4 research outputs found

    When Data Fly: An Open Data Trading System in Vehicular Ad Hoc Networks

    Get PDF
    Communication between vehicles and their environment (i.e., vehicle-to-everything or V2X communication) in vehicular ad hoc networks (VANETs) has become of particular importance for smart cities. However, economic challenges, such as the cost incurred by data sharing (e.g., due to power consumption), hinder the integration of data sharing in open systems into smart city applications, such as dynamic environmental zones. Moving from open data sharing to open data trading can address the economic challenges and incentivize vehicle drivers to share their data. In this context, integrating distributed ledger technology (DLT) into open systems for data trading is promising for reducing the transaction cost of payments in data trading, avoiding dependencies on third parties, and guaranteeing openness. However, because the integration of DLT conflicts with the short available communication time between fast moving objects in VANETs, it remains unclear how open data trading in VANETs using DLT should be designed to be viable. In this work, we present a system design for data trading in VANETs using DLT. We measure the required communication time for data trading between a vehicle and a roadside unit in a real scenario and estimate the associated cost. Our results show that the proposed system design is technically feasible and economically viable

    Distributed Ledger Technology (DLT) Applications in Payment, Clearing, and Settlement Systems:A Study of Blockchain-Based Payment Barriers and Potential Solutions, and DLT Application in Central Bank Payment System Functions

    Get PDF
    Payment, clearing, and settlement systems are essential components of the financial markets and exert considerable influence on the overall economy. While there have been considerable technological advancements in payment systems, the conventional systems still depend on centralized architecture, with inherent limitations and risks. The emergence of Distributed ledger technology (DLT) is being regarded as a potential solution to transform payment and settlement processes and address certain challenges posed by the centralized architecture of traditional payment systems (Bank for International Settlements, 2017). While proof-of-concept projects have demonstrated the technical feasibility of DLT, significant barriers still hinder its adoption and implementation. The overarching objective of this thesis is to contribute to the developing area of DLT application in payment, clearing and settlement systems, which is still in its initial stages of applications development and lacks a substantial body of scholarly literature and empirical research. This is achieved by identifying the socio-technical barriers to adoption and diffusion of blockchain-based payment systems and the solutions proposed to address them. Furthermore, the thesis examines and classifies various applications of DLT in central bank payment system functions, offering valuable insights into the motivations, DLT platforms used, and consensus algorithms for applicable use cases. To achieve these objectives, the methodology employed involved a systematic literature review (SLR) of academic literature on blockchain-based payment systems. Furthermore, we utilized a thematic analysis approach to examine data collected from various sources regarding the use of DLT applications in central bank payment system functions, such as central bank white papers, industry reports, and policy documents. The study's findings on blockchain-based payment systems barriers and proposed solutions; challenge the prevailing emphasis on technological and regulatory barriers in the literature and industry discourse regarding the adoption and implementation of blockchain-based payment systems. It highlights the importance of considering the broader socio-technical context and identifying barriers across all five dimensions of the social technical framework, including technological, infrastructural, user practices/market, regulatory, and cultural dimensions. Furthermore, the research identified seven DLT applications in central bank payment system functions. These are grouped into three overarching themes: central banks' operational responsibilities in payment and settlement systems, issuance of central bank digital money, and regulatory oversight/supervisory functions, along with other ancillary functions. Each of these applications has unique motivations or value proposition, which is the underlying reason for utilizing in that particular use case

    Efficient micropayment of cryptocurrency from Blockchains

    No full text
    Cryptocurrencies based on blockchain infrastructures have shown their advantages such as double-spending resistance and decentralization. Each transaction of cryptocurrency requires a certain amount of computation and attracts transaction fees. Often, in practice, many transactions are small; therefore, they add computation and transmission overheads to the system. In this paper, we introduce a cost-saving approach, which significantly reduces transaction time and storage for small amount of payment, i.e. micropayment. In our approach, with the notion of ‘transaction commitment’, the computation of each transaction is much more efficient. Therefore, our approach has advantages in comparison of other cryptocurrency systems such as the bitcoin system. Our approach can be applied to other existing cryptocurrency systems

    Efficient Micropayment of Cryptocurrency from Blockchains

    No full text
    Cryptocurrencies based on blockchain infrastructures have shown their advantages such as double-spending resistance and decentralization. Each transaction of cryptocurrency requires a certain amount of computation and attracts transaction fees. Often, in practice, many transactions are small; therefore, they add computation and transmission overheads to the system. In this paper, we introduce a cost-saving approach, which significantly reduces transaction time and storage for small amount of payment, i.e. micropayment. In our approach, with the notion of \u27transaction commitment\u27, the computation of each transaction is much more efficient. Therefore, our approach has advantages in comparison of other cryptocurrency systems such as the bitcoin system. Our approach can be applied to other existing cryptocurrency systems
    corecore