∣∣ ≤ ∣∣C(n)1

∣∣, now for i ∈ [1, L− 1] only a part of Θ̄(V)
i+1 can be repeated entirely in Ãi

[
G(n)2

]
.

Consequently, we define

R(n)
1 , the union of G(n)2 with any subset of G(n)0 \ R(n)

1,2 with size
∣∣C(n)1

∣∣− ∣∣G(n)2

∣∣. (32)

It is clear thatR(n)
2 andR(n)

1,2 exist. By (20),R(n)
1 also exists and so does I (n). SinceR(n)

1 ⊇ G(n)2 ,

then I (n) ∩ G(n)2 = ∅ andR(n)
S = ∅. These sets that form G(n) are represented in Figure 5, which also

displays the part of the encoding that aims to construct Ã1:L
[
H(n)

V
]
.

Block 1 Block 2

Block 3 Block 4

Figure 5. For Case C, graphical representation of the encoding that leads to the construction of
Ã1:L[H

(n)
V ] when L = 4. Consider the Bloc 2: R(n)

1 , R(n)
2 , R(n)

1,2 and R(n)
Λ are those areas filled with

yellow squares, blue circles, blue and yellow diamonds, and gray pentagons, respectively, and I (n)

is the green filled area. At Block i ∈ [1, L], Wi is represented by symbols of the same color (e.g.,
red symbols at Block 2), and Θ(V)

i , Ψ(V)
i and Γ(V)

i are represented by squares, circles, and triangles,

respectively. Furthermore, Θ̄(V)
i and Γ̄(V)

i are denoted by squares and triangles, respectively, with a line

through them. At Block i ∈ [2, L− 1], the diamonds denote Γ(V)
1,i−1 ⊕ Γ̄(V)

1,i+1. For i ∈ [1, L], Si is stored
into those entries belonging to the green area. The sequence Λ(V)

1 is represented by gray pentagons and
is repeated in all blocks. The sequences Υ(V)

(1) and Υ(V)
(2) are the entries inside the red curve at Block 1

and the blue curve at Block L, respectively.
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In this case, for i ∈ [1, L], we define Ψ(V)
1,i , Ψ(V)

i , Γ(V)
1,i , Γ(V)

i , Θ̄(V)
1,i , Θ̄(V)

i , Γ̄(V)
1,i , Γ̄(V)

i , and

Ψ(V)
2,i = Γ(V)

2,i = Θ̄(V)
2,i = Γ̄(V)

2,i , ∅. Moreover, note that Π(V)
i = ∅ because I (n) ∩ G(n)2 = ∅.

4.2.4. Case D

In this case, recall that
∣∣G(n)1

∣∣ < ∣∣C(n)2

∣∣, ∣∣G(n)2

∣∣ < ∣∣C(n)1

∣∣ and
∣∣G(n)0

∣∣ > ∣∣C(n)1,2

∣∣. The sets that form the
partition of G(n) in Case D are defined below and can be seen in Figure 6, which also displays the
encoding process that aims to construct of Ã1:L

[
H(n)

V
]
.

Block 1 Block 2

Block 3 Block 4

Figure 6. For Case D, graphical representation of the encoding that leads to the construction of
Ã1:L

[
H(n)

V
]

when L = 4. Consider the Block 2: R(n)
1 ,R(n)

2 ,R(n)
1,2 ,R′(n)1,2 andR(n)

Λ are those areas filled
with yellow squares, blue circles, blue and yellow diamonds, yellow squares overlapped by blue circles,
and gray pentagons, respectively, and the set I (n) is the green filled area. At Block i ∈ [1, L], Wi is
represented by symbols of the same color (e.g., red symbols at Block 2), and Θ(V)

i , Ψ(V)
i and Γ(V)

i are

represented by squares, circles, and triangles, respectively. Furthermore, Θ̄(V)
i and Γ̄(V)

i are denoted by
squares and triangles, respectively, with a line through them. At Block i ∈ [2, L− 1], Γ(V)

1,i−1 ⊕ Γ̄(V)
1,i+1 is

represented by diamonds, and Ψ(V)
2,i−1 ⊕ Θ̄(V)

2,i+1 by squares overlapped by circles. At Block i ∈ [1, L], Si

is stored into those entries that belong to the green area. Sequence Λ(V)
1 is denoted by gray pentagons

and is repeated in all blocks. Sequences Υ(V)
(1) and Υ(V)

(2) are the entries inside the red curve at Block 1
and the blue curve at Block L, respectively.

As in Case A and Case C, since
∣∣G(n)0

∣∣ >
∣∣C(n)1,2

∣∣ then we define the set R(n)
1,2 as in (29) and

R′(n)1 = R′(n)2 , ∅. On the other hand, since |G(n)1 | < |C
(n)
2 |, now for i ∈ [2, L] only a part of Ψ(V)

i−1 can

be repeated entirely in Ãi[G
(n)
1 ]. Consequently, we defineR(n)

2 , G(n)1 and

R′(n)1,2 , any subset of G(n)0 \ R(n)
1,2 with size

∣∣C(n)2

∣∣− ∣∣G(n)1

∣∣. (33)
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By (20), it is clear thatR′(n)1,2 exists. Now, despite
∣∣G(n)2

∣∣ < ∣∣C(n)1

∣∣ as in Case C, the setR(n)
1 is not defined

as in (32), but

R(n)
1 , the union of G(n)2 with any subset

of G(n)0 \
(
R(n)

1,2 ∪R
′(n)
1,2
)

with size
∣∣C(n)1

∣∣− ∣∣G(n)2

∣∣− (∣∣C(n)2

∣∣− ∣∣G(n)1

∣∣), (34)

which exists because, by the assumption in (20), we have∣∣G(n)0 \
(
R(n)

1,2 ∪R
′(n)
1,2
)∣∣− ∣∣R(n)

1

∣∣
=
∣∣G(n)0

∣∣− ∣∣C(n)1,2

∣∣− ∣∣C(n)2

∣∣+ ∣∣G(n)1

∣∣− (∣∣C(n)1

∣∣− ∣∣G(n)2

∣∣− ∣∣C(n)2

∣∣+ ∣∣G(n)1

∣∣)
=
∣∣G(n)0

∣∣− ∣∣C(n)1,2

∣∣− ∣∣C(n)1

∣∣+ ∣∣G(n)2

∣∣ ≥ 0.

