197 research outputs found

    Post-processing of association rules.

    Get PDF
    In this paper, we situate and motivate the need for a post-processing phase to the association rule mining algorithm when plugged into the knowledge discovery in databases process. Major research effort has already been devoted to optimising the initially proposed mining algorithms. When it comes to effectively extrapolating the most interesting knowledge nuggets from the standard output of these algorithms, one is faced with an extreme challenge, since it is not uncommon to be confronted with a vast amount of association rules after running the algorithms. The sheer multitude of generated rules often clouds the perception of the interpreters. Rightful assessment of the usefulness of the generated output introduces the need to effectively deal with different forms of data redundancy and data being plainly uninteresting. In order to do so, we will give a tentative overview of some of the main post-processing tasks, taking into account the efforts that have already been reported in the literature.

    Mining Profitable and Concise Patterns in Large-Scale Internet of Things Environments

    Get PDF
    In recent years, HUIM (or a.k.a. high-utility itemset mining) can be seen as investigated in an extensive manner and studied in many applications especially in basket-market analysis and its relevant applications. Since current basket-market scenario also involves IoT equipment to collect information, i.e., sensor or smart devices, it is necessary to consider the mining of HUIs (or a.k.a. high-utility itemsets) in a large-scale database especially with IoT situations. First, a GA-based MapReduce model is presented in this work known as GMR-Miner for mining closed patterns with high utilization in large-scale databases. The -means model is initially adopted to group transactions regarding their relevant correlation based on the frequency factor. A genetic algorithm (GA) is utilized in the developed MapReduce framework that can be used to explore the potential and possible candidates in a limited time. Also, the developed 3-tier MapReduce model can be easily deployed in Spark for the handlings of any database of large scale for knowledge discovery of closed patterns with high utilization. We created sets of extensive experimental environments for evaluating the results of the developed GMR-Miner compared to the well-known and state-of-the-art CLS-Miner. We present our in-depth results to show that the developed GMR-Miner outperforms CLS-Miner in many criteria, i.e., memory usage, scalability, and runtime.publishedVersio

    An Improved Technique for Multi-Dimensional Constrained Gradient Mining

    Get PDF
    Multi-dimensional Constrained Gradient Mining, which is an aspect of data mining, is based on mining constrained frequent gradient pattern pairs with significant difference in their measures in transactional database. Top-k Fp-growth with Gradient Pruning and Top-k Fp-growth with No Gradient Pruning were the two algorithms used for Multi-dimensional Constrained Gradient Mining in previous studies. However, these algorithms have their shortcomings. The first requires construction of Fp-tree before searching through the database and the second algorithm requires searching of database twice in finding frequent pattern pairs. These cause the problems of using large amount of time and memory space, which retrogressively make mining of database cumbersome.  Based on this anomaly, a new algorithm that combines Top-k Fp-growth with Gradient pruning and Top-k Fp-growth with No Gradient pruning is designed to eliminate these drawbacks. The new algorithm called Top-K Fp-growth with support Gradient pruning (SUPGRAP) employs the method of scanning the database once, by searching for the node and all the descendant of the node of every task at each level. The idea is to form projected Multidimensional Database and then find the Multidimensional patterns within the projected databases. The evaluation of the new algorithm shows significant improvement in terms of time and space required over the existing algorithms.  &nbsp

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    OLEMAR: An Online Environment for Mining Association Rules in Multidimensional Data

    Get PDF
    Data warehouses and OLAP (online analytical processing) provide tools to explore and navigate through data cubes in order to extract interesting information under different perspectives and levels of granularity. Nevertheless, OLAP techniques do not allow the identification of relationships, groupings, or exceptions that could hold in a data cube. To that end, we propose to enrich OLAP techniques with data mining facilities to benefit from the capabilities they offer. In this chapter, we propose an online environment for mining association rules in data cubes. Our environment called OLEMAR (online environment for mining association rules), is designed to extract associations from multidimensional data. It allows the extraction of inter-dimensional association rules from data cubes according to a sum-based aggregate measure, a more general indicator than aggregate values provided by the traditional COUNT measure. In our approach, OLAP users are able to drive a mining process guided by a meta-rule, which meets their analysis objectives. In addition, the environment is based on a formalization, which exploits aggregate measures to revisit the definition of the support and the confidence of discovered rules. This formalization also helps evaluate the interestingness of association rules according to two additional quality measures: lift and loevinger. Furthermore, in order to focus on the discovered associations and validate them, we provide a visual representation based on the graphic semiology principles. Such a representation consists in a graphic encoding of frequent patterns and association rules in the same multidimensional space as the one associated with the mined data cube. We have developed our approach as a component in a general online analysis platform called Miningcubes according to an Apriori-like algorithm, which helps extract inter-dimensional association rules directly from materialized multidimensional structures of data. In order to illustrate the effectiveness and the efficiency of our proposal, we analyze a real-life case study about breast cancer data and conduct performance experimentation of the mining process

    A new data stream mining algorithm for interestingness-rich association rules

    Get PDF
    Frequent itemset mining and association rule generation is a challenging task in data stream. Even though, various algorithms have been proposed to solve the issue, it has been found out that only frequency does not decides the significance interestingness of the mined itemset and hence the association rules. This accelerates the algorithms to mine the association rules based on utility i.e. proficiency of the mined rules. However, fewer algorithms exist in the literature to deal with the utility as most of them deals with reducing the complexity in frequent itemset/association rules mining algorithm. Also, those few algorithms consider only the overall utility of the association rules and not the consistency of the rules throughout a defined number of periods. To solve this issue, in this paper, an enhanced association rule mining algorithm is proposed. The algorithm introduces new weightage validation in the conventional association rule mining algorithms to validate the utility and its consistency in the mined association rules. The utility is validated by the integrated calculation of the cost/price efficiency of the itemsets and its frequency. The consistency validation is performed at every defined number of windows using the probability distribution function, assuming that the weights are normally distributed. Hence, validated and the obtained rules are frequent and utility efficient and their interestingness are distributed throughout the entire time period. The algorithm is implemented and the resultant rules are compared against the rules that can be obtained from conventional mining algorithms
    • …
    corecore