6 research outputs found

    Towards an auditable cryptographic access control to high-value sensitive data

    Get PDF
    We discuss the challenge of achieving an auditable key management for cryptographic access control to high-value sensitive data. In such settings it is important to be able to audit the key management process - and in particular to be able to provide verifiable proofs of key generation. The auditable key management has several possible use cases in both civilian and military world. In particular, the new regulations for protection of sensitive personal data, such as GDPR, introduce strict requirements for handling of personal data and apply a very restrictive definition of what can be considered a personal data. Cryptographic access control for personal data has a potential to become extremely important for preserving industrial ability to innovate, while protecting subject\u27s privacy, especially in the context of widely deployed modern monitoring, tracking and profiling capabilities, that are used by both governmental institutions and high-tech companies. However, in general, an encrypted data is still considered as personal under GDPR and therefore cannot be, e.g., stored or processed in a public cloud or distributed ledger. In our work we propose an identity-based cryptographic framework that ensures confidentiality, availability, integrity of data while potentially remaining compliant with the GDPR framework

    Post-Quantum Era Privacy Protection for Intelligent Infrastructures

    Get PDF
    As we move into a new decade, the global world of Intelligent Infrastructure (II) services integrated into the Internet of Things (IoT) are at the forefront of technological advancements. With billions of connected devices spanning continents through interconnected networks, security and privacy protection techniques for the emerging II services become a paramount concern. In this paper, an up-to-date privacy method mapping and relevant use cases are surveyed for II services. Particularly, we emphasize on post-quantum cryptography techniques that may (or must when quantum computers become a reality) be used in the future through concrete products, pilots, and projects. The topics presented in this paper are of utmost importance as (1) several recent regulations such as Europe's General Data Protection Regulation (GDPR) have given privacy a significant place in digital society, and (2) the increase of IoT/II applications and digital services with growing data collection capabilities are introducing new threats and risks on citizens' privacy. This in-depth survey begins with an overview of security and privacy threats in IoT/IIs. Next, we summarize some selected Privacy-Enhancing Technologies (PETs) suitable for privacy-concerned II services, and then map recent PET schemes based on post-quantum cryptographic primitives which are capable of withstanding quantum computing attacks. This paper also overviews how PETs can be deployed in practical use cases in the scope of IoT/IIs, and maps some current projects, pilots, and products that deal with PETs. A practical case study on the Internet of Vehicles (IoV) is presented to demonstrate how PETs can be applied in reality. Finally, we discuss the main challenges with respect to current PETs and highlight some future directions for developing their post-quantum counterparts

    Towards an auditable cryptographic access control to high-value sensitive data

    Get PDF
    We discuss the challenge of achieving an auditable key management for cryptographic access control to high-value sensitive data. In such settings it is important to be able to audit the key management process - and in particular to be able to provide verifiable proofs of key generation. The auditable key management has several possible use cases in both civilian and military world. In particular, the new regulations for protection of sensitive personal data, such as GDPR, introduce strict requirements for handling of personal data and apply a very restrictive definition of what can be considered a personal data. Cryptographic access control for personal data has a potential to become extremely important for preserving industrial ability to innovate, while protecting subject's privacy, especially in the context of widely deployed modern monitoring, tracking and profiling capabilities, that are used by both governmental institutions and high-tech companies. However, in general, an encrypted data is still considered as personal under GDPR and therefore cannot be, e.g., stored or processed in a public cloud or distributed ledger. In our work we propose an identity-based cryptographic framework that ensures confidentiality, availability, integrity of data while potentially remaining compliant with the GDPR framework

    Post-Quantum Secure Identity-Based Encryption Scheme Using Random Integer Lattices for IoT-Enabled AI Applications

    Get PDF
    Identity-based encryption is an important cryptographic system that is employed to ensure confidentiality of a message in communication. This article presents a provably secure identity based encryption based on post quantum security assumption. The security of the proposed encryption is based on the hard problem, namely Learning with Errors on integer lattices. This construction is anonymous and produces pseudo random ciphers. Both public-key size and ciphertext-size have been reduced in the proposed encryption as compared to those for other relevant schemes without compromising the security. Next, we incorporate the constructed identity based encryption (IBE) for Internet of Things (IoT) applications, where the IoT smart devices send securely the sensing data to their nearby gateway nodes(s) with the help of IBE and the gateway node(s) secure aggregate the data from the smart devices by decrypting the messages using the proposed IBE decryption. Later, the gateway nodes will securely send the aggregated data to the cloud server(s) and the Big data analytics is performed on the authenticated data using the Artificial Intelligence (AI)/Machine Learning (ML) algorithms for accurate and better predictions

    Internet of things security: A top-down survey

    Get PDF
    International audienceInternet of Things (IoT) is one of the promising technologies that has attracted a lot of attention in both industrial and academic fields these years. It aims to integrate seamlessly both physical and digital worlds in one single ecosystem that makes up a new intelligent era of Internet. This technology offers a huge business value for organizations and provides opportunities for many existing applications such as energy, healthcare and other sectors. However, as new emergent technology, IoT suffers from several security issues which are most challenging than those from other fields regarding its complex environment and resources-constrained IoT devices. A lot of researches have been initiated in order to provide efficient security solutions in IoT, particularly to address resources constraints and scalability issues. Furthermore, some technologies related to networking and cryptocurrency fields such as Software Defined Networking (SDN) and Blockchain are revolutionizing the world of the Internet of Things thanks to their efficiency and scalability. In this paper, we provide a comprehensive top down survey of the most recent proposed security and privacy solutions in IoT. We discuss particularly the benefits that new approaches such as blockchain and Software Defined Networking can bring to the security and the privacy in IoT in terms of flexibility and scalability. Finally, we give a general classification of existing solutions and comparison based on important parameters

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed
    corecore