In this case, for i ∈ [1, L], we set Γ(V)
1,i , Γ(V)

i , Γ̄(V)
1,i , Γ̄(V)

i and Γ̄(V)
2,i = Γ(V)

2,i , ∅. Furthermore, we

define Ψ(V)
1,i as any part of Ψ(V)

i with size
∣∣G(n)1

∣∣, and Ψ(V)
2,i as the remaining part with size

∣∣C(n)2

∣∣− ∣∣G(n)1

∣∣.
Lastly, we define Θ̄(V)

1,i as any part Θ̄(V)
i with size

∣∣C(n)1

∣∣− (∣∣C(n)2

∣∣− ∣∣G(n)1

∣∣), and Θ̄(V)
2,i as the remaining

part with size
∣∣C(n)2

∣∣− ∣∣G(n)1

∣∣.
Thus, according to Algorithm 2, instead of repeating Ψ(V)

2,i−1, that is, the part of Ψ(V)
i−1 that does not fit

in Ãn
i
[
G(n)1

]
, in a specific part of Ãi

[
G(n)0

]
, the encoder stores Ψ(V)

2,i−1⊕ Θ̄(V)
2,i+1 into Ãi

[
R′(n)1,2

]
⊆ Ãi

[
G(n)0

]
,

where Θ̄(V)
2,i+1 denotes part of those elements of Θ̄(V)

i+1 that do not fit in Ãi
[
G(n)2

]
. Furthermore, as in

Case C, since I (n) ∩ G(n)2 = ∅, we have Π(V)
i = ∅.

4.3. Channel Prefixing

For i ∈ [1, L], let Ri be a uniformly distributed vector of length
∣∣H(n)

X|V \ H
(n)
X|VZ

∣∣ that represents

the randomization sequence. Furthermore, let Λ(X)
0 be a uniformly distributed random sequence of

size
∣∣H(n)

X|VZ

∣∣. The channel prefixing aims to construct X̃n
i = T̃n

i Gn and is summarized in Algorithm 3.

Algorithm 3 Function pb_ch_pref

Require: Ṽn
i , Ri, Λ(X)

i−1

1: T̃i
[
H(n)

X|VZ

]
← Λ(X)

i−1

2: T̃i
[
H(n)

X|V \ H
(n)
X|VZ

]
← Ri

3: for j ∈
(
H(n)

X|V
)C do

4: if j ∈
(
H(n)

X|V
)C \ L(n)X|V then

5: T̃i(j)← pT(j)|T1:j−1Vn
(
T̃i(j)

∣∣T̃1:j−1
i Ṽn

i
)

6: else if j ∈ L(n)X|V then

7: T̃i(j)← arg maxt∈X pT(j)|T1:j−1Vn
(
t
∣∣T̃1:j−1

i Ṽn
i
)

8: end if

9: end for

10: X̃n
i ← T̃n

i Gn

11: Λ(X)
i ← T̃i

[
H(n)

X|V \ H
(n)
X|VZ

]
12: return X̃n

i and Λ(X)
i
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Notice that the sequence Λ(X)
0 is copied in T̃i

[
H(n)

X|VZ

]
at any Block i ∈ [1, L], while Ri is stored into

T̃i
[
H(n)

X|V \ H
(n)
X|VZ

]
. After forming T̃i

[
H(n)

X|V
]
, and given the sequence Ṽn

i , Ãn
i Gn, the encoder forms

the remaining entries of T̃n
i , that is, T̃i

[(
H(n)

X|V
)C] as follows. If j ∈ L(n)X|V , where L(n)V|X ,

{
j ∈ [1, n] :

H
(
T(j)

∣∣T1:j−1Vn) ≤ δn
}

, it constructs T̃i(j) deterministically by using SC encoding [24]. Otherwise,

if j ∈
(
H(n)

X|V)
C \ L(n)X|V , the encoder randomly draws T̃i(j) from distribution pT(j)|T1:j−1Vn .

4.4. Decoding

Consider that
(
Υ(V)
(k) , Φ(V)

(k),1:L

)
, for all k ∈ [1, 2], is available to the k-th legitimate receiver. In

the decoding process, both legitimate receivers form the estimates Ân
1:L of Ãn

1:L and then obtain the
messages

(
Ŵ1:L, Ŝ1:L

)
.

4.4.1. Legitimate Receiver 1

This receiver forms the estimates Ân
1:L by going forward, i.e., from Ân

1 to Ân
L, and this process is

summarized in Algorithm 4.

Algorithm 4 Decoding at legitimate Receiver 1

Require: Υ(V)
(1) , Φ(V)

(1),1:L, κ
(V)
Θ and κ

(V)
Γ , and Ỹn

(1),1:L.

1: Ân
1 ←

(
Υ(V)
(1) , Φ(V)

(1),1, Ỹn
(1),1

)
2: Λ̂(V)

2:L ← Â1
[
R(n)

Λ
]

3: for i = 1 to L− 1 do

4: Ψ̂(V)
i ← Âi[C

(n)
2 ]

5: Γ̂(V)
i ← Âi[C

(n)
1,2 ]

6: ˆ̄Θ(V)
i+1 ←

(
Âi[R

(n)
1 ], Âi[R

′(n)
1,2 ]⊕ Ψ̂(V)

2,i−1

)
7: Θ̂(V)

i+1 ←
ˆ̄Θ(V)

i+1 ⊕ κ
(V)
Θ

8: ˆ̄Γ(V)
i+1 ←

(
Âi[R

(n)
1,2 ]⊕ Γ̂(V)

1,i−1, Âi[R
′(n)
1 ]

)
9: Γ̂(V)

i+1 ← ˆ̄Γ(V)
i+1 ⊕ κ

(V)
Γ

10: Π̂(V)
i ← Âi[I (n) ∩ G

(n)
2 ]

11: Υ̂′(V)
(1),i+1 ←

(
Ψ̂(V)

1,i , Γ̂(V)
2,i , Θ̂(V)

i+1, Γ̂(V)
i+1, Π̂(V)

i , Λ̂(V)
i
)

12: Ân
i+1 ←

(
Υ̂′(V)
(1),i+1, Φ(V)

(1),i+1, Ỹn
(1),i+1

)
13: end for

In all cases (among Case A to Case D), Receiver 1 constructs Ân
1 as follows. Given Υ(V)

(1) (all

the elements inside the red curve at Block 1 in Figures 3–6) and Φ(V)
(1),1, notice that Receiver 1 knows

Ã1
[(
L(n)V|Y(1)

)C]. Therefore, from
(
Υ(V)
(1) , Φ(V)

(1),1

)
and channel observations Ỹn

(1),1, Receiver 1 performs

SC decoding to form Ân
1 . Moreover, since Λ(V)

1 has been replicated in all blocks, legitimate Receiver 1

obtains Λ̂(V)
2:L = Â1

[
R(n)

Λ
]

(gray pentagons in all blocks).
For i ∈ [1, L− 1], consider the construction of Ân

i+1. First, since Ân
1:i have already been estimated,

from Ân
i Receiver 1 obtains Ψ̂(V)

i = Âi
[
C(n)2

]
(e.g., red circles at Block 2 in Figures 3–6) and Γ̂(V)

i =

Âi
[
C(n)1,2

]
(red triangles).

