
Pattern Based Processing of XPath Queries∗

Gerard Marks
Interoperable Systems Group

Dublin City University
Dublin, Ireland

gmarks@computing.dcu.ie

Mark Roantree
Interoperable Systems Group

Dublin City University
Dublin, Ireland

mark.roantree@computing.dcu.ie

ABSTRACT
As the popularity of areas including document storage and
distributed systems continues to grow, the demand for high
performance XML databases is increasingly evident. This
has led to a number of research efforts aimed at exploiting
the maturity of relational database systems in order to in-
crease XML query performance. In our approach, we use an
index structure based on a metamodel for XML databases
combined with relational database technology to facilitate
fast access to XML document elements. The query process
involves transforming XPath expressions to SQL which can
be executed over our optimised query engine. As there are
many different types of XPath queries, varying processing
logic may be applied to boost performance not only to indi-
vidual XPath axes, but across multiple axes simultaneously.
This paper describes a pattern based approach to XPath
query processing, which permits the execution of a group of
XPath location steps in parallel.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems Query process-
ing

General Terms
Algorithms, Performance, Languages

Keywords
XML Storage, Mapping techniques, XPath Optimisation,
Patterns

1. INTRODUCTION
In many cases, document databases are the choice for or-

ganisations such as government agencies over more tradi-
tional data-centered databases. As a result, there are now
numerous XML database implementations [9, 10, 11]. For

∗Funded by Enterprise Ireland Grant No. CFTD/07/201

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS08 2008, September 10-12, Coimbra [Portugal]
Editor: Bipin C. DESAI
Copyright 2008 ACM 978-1-60558-188-0/08/09 ...$5.00.

this purpose, the W3C [12] have standardised languages such
as XPath and XQuery with path expressions to process the
tree structures of these databases.

A problem with XML databases is associated with poor
performance for certain database queries. While we have ad-
dressed this issue in our FASTX XML database using an op-
timised index [13, 17] and a metamodel for XML databases
[16], we now optimise further by extracting metadata from
the query itself. Using this query metadata, we can group
a number of XPath location steps that have similar charac-
teristics together, and process them in parallel.

1.1 Background and Contribution
Given an XPath query, the processor must locate the re-

sult set that satisfies the content and structural conditions
specified by the query. Suitable indexing structures together
with query processing strategies can significantly improve
the performance of this matching operation. There are a
number of index-based query processing strategies utilised
by XML databases [1, 2, 17, 16, 22, 23].

In this paper, we discuss our approach to XML query
optimisation. Our approach is to parse the XPath query
in order to separate and classify a number of location steps
based on:

1. Their axis type.

2. The presence of predicates.

3. The location of predicates within the query.

Using these three factors we implemented a number of
reusable solutions (patterns), each of which parse a group of
XPath location steps, and transform them to SQL for execu-
tion across our relational XML repository. This allows us to
use the most efficient processing logic to process each query
segment in order to boost the performance of the overall
query. The purpose of this paper is to demonstrate a proof-
of-concept for this approach by describing those patterns
which currently map a group of XPath location steps to SQL
and how using a subset of XPath queries, we can demon-
strate good performance gains. A more complete XPath to
SQL mapping process forms part of our ongoing work.

Contribution. This work presents a pattern based ap-
proach for optimising XPath queries by transforming a group
of XPath location steps into SQL commands that can be exe-
cuted in parallel. We exploit our index structure to process
XPath location steps in parallel when one or more of the
patterns described in section 3 may be applied to the query

179

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11308761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

while the remaining (individual) location steps are processed
using the techniques described in existing work [16].

Much of the related research in this area boosts the perfor-
mance of XPath queries by targeting each of the 13 XPath
axes individually where the resulting context nodes from
each step serve as input to the next location step in order
[28, 17, 16].

An extension of this idea is to process multiple location
steps in parallel [19]. We extend this approach by identifying
a number of patterns that permit parallel processing, and
use query metadata to correctly apply the relevant patterns
to the query.

Paper Structure In 2, we describe XPath processing
and the serial nature of location step evaluation before in-
troducing our framework for parallel evaluation of location
steps. In 3, we describe the patterns identified for parallel
processing of XPath location steps. In 4, we describe our
experiment sets executed across two different databases and
provide an analysis of the outcome. In 5, we discuss related
research in the area of XML query optimisation. Finally, in
6, we provide some conclusions.

2. FRAMEWORK ARCHITECTURE

2.1 Overview
An XPath query is a “location path” to a set of nodes

in an XML document. Each component of this path is a
“location step” made up of a node test, axis and zero or
more predicates. The XPath query language has 13 axes
(eg. descendant, following, ancestor) and allows an XML
document to be queried as a tree of nodes which returns
subtrees relevant to the XPath query.

In order to process a number of location steps in parallel
we must identify candidate location steps within the query
and group them. We call this group of location steps a
partial query.

