33,010 research outputs found

    Designing a resource-efficient data structure for mobile data systems

    Get PDF
    Designing data structures for use in mobile devices requires attention on optimising data volumes with associated benefits for data transmission, storage space and battery use. For semi-structured data, tree summarisation techniques can be used to reduce the volume of structured elements while dictionary compression can efficiently deal with value-based predicates. This project seeks to investigate and evaluate an integration of the two approaches. The key strength of this technique is that both structural and value predicates could be resolved within one graph while further allowing for compression of the resulting data structure. As the current trend is towards the requirement for working with larger semi-structured data sets this work would allow for the utilisation of much larger data sets whilst reducing requirements on bandwidth and minimising the memory necessary both for the storage and querying of the data

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    Pattern based processing of XPath queries

    Get PDF
    As the popularity of areas including document storage and distributed systems continues to grow, the demand for high performance XML databases is increasingly evident. This has led to a number of research eorts aimed at exploiting the maturity of relational database systems in order to in- crease XML query performance. In our approach, we use an index structure based on a metamodel for XML databases combined with relational database technology to facilitate fast access to XML document elements. The query process involves transforming XPath expressions to SQL which can be executed over our optimised query engine. As there are many dierent types of XPath queries, varying processing logic may be applied to boost performance not only to indi- vidual XPath axes, but across multiple axes simultaneously. This paper describes a pattern based approach to XPath query processing, which permits the execution of a group of XPath location steps in parallel

    Scalable Similarity Search for Molecular Descriptors

    Full text link
    Similarity search over chemical compound databases is a fundamental task in the discovery and design of novel drug-like molecules. Such databases often encode molecules as non-negative integer vectors, called molecular descriptors, which represent rich information on various molecular properties. While there exist efficient indexing structures for searching databases of binary vectors, solutions for more general integer vectors are in their infancy. In this paper we present a time- and space- efficient index for the problem that we call the succinct intervals-splitting tree algorithm for molecular descriptors (SITAd). Our approach extends efficient methods for binary-vector databases, and uses ideas from succinct data structures. Our experiments, on a large database of over 40 million compounds, show SITAd significantly outperforms alternative approaches in practice.Comment: To be appeared in the Proceedings of SISAP'1

    siEDM: an efficient string index and search algorithm for edit distance with moves

    Full text link
    Although several self-indexes for highly repetitive text collections exist, developing an index and search algorithm with editing operations remains a challenge. Edit distance with moves (EDM) is a string-to-string distance measure that includes substring moves in addition to ordinal editing operations to turn one string into another. Although the problem of computing EDM is intractable, it has a wide range of potential applications, especially in approximate string retrieval. Despite the importance of computing EDM, there has been no efficient method for indexing and searching large text collections based on the EDM measure. We propose the first algorithm, named string index for edit distance with moves (siEDM), for indexing and searching strings with EDM. The siEDM algorithm builds an index structure by leveraging the idea behind the edit sensitive parsing (ESP), an efficient algorithm enabling approximately computing EDM with guarantees of upper and lower bounds for the exact EDM. siEDM efficiently prunes the space for searching query strings by the proposed method, which enables fast query searches with the same guarantee as ESP. We experimentally tested the ability of siEDM to index and search strings on benchmark datasets, and we showed siEDM's efficiency.Comment: 23 page
    corecore