Furthermore, from Ân
i , Receiver 1 obtains Θ̂(V)

i+1 as follows. At Block 1, in all cases it gets ˆ̄Θ(V)
2 =

Ã1
[
R(n)

1 ∪R′(n)1,2
]

(all the red squares with a line through them at Block 1 in Figures 3–6). At Block i ∈
[2, L− 1], we distinguish two situations:
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• In Case D, Receiver 1 gets ˆ̄Θ(V)
1,i+1 = Âi

[
R(V)

1
]

(e.g., yellow squares with a line through them
at Block 2 in Figure 6) and Ψ̂(V)

2,i−1 ⊕
ˆ̄Θ(V)

2,i+1 = Âi
[
R′(V)

1,2
]

(yellow squares with a line through
them overlapped by blue circles). Since Ψ̂(V)

2,i−1 ⊂ Ân
i−1 (blue circles) has already been estimated,

Receiver 1 obtains ˆ̄Θ(V)
2,i+1 = Ψ̂(V)

2,i−1 ⊕ Âi
[
R′(V)

1,2
]

(yellow squares with a line through them).
• Otherwise, in other cases, Receiver 1 obtains ˆ̄Θ(V)

i+1 = Âi
[
R(n)

1
]

directly (yellow squares with a
line through them at Block 2 in Figures 3–5).

Then, given ˆ̄Θ(V)
i+1 =

[ ˆ̄Θ(V)
1,i+1, ˆ̄Θ(V)

2,i+1

]
, in all cases Receiver 1 recovers Θ̂(V)

i+1 = ˆ̄Θ(V)
i+1 ⊕ κ

(V)
Θ .

From Ân
i , Receiver 1 also obtains Γ̂(V)

i+1 as follows. At Block 1, in all cases it gets ˆ̄Γ(V)
2 = Ã1

[
R(n)

1,2 ∪
R′(n)1

]
directly (e.g., all red triangles with a line through them at Block 1 in Figures 3–6). At Block i ∈

[2, L− 1], in all cases it obtains Γ̂(V)
1,i−1 ⊕ ˆ̄Γ(V)

1,i+1 = Âi
[
R(n)

1,2
]

(e.g., blue and yellow diamonds with a line

through them at Block 2). Since Γ̂(V)
1,i−1 ⊂ Ân

i−1 (blue triangles) has already been estimated, Receiver 1

obtains ˆ̄Γ(V)
1,i+1 = Âi

[
R(n)

1,2
]
⊕ Γ̂(V)

1,i−1 (yellow triangles with a line through them). Only in Case B,

Receiver 1 obtains ˆ̄Γ(V)
2,i+1 = Âi

[
R′(n)1

]
(remaining yellow triangles with a line through them at Block 2

in Figure 4). Then, given ˆ̄Γ(V)
i+1 =

[ ˆ̄Γ(V)
1,i+1, ˆ̄Γ(V)

2,i+1

]
, in all cases Receiver 1 recovers Γ̂(V)

i+1 = ˆ̄Γ(V)
i+1 ⊕ κ

(V)
Γ .

Lastly, only in Case A and Case B, Receiver 1 obtains Π̂(V)
i = Âi

[
I (n) ∩ G(n)2

]
(e.g., purple crosses

at Block 2 in Figure 3 and Figure 4).
Finally, define the sequence Υ̂′(V)

(1),i+1 ,
[
Ψ̂(V)

1,i , Γ̂(V)
2,i , Θ̂(V)

i+1, Γ̂(V)
i+1, Π̂(V)

i , Λ̂(V)
i
]
. Notice that Υ̂′(V)

(1),i+1 ⊇

Âi+1
[
H(n)

V \ L(n)V|Y(1)

]
(elements inside red curve at Block i + 1 in Figures 3–6). Therefore, Receiver 1

performs SC decoding to form Ân
i+1 by using Υ̂′(V)

(1),i+1, Φ(V)
(1),i+1 and the channel observations Ỹn

(1),i+1.

4.4.2. Legitimate Receiver 2

This receiver forms the estimates Ân
1:L by going backward, i.e., from Ân

L to Ân
1 , and this process is

summarized in Algorithm 5.

Algorithm 5 Decoding at legitimate Receiver 2

Require: Υ(V)
(2) , Φ(V)

(2),1:L, κ
(V)
Θ and κ

(V)
Γ , and Ỹn

(2),1:L.

1: Ân
L ←

(
Υ(V)
(2) , Φ(V)

(2),L, Ỹn
(2),L

)
2: Λ̂(V)

1:L−1 ← ÂL
[
R(n)

Λ
]

3: for i = L to 2 do

4: ˆ̄Θ(V)
i ← Âi[C

(n)
1 ]⊕ κ

(V)
Θ

5: ˆ̄Γ(V)
i ← Âi[C

(n)
1,2 ]⊕ κ

(V)
Γ

6: Ψ̂(V)
i−1 ←

(
Âi[R

(n)
2 ], Âi[R

′(n)
1,2 ]⊕ ˆ̄Θ(V)

2,i+1

)
7: Γ̂(V)

i−1 ←
(

Âi[R
(n)
1,2 ]⊕ ˆ̄Γ(V)

1,i+1, Âi[R
′(n)
2 ]

)
8: Π̂(V)

i−1 ← Âi[R
(n)
S ]

9: Υ′(V)
(2),i−1 ←

( ˆ̄Θ(V)
1,i , ˆ̄Γ(V)

2,i , Ψ̂(V)
i−1, Γ̂(V)

i−1, Π̂(V)
i−1, Λ̂(V)

i−1

)
10: Ân

i−1 ←
(
Υ′(V)
(2),i−1, Φ(V)

(2),i−1, Ỹn
(2),i−1

)
11: end for

In all cases (among Case A to Case D), Receiver 2 constructs Ân
L as follows. Given Υ(V)

(2) (all

the elements inside blue curve at Block 4 in Figures 3–6) and Φ(V)
(2),L, notice that Receiver 2 knows

ÃL
[(
L(n)V|Y(2)

)C]. Hence, from
(
Υ(V)
(2) , Φ(V)

(2),L

)
and channel output observations Ỹn

(2),L, Receiver 2
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performs SC decoding to form Ân
L. Since Λ(V)

1 has been replicated in all blocks, from Ân
L it obtains

Λ̂(V)
1:L−1 = ÂL

[
R(n)

Λ
]

(gray pentagons at all blocks).
For i ∈ [2, L], consider the construction of Ân

i−1. First, since Ân
i:L have already been estimated, from

Ân
i Receiver 2 obtains the sequence Θ̂(V)

i = Âi
[
C(n)1

]
(e.g., yellow squares at Block 3 in Figures 3–6).