A breakdown of an XPath query into its individual loca-
tion steps is shown in table 1.

Example 1. Find all payments made in the North Amer-
ican region using a Credit Card when only one item was
purchased.

/site/regions//item[location = ‘United States’][quantity =
‘1’][.//payment = ‘Creditcard’]/parent::namerica

Step Axis NodeTest Predicates
1 child site
2 child regions
3 descendant item child::location =

‘United States’
child::quantity = ‘1’
descendant::payment =
‘Creditcard’

4 parent namerica

Table 1: Location Steps for Example 1

A system which processes XPath serially will target each
location step individually and from left to right the output
of one step serves as the input to the next. The output of
the right most step is the final result for the query.

In a parallel system, a number of location steps may be
processed simultaneously using a single SQL statement, avo-

iding unnecessary application layer processing for each loca-
tion step. Our approach provides an optimisation framework
in which several patterns are exploited to improve query per-
formance.

2.2 Optimisation Framework
By analysing an XPath query, and extracting metadata,

we have found that much of this information is repeated
throughout an arbitrary group of queries. Thus, we have
identified a number of patterns which enable us to reuse
identified solutions for queries which fall under a particular
classification. A detailed description of patterns is presented
in section 3.

The generic steps in our process for all patterns involves
parsing a query to generate the necessary metadata to per-
mit a classification, selection and ordering process in steps
1 and 2. In Step 3, the relevant algorithm(s) are invoked to
transform the XPath query to SQL prior to query execution.

1. Classification Process. This step takes the XPath
query as input and parses each location step in order
extracting metadata. The breakdown of the example
in Table 1 shows that the query has four location steps
containing the: {child, descendant and parent} axes,
and the third location step has three predicates. The
following properties are used to define the classification
rules for each pattern:

Property 1. The Axes to be processed in paral-
lel must belong to the following set: {descendant,
descendant-or-self, child, self and attribute}.

Property 2. Only the right most location step may
contain predicate filters.

Later, in section 3, we describe four patterns for XPath
processing: the FullPath, LeafPath, Filter, and Parent
patterns. At this point, we provide an overview of how
they are selected. Using the query metadata extracted
(see table 1) the classification rules are as follows:

• The FullPath Pattern may be applied to a group
of consecutive location steps when properties 1
and 2 hold.

• The LeafPath Pattern has the same classification
rules as the FullPath Pattern and thus, both are
always an option when properties 1 and 2 hold.
A decision as to the highest performing paterrn
is made at the next step.

• The Filter Pattern may be applied to a group of
consecutive location steps when property 1 holds.

• The Parent Pattern may be applied when a lo-
cation step contains the Parent axis and is im-
mediately preceded by the FullPath or LeafPath
patterns. It may also be applied where paral-
lelism does not exist as a single location step can
be integrated into the Parent Pattern’s processing
logic.

The output from this classification process is the pat-
tern(s) which may be applied, and the location steps
they apply to. In the case of Example 1, the output
from this step is:

180

(a) The FullPath pattern may be applied to location
steps 1, 2 & 3.

(b) The LeafPath pattern may be applied to location
steps 1, 2 & 3.

(c) The Parent pattern may be applied to location
step 4 and thus, allows a two-pattern combination
using one of the patterns above.

As multiple patterns are identified for various location
steps, the next step is to select the highest performing
of the patterns identified above.

2. Pattern Selection. The selection process relies on
the metadata we can extract from the query and the
XML repository. This metadata falls into three cate-
gories:

(a) Data related to the semantics of the XPath query
language.

(b) Data related to the structure of the query.

(c) Data related elements within the XML repository.

We present examples of this selection process in the
experiments section 4. In all cases, experimental eval-
uation has shown, it is optimal to select the pattern
which maximises parallelism. Taking the inputs from
the previous step the Parent Pattern in conjunction
with the FullPath or LeafPath Pattern can process all
four location steps. Thus, either the Parent-FullPath
or Parent-LeafPath combination of patterns will be se-
lected.

To select between these two combinations the proces-
sor will find the number of FullPath instances using
metadata from the XML repository. Experimental
evaluation indicates that FullPath Pattern performs
better when the number of FullPath instances is less
than 20,000. The number of FullPath instances for ex-
ample 1 is 43,500 therefore, Parent-LeafPath combina-
tion is chosen. A detailed description of this selection
process is provided in section 4.

Now that we have identified the patterns to be applied,
the next step is the XPath query transformation to
SQL.

3. Query Transformation. The input and output for
this step are:

(a) Input: The location steps to be processed, and
the pattern to be applied.

(b) Output: A single SQL statement.

In the case of our example the input is all four location
steps (see table 1) as the Parent-LeafPath combination
may be applied to the entire query. The parent pattern
is then executed (taking the LeafPath.SQLMAP() as
input) to parse the query extracting the required pa-
rameters for execution of the Parent.SQLMAP(Input:
LeafPath.SQLMAP) algorithm.

