8 research outputs found

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Object

    Full text link
    We consider the challenging problem of online planning for a team of agents to autonomously search and track a time-varying number of mobile objects under the practical constraint of detection range limited onboard sensors. A standard POMDP with a value function that either encourages discovery or accurate tracking of mobile objects is inadequate to simultaneously meet the conflicting goals of searching for undiscovered mobile objects whilst keeping track of discovered objects. The planning problem is further complicated by misdetections or false detections of objects caused by range limited sensors and noise inherent to sensor measurements. We formulate a novel multi-objective POMDP based on information theoretic criteria, and an online multi-object tracking filter for the problem. Since controlling multi-agent is a well known combinatorial optimization problem, assigning control actions to agents necessitates a greedy algorithm. We prove that our proposed multi-objective value function is a monotone submodular set function; consequently, the greedy algorithm can achieve a (1-1/e) approximation for maximizing the submodular multi-objective function.Comment: Accepted for publication to the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). Added algorithm 1, background on MPOMDP and OSP

    Influence-Optimistic Local Values for Multiagent Planning --- Extended Version

    Get PDF
    Recent years have seen the development of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions. To allow for meaningful benchmarking through measurable quality guarantees on a very general class of problems, this paper introduces a family of influence-optimistic upper bounds for factored decentralized partially observable Markov decision processes (Dec-POMDPs) that do not have factored value functions. Intuitively, we derive bounds on very large multiagent planning problems by subdividing them in sub-problems, and at each of these sub-problems making optimistic assumptions with respect to the influence that will be exerted by the rest of the system. We numerically compare the different upper bounds and demonstrate how we can achieve a non-trivial guarantee that a heuristic solution for problems with hundreds of agents is close to optimal. Furthermore, we provide evidence that the upper bounds may improve the effectiveness of heuristic influence search, and discuss further potential applications to multiagent planning.Comment: Long version of IJCAI 2015 paper (and extended abstract at AAMAS 2015

    A Decoupling Principle for Simultaneous Localization and Planning Under Uncertainty in Multi-Agent Dynamic Environments

    Get PDF
    Simultaneous localization and planning for nonlinear stochastic systems under process and measurement uncertainties is a challenging problem. In its most general form, it is formulated as a stochastic optimal control problem in the space of feedback policies. The Hamilton-Jacobi-Bellman equation provides the theoretical solution of the optimal problem; but, as is typical of almost all nonlinear stochastic systems, optimally solving the problem is intractable. Moreover, even if an optimal solution was obtained, it would require centralized control, while multi-agent mobile robotic systems under dynamic environments require decentralized solutions. In this study, we aim for a theoretically sound solution for various modes of this problem, including the single-agent and multi-agent variations with perfect and imperfect state information, where the underlying state, control and observation spaces are continuous with discrete-time models. We introduce a decoupling principle for planning and control of multi-agent nonlinear stochastic systems based on a small noise asymptotics. Through this decoupling principle, under small noise, the design of the real-time feedback law can be decoupled from the off-line design of the nominal trajectory of the system. Further, for a multi-agent problem, the design of the feedback laws for different agents can be decoupled from each other, reducing the centralized problem to a decentralized problem requiring no communication during execution. The resulting solution is quantifiably near-optimal. We establish this result for all the above-mentioned variations, which results in the following variants: Trajectory-optimized Linear Quadratic Regulator (T-LQR), Multi-agent T-LQR (MT-LQR), Trajectory-optimized Linear Quadratic Gaussian (T-LQG), and Multi-agent T-LQG (MT-LQG). The decoupling principle provides the conditions under which a decentralized linear Gaussian system with a quadratic approximation of the cost, obtained by linearization around an optimally designed nominal trajectory can be utilized to control the nonlinear system. The resulting decentralized feedback solution at runtime, being decoupled with respect to the mobile agents, requires no communication between the agents during the execution phase. Moreover, the complexity of the solution vis-a-vis the computation of the nominal trajectory as well as the closed-loop gains is tractable with low polynomial orders of computation. Experimental implementation of the solution shows that the results hold for moderate levels of noise with high probability. Further optimizing the performance of this approach we show how to design a special cost function for the problem with imperfect state measurement that takes advantage of the fact that the estimation covariance of a linear Gaussian system is deterministic and not dependent on the observations. This design, which corresponds in our overall design to “belief space planning”, incorporates the consequently deterministic cost of the stochastic feedback system into the deterministic design of the nominal trajectory to obtain an optimal nominal trajectory with the best estimation performance. Then, it utilizes the T-LQG approach to design an optimal feedback law to track the designed nominal trajectory. This iterative approach can be used to further tune both the open loop as well as the decentralized feedback gain portions of the overall design. We also provide the multi-agent variant of this approach based on the MT-LQG method. Based on the near-optimality guarantees of the decoupling principle and the TLQG approach, we analyze the performance and correctness of a well-known heuristic in robotic path planning. We show that optimizing measures of the observability Gramian as a surrogate for estimation performance may provide irrelevant or misleading trajectories for planning under observation uncertainty. We then consider systems with non-Gaussian perturbations. An alternative heuristic method is proposed that aims for fast planning in belief space under non- Gaussian uncertainty. We provide a special design approach based on particle filters that results in a convex planning problem implemented via a model predictive control strategy in convex environments, and a locally convex problem in non-convex environments. The environment here refers to the complement of the region in Euclidean space that contains the obstacles or “no fly zones”. For non-convex dynamic environments, where the no-go regions change dynamically with time, we design a special form of an obstacle penalty function that incorporates non-convex time-varying constraints into the cost function, so that the decoupling principle still applies to these problems. However, similar to any constrained problem, the quality of the optimal nominal trajectory is dependent on the quality of the solution obtainable for the nonlinear optimization problem. We simulate our algorithms for each of the problems on various challenging situations, including for several nonlinear robotic models and common measurement models. In particular, we consider 2D and 3D dynamic environments for heterogeneous holonomic and non-holonomic robots, and range and bearing sensing models. Future research can potentially extend the results to more general situations including continuous-time models
    corecore