Given Θ̂(V)
i , it computes ˆ̄Θ(V)

i = Θ̂(V)
i ⊕ κ

(V)
Θ (yellow squares with a line through them). Furthermore,

Receiver 2 obtains Γ̂(V)
i = Âi

[
C(n)1,2

]
(yellow triangles at Block 3 in Figures 3–6). Given this sequence, it

computes ˆ̄Γ(V)
i = Γ̂(V)

i ⊕ κ
(V)
Γ (yellow triangles with a line through them).

Furthermore, from Ân
i , Receiver 2 obtains Ψ̂(V)

i−1 as follows. At block L, in all cases it gets Ψ̂(V)
L−1 =

Âi
[
R(n)

2 ∪ R′(n)1,2
]

directly (all yellow circles at Block L in Figures 3–6). At Block i ∈ [2, L − 1], we
distinguish two situations:

• In Case D, Receiver 2 obtains Ψ̂(V)
1,i−1 = Âi

[
R(n)

2
]

(e.g., red circles at Block 3 in Figure 6) and

Ψ̂(V)
2,i−1 ⊕

ˆ̄Θ(V)
2,i+1 = Âi

[
R′(n)1,2

]
(cyan squares with a line through them overlapped by red circles).

Since ˆ̄Θ(V)
2,i+1 (cyan squares with a line through them) has already been estimated, it obtains

Ψ̂(V)
2,i−1 = Âi

[
R′(n)1,2

]
⊕ ˆ̄Θ(V)

2,i+1 (red circles).

• Otherwise, in other cases, Receiver 2 obtains directly Ψ̂(V)
i−1 = Âi

[
R(n)

2
]

(e.g., red circles at Block 3
in Figures 3–5).

From Ân
i , Receiver 2 also obtains Γ̂(V)

i−1 as follows. At block L, in all cases it gets ˆ̄Γ(V)
L−1 = ÂL

[
R(n)

1,2 ∪
R′(n)2

]
(e.g., all yellow triangles at Block L in Figures 3–6). At Block i ∈ [2, L− 1], in all cases Receiver 2

obtains Γ̂(V)
1,i−1 ⊕ ˆ̄Γ(V)

1,i+1 = Âi
[
R(n)

1,2
]

(e.g., red and cyan diamonds with a line through them at Block 3).

Since ˆ̄Γ(V)
1,i+1 (cyan triangles with a line through them) has already been estimated, Receiver 2 obtains

Γ̂(V)
1,i−1 = Âi

[
R(n)

1,2
]
⊕ ˆ̄Γ(V)

1,i+1 (red triangles). Furthermore, only in Case B, Receiver 2 obtains the sequence

Γ̂(V)
2,i−1 = Âi

[
R′(n)2

]
(remaining red triangles at Block 3 in Figure 4).

Lastly, only in Case A and Case B, Receiver 2 obtains the sequence Π̂(V)
i−1 = Âi

[
R(n)

S
]

(e.g., purple
crosses at Block 3 in Figure 3 and Figure 4).

Finally, define the sequence Υ′(V)
(2),i−1 ,

[ ˆ̄Θ(V)
1,i , ˆ̄Γ(V)

2,i , Ψ̂(V)
i−1, Γ̂(V)

i−1, Π̂(V)
i−1, Λ̂(V)

i−1

]
. Notice that Υ′(V)

(2),i−1 ⊇

Âi−1
[
H(n)

V \ L(n)V|Y(2)

]
(elements inside blue curve at Block i − 1 in Figures 3–6). Thus, Receiver 2

performs SC decoding to form Ân
i−1 by using Υ′(V)

(2),i−1, Φ(V)
(2),i−1 and Ỹn

(2),i−1.

5. Performance of the Polar Coding Scheme

The analysis of the polar coding scheme of Section 4 leads to the following theorem.

Theorem 1. Let (X , pY(1)Y(2)Z|X ,Y(1) ×Y(2) ×Z) be an arbitrary WTBC, such that X ∈ {0, 1}. The polar
coding scheme described in Section 4 achieves the corner point in Equation (4) of the region RCI-WTBC defined in
Proposition 1.

The proof of Theorem 1 follows in four steps and is provided in the following subsections. In
Section 5.1 we show that the polar coding scheme approaches the rate tuple in (4). In Section 5.2
we prove that the joint distribution of (Ṽn

i , X̃n
i , Ỹn

(1),i, Ỹn
(2),i, Z̃n

i ), for all i ∈ [1, L], is asymptotically
indistinguishable of the one of the original DMS that is used for the polar code construction. Finally,
in Section 5.3 and Section 5.4 we show that the polar coding scheme satisfies the reliability and the
secrecy conditions (1) and (2) respectively.

5.1. Transmission Rates

We prove that the polar coding scheme described in Section 4 approaches the rate tuple in
Equation (4). Furthermore, we show that the overall length of the secret keys κ

(V)
Θ , κ

(V)
Γ , κ

(V)
ΥΦ(1)

and



Entropy 2020, 22, 149 19 of 28

κ
(V)
ΥΦ(2)

, and the additional randomness used in the encoding (besides the randomization sequences) are

asymptotically negligible in terms of rate.

5.1.1. Private Message Rate

For i ∈ [1, L], we have Wi = Ãi
[
C(n)

]
. According to the definition of C(n) in (11), and since

H(n)
V|Z ⊆ H

(n)
V , the rate of W1:L is

1
nL

L

∑
i=1
|Wi| =

1
n
∣∣H(n)

V ∩
(
H(n)

V|Z
)C∣∣ = 1

n
∣∣H(n)

V

∣∣− 1
n
∣∣H(n)

V|Z
∣∣ n→∞−−−→ H(V)− H(V|Z)

where the limit holds by Lemma 4 of [10]. Therefore, the private message rate achieved by the polar
coding scheme is RW = I(V; Z), as in (4).

5.1.2. Confidential Message Rate

From Section 4.2, in all cases we have S1 = Ã1
[
I (n) ∪ G(n)1 ∪ G(n)1,2

]
; for i ∈ [2, L− 1], we have

Si = Ãi
[
I (n)

]
; and SL = ÃL

[
I (n) ∪ G(n)2

]
. Thus, we have

1
nL

L

∑
i=1
|Si|

=
(L− 2)

nL
∣∣I (n)∣∣+ 1

nL

(∣∣I (n) ∪ G(n)1 ∪ G(n)1,2

∣∣+ ∣∣I (n) ∪ G(n)2

∣∣)
=

1
n
∣∣I (n)∣∣+ 1

nL

(∣∣G(n)1

∣∣+ ∣∣G(n)2

∣∣+ ∣∣G(n)1,2

∣∣)
=

1
n
∣∣I (n)∣∣+ 1

nL
∣∣G(n) \ G(n)0

∣∣
(a)
=

1
n

(∣∣G(n)0

∣∣+ ∣∣G(n)2

∣∣− ∣∣R(n)
1,2

∣∣− ∣∣R′(n)1,2

∣∣− ∣∣R(n)
1

∣∣− ∣∣R′(n)1

∣∣)+ 1
nL
∣∣G(n) \ G(n)0

∣∣
(b)
=

1
n

(∣∣G(n)0

∣∣+ ∣∣G(n)2

∣∣− ∣∣C(n)1

∣∣− ∣∣C(n)1,2

∣∣)+ ∣∣G(n) \ G(n)0

∣∣
nL

(c)
≥ 1

n

(∣∣H(n)
V|Z ∩ L

(n)
V|Y(1)

∣∣∣− ∣∣(H(n)
V|Z
)C ∩

(
L(n)V|Y(1)

)C∣∣)+ 1
nL

∣∣∣H(n)
V|Z ∩

(
L(n)V|Y(1)

∩ L(n)V|Y(2)

)C∣∣∣
(d)
≥ 1

n

(∣∣H(n)
V|Z ∩ L

(n)
V|Y(1)

∣∣− ∣∣(H(n)
V|Z
)C ∩

(
L(n)V|Y(1)

)C∣∣)+ 1
nL

∣∣∣H(n)
V|Z

∣∣∣− 1
nL

∣∣∣(L(n)V|Y(1)

)C
∣∣∣

=
1
n
∣∣H(n)

V|Z
∣∣− 1

n
∣∣(L(n)V|Y(1)

)C∣∣+ 1
nL
∣∣H(n)

V|Z
∣∣− 1

nL
∣∣(L(n)V|Y(1)

)C∣∣
n→∞−−−→ H(V|Z)− H(V|Y(1)) +

1
L
(

H(V|Z)− H(V|Y(1))
)

L→∞−−−→ H(V|Z)− H(V|Y(1))

where (a) holds by the definition of I (n) in (24); (b) holds because, in all cases, we have
∣∣R(n)

1,2

∣∣ +∣∣R′(n)1

∣∣ =
∣∣C(n)1,2

∣∣ and
∣∣R(n)

1

∣∣ + ∣∣R′(n)1,2

∣∣ =
∣∣C(n)1

∣∣; (c) follows from the partition of H(n)
V defined

in (12)–(19); (d) follows from applying elementary set operations and because, by assumption,
H(V|Y(1)) ≥ H(V|Y(2)), which means that

∣∣(L(n)V|Y(1)

)C∣∣ ≥ ∣∣(L(n)V|Y(2)

)C∣∣ (by Lemma 4 of [10]); and

the limit when n goes to infinity holds also by Lemma 4 of [10]. Hence, the polar coding scheme
operates as close to the rate RS in (4) as desired by choosing a sufficiently large L.
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5.1.3. Randomization Sequence Rate

For i ∈ [1, L], we have Ri = T̃i
[
H(n)

X|V ∩ (H(n)
X|VZ)

C]. SinceH(n)
X|VZ ⊇ H

(n)
X|V , we have

1
nL

L

∑
i=1
|Ri| =

1
n

∣∣∣H(n)
X|V ∩

(
H(n)

X|VZ

)C
∣∣∣ = 1

n
∣∣H(n)

X|V
∣∣− 1

n
∣∣H(n)

X|VZ

∣∣ n→∞−−−→ H(X|Z)− H(X|VZ)

where the limit holds by Lemma 4 of [10]. Thus, the randomization sequence rate used by the polar
coding scheme is RR = I(X; Z|V) as in (4).

5.1.4. Private-Shared Sequence Rate

Transmitter and legitimate Receiver k ∈ [1, 2] must privately share the keys κ
(V)
Θ , κ

(V)
Γ and κ

(V)
ΥΦ(k)

.

Hence, the overall rate is

1
nL

(∣∣κ(V)
Θ

∣∣+ ∣∣κ(V)
Γ

∣∣+ 2

∑
k=1

∣∣κ(V)
ΥΦ(k)

∣∣)
=

1
nL

(∣∣C(n)1

∣∣+ ∣∣C(n)1,2

∣∣)+ 1
nL

2

∑
k=1

(
L
∣∣(H(n)

V
)C ∩

(
L(n)V|Y(k)

)C∣∣+ ∣∣H(n)
V ∩

(
L(n)V|Y(k)

)C∣∣)
(a)
=

1
nL

(∣∣H(n)
V ∩

(
H(n)

V|Z
)C ∩

(
L(n)V|Y(1)

)C∣∣)
+

1
nL

2

∑
k=1

(
L
∣∣(H(n)

V
)C ∩

(
L(n)V|Y(k)

)C∣∣+ ∣∣H(n)
V ∩

(
L(n)V|Y(k)

)C∣∣)
(b)
≤ 1

nL
∣∣(L(n)V|Y(1)

)C∣∣+ 1
nL

2

∑
k=1

(
L
∣∣(H(n)

V|Y(k)

)C ∩
(
L(n)V|Y(k)

)C∣∣+ ∣∣(L(n)V|Y(k)

)C∣∣)
n→∞−−−→ 1

L
(
2H(V|Y(1)) + H(V|Y(2))

)
L→∞−−−→ 0,

where (a) follows from the definition of C(n)1 and C(n)1,2 in (17) and (19), respectively; (b) follows from

standard set properties and because
(
H(n)

V|Z
)C ⊆

(
H(n)

V|Y(k)

)C for any k ∈ [1, 2]; and the limit when n

goes to infinity holds by Lemma 4 of [10].

5.1.5. Rate of the Additional Randomness

Besides the randomization sequences R1:L, the encoder uses the random sequence Λ(X)
0 , with

size
∣∣H(n)

X|V
∣∣, for the polar-based channel prefixing. Moreover, for i ∈ [1, L], the encoder randomly

draws those elements Ãi(j) such that j ∈
(
H(n)

V
)C \ L(n)V , and those elements T̃i(j) such that j ∈(

H(n)
X|V
)C \ L(n)X|V . Nevertheless, we have

1
nL

(∣∣H(n)
X|V
∣∣+ L

∣∣(H(n)
V
)C \ L(n)V

∣∣+ L
∣∣(H(n)

X|V
)C \ L(n)X|V

∣∣)
n→∞−−−→ 1

L
H(X|V)

L→∞−−−→ 0,

where the limit when n approaches to infinity follows from applying Lemma 4 of [10].
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5.2. Distribution of the DMS after the Polar Encoding

For i ∈ [1, L], let q̃An
i Tn

i
denote the distribution of (Ãn

i , T̃n
i ) after the encoding. The following

lemma proves that q̃An
i Tn

i
and the marginal distribution pAnTn of the original DMS are nearly statistically

indistinguishable for sufficiently large n and, consequently, so are q̃Vn
i Xn

i Yn
(1),iY

n
(2),iZ

n
i

and pVnXnYn
(1)Y

n
(2)Zn .

This result is crucial for the reliability and secrecy performance of the polar coding scheme.

Lemma 1. For any i ∈ [1, L], we obtain

V(q̃An
i Tn

i
, pAnTn) ≤ δ

(∗)
n ,

V(q̃Vn
i Xn

i Yn
(1),iY

n
(2),iZ

n
i
, pVnXnYn

(1)Y
n
(2)Zn) ≤ δ

(∗)
n ,

where δ
(∗)
n , 2n

√
4
√

nδn ln 2
(
2n− log

(
2
√

nδn ln 2
))

+ δn + 2
√

nδn ln 2.

Proof. Omitted because it follows similar reasoning as in Lemma 3 of [11].

5.3. Reliability Analysis

In this section we prove that both legitimate receivers can reliably reconstruct the private and the
confidential messages (W1:L, S1:L) with arbitrary small error probability.

For i ∈ [1, L] and k ∈ [1, 2], let q̃Vn
i Yn

(k),i
and pVnYn

(k)
be marginals of q̃Vn

i Xn
i Yn

(1),iY
n
(2),iZ

n
i

and
pVnXnYn

(1)Y
n
(2)Zn respectively, and define an optimal coupling Proposition 4.7 of [25] between q̃Vn

i Yn
(k),i

and pVnYn
(k)

such that P
[
EVn

i Yn
(k),i

]
= V

(
q̃Vn

i Yn
(k),i

, pVnYn
(k)

)
, where EVn

i Yn
(k),i

,
{(

Ṽn
i , Ỹn

(k),i

)
6=
(
Vn, Yn

(k)

)}
.

Additionally, define the error event

E(k),i ,
{

Âi
[(
L(n)V|Y(k)

)C] 6= Ãi
[(
L(n)V|Y(k)

)C]}.

Recall that (Υ(V)
(k) , Φ(V)

(k),1:L) is available to Receiver k ∈ [1, 2]. Thus, P[E(1),1] = P[E(2),L] = 0 because

given Υ(V)
(1) and Φ(V)

(1),1 legitimate Receiver 1 knows Ã1
[(
L(n)V|Y(1)

)C], and given Υ(V)
(2) and Φ(V)

(2),L legitimate

Receiver 2 knows ÃL
[(
L(n)V|Y(2)

)C]. Moreover, due to the chaining structure, in Section 4.4 we have seen

that Ãi
[
H(n)

V ∩
(
L(n)V|Y(1)

)C] is repeated in Ãn
i−1 for i ∈ [2, L]. Therefore, at legitimate Receiver 1, for

i ∈ [2, L] we have

P[E(1),i] ≤ P
[
Ân

i−1 6= Ãn
i−1
]
. (35)

Similarly, due to the chaining construction, we have seen that Ãi
[
H(n)

V ∩
(
L(n)V|Y(2)

)C] is repeated in

Ãn
i+1 for i ∈ [1, L− 1]. Thus, at legitimate Receiver 2, for i ∈ [1, L− 1] we obtain

P[E(2),i] ≤ P
[
Ân

i+1 6= Ãn
i+1
]
. (36)
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Hence, the probability of incorrectly decoding (Wi, Si) at the Receiver k ∈ [1, 2] is

P
[
(Wi, Si) 6= (Ŵi, Ŝi)

]
≤ P

[
Ân

i 6= Ãn
i
]

= P
[
Ân

i 6= Ãn
i
∣∣EC

Vn
i Yn

(k),i
∩ EC

(k),i
]
P
[
EC

Vn
i Yn

(k),i
∩ EC

(k),i
]

+ P
[
Ân

i 6= Ãn
i
∣∣EVn

i Yn
(k),i
∪ E(k),i

]
P
[
EVn

i Yn
(k),i
∪ E(k),i

]
≤ P

[
Ân

i 6= Ãn
i
∣∣EC

Vn
i Yn

(k),i
∩ EC

(k),i
]
+ P

[
EVn

i Yn
(k),i

]
+ P

[
E(k),i

]
(a)
≤ nδn + P

[
EVn

i Yn
(k),i

]
+ P

[
E(k),i

]
(b)
≤ nδn + δ

(∗)
n + P

[
E(k),i

]
(c)
≤ i
(
nδn + δ

(∗)
n
)
,

where (a) holds by Th. 2 of [19]; (b) follows from the optimal coupling and Lemma 1; and (c) holds by
induction and Equations (35) and (36). Therefore, by the union bound we obtain

P
[
(W1:L, S1:L) 6= (Ŵ1:L, Ŝ1:L)

]
≤

L

∑
i=1

P
[
Ãn

i 6= Ân
i
]
≤ L(L + 1)

2
(
nδn + 2δ

(∗)
n
)
,

and for sufficiently large n the polar coding scheme satisfies the reliability condition in (1).

5.4. Secrecy Analysis

Since encoding in Section 4 takes place over L blocks of size n, we need to prove that

lim
n→∞

I(S1:L, Z̃n
1:L) = 0.

For clarity and with slight abuse of notation, for any Block i ∈ [1, L] let

Ξ(V)
i ,

[
Π(V)

i , Λ(V)
i , Ψ(V)

i , Γ(V)
i
]
,

which denotes the entire sequence depending on Ãn
i that is repeated at Block i + 1. Furthermore, let

Ω̄(V)
i , [Θ̄(V)

i , Γ̄(V)
i ],

which represents the sequence depending on Ãn
i that is repeated at Block i− 1. Furthermore, we define

κ
(V)
Ω , [κ

(V)
Θ , κ

(V)
Γ ]. Then, a Bayesian graph describing the dependencies between all the variables

involved in the polar coding scheme of Section 4 is given in Figure 7.
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Block i−2 Block i−1 Block i

W1,iW1,i−1

κ
(V)
Ω

Ω̄(V)
iΩ̄(V)

i−1
Ω̄(V)

i+1

Ξ(V)
i−2 Ξ(V)

i−1 Ξ(V)
i

Λ(X)
i−2 Λ(X)

i−1 Λ(X)
i

W2,i

Ri

W2,i−1

Ri−1

Ãn
i−1 Ãn

i

T̃n
i−1 T̃n

i

Z̃n
i−1 Z̃n

i

Si−1 Si

Figure 7. Graphical representation (Bayesian graph) of the dependencies between random variables
involved in the polar coding scheme. Independent random variables are indicated by white nodes,
whereas those that are dependent are indicated by gray nodes.

Despite Γ(V)
i ⊆ Ξ(V)

i and Γ̄(V)
i = Γ(V)

i ⊕ κ
(V)
Γ ⊆ Ω̄(V)

i , we represent Ξ(V)
i and Ω̄(V)

i as two

separate nodes in the Bayesian graph because, by crypto lemma [26], Γ(V)
i and Γ̄(V)

i are statistically
independent. Furthermore, for convenience, we have considered that dependencies only take place
forward (from Block i to Block i + 1), which is possible by reformulating the encoding as follows.
According to Section 4.1, for any i ∈ [1, L] we have Ãi

[
C(n)

]
= Wi. Consequently, we can write

Wi , [W1,i, W2,i], where W1,i , Ãi[C
(n)
1 ∪C(n)1,2 ] and W2,i , Ãi[C

(n)
2 ∪C(n)0 ]. Since Θ̄(V)

i = Ãi
[
C(n)1

]
⊕ κ

(V)
Θ

and Γ̄(V)
i = Ãi

[
C(n)1,2

]
⊕ κ

(V)
Γ , we regard Ω̄(V)

i as an independent random sequence generated at
Block i− 1 that is stored properly into some part of Ãi−1[G(n)]. Then, we consider that the encoder
obtains W1,i , Ω̄(V)

i ⊕ κ
(V)
Ω , which is stored into Ãi[C

(n)
1 ∪ C(n)1,2 ] at Block i. On the other hand, the

remaining part W2,i is independently generated at Block i. Recall that the secret-key κ
(V)
Ω is reused in all

blocks.
The following lemma shows that strong secrecy holds for any Block i ∈ [1, L].

Lemma 2. For any i ∈ [1, L] and sufficiently large n,

I
(
SiΞ

(V)
i−1Λ(X)

i−1; Z̃n
i
)
≤ δ

(S)
n ,

where δ
(S)
n , 2nδn + 2δ

(∗)
n
(
2n− log δ

(∗)
n
)

and δ
(∗)
n defined as in Lemma 1.

Proof. For n sufficiently large, we have

I
(
SiΞ

(V)
i−1Λ(X)

i−1; Z̃n
i
)

(a)
= I

(
Ãi
[
H(n)

V|Z
]
T̃i
[
H(n)

X|VZ

]
; Z̃n

i
)

(b)
=
∣∣H(n)

V|Z
∣∣+ ∣∣H(n)

X|VZ

∣∣− H
(

Ãi
[
H(n)

V|Z
]
T̃i
[
H(n)

X|VZ

]∣∣Z̃n
i
)

(c)
≤
∣∣H(n)

V|Z
∣∣+ ∣∣H(n)

X|VZ

∣∣− H
(

A
[
H(n)

V|Z
]
T
[
H(n)

X|VZ

]∣∣Zn
i
)
+ 4nδ

(∗)
n − 2δ

(∗)
n log δ

(∗)
n

(d)
≤ 2nδn + 4nδ

(∗)
n − 2δ

(∗)
n log δ

(∗)
n
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where (a) holds by the encoding described in Section 4; (b) holds by the uniformity of Ãi
[
H(n)

V|Z
]

and

Ãi
[
H(n)

X|VZ

]
; (c) holds because, for n large enough, we obtain

∣∣∣H(Ãi
[
H(n)

V|Z
]
T̃i
[
H(n)

X|VZ

]∣∣Z̃n
i
)
− H

(
Ai
[
H(n)

V|Z
]
Ti
[
H(n)

X|VZ

]∣∣Zn
i
)∣∣∣

≤
∣∣H(Z̃n

m
)
− H

(
Zn

m
)∣∣+ ∣∣∣H(Ãi

[
H(n)

V|Z
]
T̃i
[
H(n)

X|VZ

]
Z̃n

i
)
− H

(
Ai
[
H(n)

V|Z
]
Ti
[
H(n)

X|VZ

]
Zn

i
)∣∣∣

≤ V(q̃Zn
m , pZn

m) log
2n

V(q̃Zn
m , pZn

m)

+V
(
q̃

Ai [H
(n)
V|Z

]
Ti [H

(n)
X|VZ ]Z

n , p
Ai [H

(n)
V|Z ]Ti [H

(n)
X|VZ ]Z

n

)
log

2(n+|H
(n)
V|Z |+|H

(n)
X|VZ |)

V
(
q̃

Ai [H
(n)
V|Z ]Ti [H

(n)
X|VZ ]Z

n , p
Ai [H

(n)
V|Z ]Ti [H

(n)
X|VZ ]Z

n

)
(b)
≤ 4nδ

(n)
ld-nls − 2δ

(n)
ld-nls log δ

(n)
ld-nls,

where we have used the chain rule of entropy and the triangle inequality, [27, Lemma 30], the fact
that the function x → x log x is decreasing for x > 0 small enough and Lemma 1; and, lastly, (d) holds
because

H
(

A
[
H(n)

V|Z
]
T
[
H(n)

X|VZ

]∣∣Zn)
≥ H

(
A
[
H(n)

V|Z
]∣∣Zn)+ H

(
T
[
H(n)

X|VZ

]∣∣AnZn)
≥ ∑

j∈H(n)
V|Z

H
(

A(j)
∣∣A1:j−1Zn)+ ∑

j∈H(n)
X|VZ

H
(
T(j)

∣∣T1:j−1VnZn)
≥
∣∣H(n)

V|Z
∣∣(1− δn) +

∣∣H(n)
X|VZ

∣∣(1− δn)

where we have used the fact that conditioning does not increase entropy, the invertibility of Gn, and
the definition ofH(n)

V|Z andH(n)
X|VZ in (6) and (9) respectively.

Next, the following lemma shows that eavesdropper observations Z̃n
i are asymptotically

statistically independent of observations Z̃n
1:i−1 from previous blocks.

Lemma 3. For any i ∈ [2, L] and sufficiently large n,

I
(
S1:LZ̃n

1:i−1; Z̃n
i
)
≤ δ

(S)
n ,

where δ
(S)
n is defined as in Lemma 2.
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Proof. For any i ∈ [2, L] and sufficiently large n, we have

I
(
S1:LZ̃n

1:i−1; Z̃n
i
)

= I
(
S1:iZ̃n

1:i−1; Z̃n
i
)
+ I
(
Si+1:L; Z̃n

i
∣∣S1:iZ̃n

1:i−1
)

(a)
= I

(
S1:iZ̃n

1:i−1; Z̃n
i
)

≤ I
(
S1:iZ̃n

1:i−1Ξ(V)
i−1Λ(X)

i−1; Z̃n
i
)

= I
(
SiΞ

(V)
i−1Λ(X)

i−1; Z̃n
i
)
+ I
(
S1:i−1Z̃n

1:i−1; Z̃n
i
∣∣SiΞ

(V)
i−1Λ(X)

i−1

)
(b)
≤ δ

(S)
n + I

(
S1:i−1Z̃n

1:i−1; Z̃n
i
∣∣SiΞ

(V)
i−1Λ(X)

i−1

)
≤ δ

(S)
n + I

(
S1:i−1Z̃n

1:i−1; Z̃n
i W1,i

∣∣SiΞ
(V)
i−1Λ(X)

i−1

)
= δ

(S)
n + I

(
S1:i−1Z̃n

1:i−1; W1,i
∣∣SiΞ

(V)
i−1Λ(X)

i−1

)
+ I
(
S1:i−1Z̃n

1:i−1; Z̃n
i
∣∣SiΞ

(V)
i−1Λ(X)

i−1W1,i
)

(c)
= δ

(S)
n + I

(
S1:i−1Z̃n

1:i−1; W1,i
∣∣SiΞ

(V)
i−1Λ(X)

i−1

)
≤ δ

(S)
n + I

(
Ãn

1:i−1Z̃n
1:i−1; W1,i

∣∣SiΞ
(V)
i−1Λ(X)

i−1

)
= δ

(S)
n + I

(
Ãn

1:i−1; W1,i
∣∣SiΞ

(V)
i−1Λ(X)

i−1

)
+ I
(
Z̃n

1:i−1; W1,i
∣∣Ãn

1:i−1SiΞ
(V)
i−1Λ(X)

i−1

)
(d)
= δ

(S)
n + I

(
Ãn

1:i−1; W1,i
∣∣SiΞ

(V)
i−1Λ(X)

i−1

)
(e)
= δ

(S)
n + I

(
Ãn

1:i−1; Ω̄(V)
i ⊕ κ

(V)
Ω

∣∣SiΞ
(V)
i−1Λ(X)

i−1

)
( f )
= δ

(S)
n

where (a) holds by independence between Si+1:L and any random variable from Blocks 1 to i; (b)
holds by Lemma 2; (c) follows from applying d-separation [28] over the Bayesian graph in Figure 7
to obtain that Z̃n

i and (S1:i−1, Z̃n
1:i−1) are conditionally independent given (Si, Ξ(V)

i−1, Λ(X)
i−1, W1,i); (d)

also follows from applying d-separation to obtain that W1,i and Z̃n
1:i−1 are conditionally independent

given (Ãn
1:i−1, Si, Ξ(V)

i−1, Λ(X)
i−1); (e) holds by definition; and ( f ) holds because Ω̄(V)

i is independent

of (Si, Ξ(V)
i−1, Λ(X)

i−1) and any random variable from Block 1 to (i − 2), and because from applying

crypto-lemma [26] we obtain that Ω̄(V)
i ⊕ κ

(V)
Ω is independent of Ãn

i−1.

Therefore, we obtain

I
(
S1:L; Z̃n

1:L
) (a)
= I

(
S1:L; Z̃n

1
)
+

L

∑
i=2

I
(
S1:L; Z̃n

i
∣∣Z̃n

1:i−1
)

(b)
≤ I

(
S1:L; Z̃n

1
)
+ (L− 1)δ(S)n

= I
(
S1; Z̃n

1
)
+ I
(
S2:L; Z̃n

1
∣∣S1
)
+ (L− 1)δ(S)n

(c)
= I

(
S1; Z̃n

1
)
+ (L− 1)δ(S)n

(d)
≤ Lδ

(S)
n

where (a) follows from applying the chain rule; (b) holds by Lemma 3; (c) holds by independence
between S2:L and any random variable from Block 1; and (d) holds by Lemma 2. Thus, for sufficiently
large n the polar coding scheme satisfies the strong secrecy condition in (2).

Remark 1. We conjecture that the use κ
(V)
Ω is not needed for the polar coding scheme to satisfy the strong

secrecy condition. However, the key is required in order to prove this condition by means of analyzing a causal
Bayesian graph similar to the one in Figure 7.
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Remark 2. Although backward dependencies between random variables of different blocks appear in [12], a
secret seed as κ

(V)
Ω is not necessary for the polar coding scheme to provide strong secrecy. This is because random

sequences that are repeated in adjacent blocks are stored only into those corresponding entries whose indices belong
to the “high entropy set given eavesdropper observations”, i.e., the equivalent sets ofH(n)

V|Z andH(n)
X|VZ in our

polar coding scheme. By contrast, notice that our polar coding scheme repeats
[
Θ(V)

i , Γ(V)
i
]
⊆ Ãi

[
(H(n)

V|Z)
C].

Remark 3. Another possibility for the polar coding scheme is to repeat at Block i + 1 the modulo-2 addition
between

[
Ψ(V)

i , Γ(V)
i
]

and a particular secret-key, instead of repeating an encrypted version of
[
Θ(V)

i , Γ(V)
i
]

at

Block i− 1. Then, it is not difficult to prove that I
(
S1:LZ̃n

i+1:L; Z̃n
i
)
≤ δ

(S)
n (similar to Lemma 3). Thus, one can

minimize the length of this secret-key depending on whether
∣∣C(n)1

∣∣ < ∣∣C(n)2

∣∣ or vice versa.

6. Concluding Remarks

A strongly secure polar coding scheme is proposed for the WTBC with two legitimate receivers
and one eavesdropper. This polar code achieves the best known inner-bound on the achievable
region of the CI-WTBC model, where a transmitter wants to send common information (private and
confidential) to both receivers. Due to the non-degradedness assumption of the channel, the encoder
builds a chaining construction that induces bidirectional dependencies between adjacent blocks, which
need to be taken carefully into account in the secrecy analysis.

These bidirectional dependencies involve elements from adjacent blocks whose indices belong
to the “low entropy sets given eavesdropper observations”. Consequently, in order to prove that the
polar coding scheme satisfies the strong secrecy condition, we have introduced a secret-key whose
length becomes negligible in terms of rate as the number of blocks grows indefinitely. In the proposed
polar coding scheme, this key has been used to randomize part of these elements from any block that
are repeated in the previous (or next) one. In this way, we can analyze the dependencies between all
random variables involved in the secrecy analysis by means of a causal Bayesian graph and apply
d-separation to prove that the polar coding scheme induces eavesdropper’s observations that are
statistically independent of one another.

Despite the good performance of the polar coding schemes, some issues still persist. First, it is
worth saying that the additional secret transmission (that is negligible in terms of rate) required to
initialize the decoding algorithms at both receivers can be omitted by using a similar approach as in
[29], where an initialization phase to generate a secret-key can be performed without worsening the
communication rate. On the other hand, how to replace the random decisions entirely by deterministic
ones in SC encoding is a problem that still remains unsolved. Additionally, we conjecture that the
previous secret-keys that are used to prove independence between blocks are not necessary. However,
how to prove this independence without using them seems a difficult problem to address at this point.
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