Each pattern has an algorithm which translates the
relevant group of XPath location steps to SQL. The
mapping algorithm for each pattern is identified by:
PatternName.SQLMAP(), these are shown in section
3.

The output of Parent.SQLMAP() is a single SQL state-
ment that serves as the input for the next step.

4. Query Execution. In the final step, SQL statements
are executed to return a set of nodes, which are used
to build the final result set (one or more XML docu-
ments).

3. PATTERNS
It has been suggested [21] that a pattern requires three

properties:

1. Context: A situation giving rise to a problem.

2. Problem: The recurring problem arising in that con-
text.

3. Solution: A proven resolution of the problem.

By analysing a large group of XPath queries across many
databases, we identified a number of situations where the
same solution could be applied to solve issues relating to
query performance. In each case, the solution involves pro-
cessing a group of location steps that have similar query
structures and XPath language properties in parallel.

Currently there are four patterns in FASTX, each of which
is described in this section. We use Null Pattern (NP) to
denote where the individual location step optimiser is used,
the details of which can be found in our previous work [19].
Table 2 shows how the patterns may be used.

Level Combination
1 {FPP}, {LPP}, {NP}
2 {FPP, PP}, {FPP, FP}

{LPP, PP}, {LPP, FP}
{NP, PP}, {NP, FP}

Table 2: Pattern Usage Combinations

Only patterns at level 1 may be executed in isolation. The
Parent Pattern (PP) is used in conjunction with NP, Full-
Path (FPP) or LeafPath (LP) pattern. The Filter Pattern
(FP) may be used with FPP, LP, and NP.

Before we discuss the patterns in detail we must intro-
duce a number of variables which are used throughout the
algorithms in this section.
BIT is used to represent the Base Index Table in the re-

lational index structure. Our index uses an extended Pre-
Order encoding scheme [17] to uniquely identify individual
elements and attributes in the XML document. We use PRE

to represent PreOrder values in the index. To permit hier-
archal traversal of an XML document, the PARENT element
in the BIT holds the PreOrder value of each element and
attributes parent. RFINAL holds the final SQL statement
resulting from the algorithm.

3.1 FullPath Pattern
A FullPath is a path from the document root node to

the node test of the right most location step in a group.
A LeafPath (described below) extends the FullPath to the
target nodes of any predicates that exist. Using the query
in example 1 table 3 shows this comparison.

The FullPath pattern is distinguished by the fact that
properties 1 and 2 must hold, and the structure of the SQL

181

Table 3: Compare Paths
FPP Paths (T1) LP Paths (T1)

/site/regions/africa/item /site/regions/africa/item/location
/site/regions/asia/item /site/regions/asia/item/location
/site/regions/australia/item /site/regions/australia/item/location
/site/regions/europe/item /site/regions/europe/item/location
/site/regions/namerica/item /site/regions/namerica/item/location
/site/regions/samerica/item /site/regions/samerica/item/location

/site/regions/africa/item/quantity
/site/regions/asia/item/quantity
/site/regions/australia/item/quantity
/site/regions/europe/item/quantity
/site/regions/namerica/item/quantity
/site/regions/samerica/item/quantity
/site/regions/africa/item/payment
/site/regions/asia/item/payment
/site/regions/australia/item/payment
/site/regions/europe/item/payment
/site/regions/namerica/item/payment
/site/regions/samerica/item/payment

statement resulting from the FullPath.SQLMAP() (see al-
gorithm 1). Examples of this are shown in the experiments
section 4.

Taking a group of location steps which adhere to these
properties, the query processor identifies the parameters re-
quired for the FullPath.SQLMAP() algorithm.

3.1.1 Parameter Extraction
There are two outputs: a collection of FullPaths (T1) see

table 3, and a set of query tuples containing node identifiers
and filters, (T2a ,TPa) to (T2n,TPn). In the case of example
1 these are:
T2a=location; TPa=‘United States’;
T2b=quantity; TPb=‘1’.
T2c=payment; TPc=‘Creditcard’.

3.2 LeafPath Pattern
The LeafPath pattern is so called because it extends the

path from the document root node directly to the target
node set of each predicate. The LeafPath pattern is a varia-
tion of the FullPath pattern and serves the same purpose (i.e.
locations steps must adhere to properties 1 and 2). How-
ever, experimental evidence indicates (see section 4) that
good performance gains result from selecting between these
two patterns. The selection process requires one extra step
for these two patterns in addition to query metadata.

We must find the number of instances of each FullPath
from the index. The performance hit is low as the number
of instances of each FullPath is calculated at index creation
time. As stated above, the FullPath pattern performs bet-
ter when the number of FullPath instances is in the range
less than 20,000 PreOrder [17] nodes. After this point ex-
perimental analysis indicates that the LeafPath pattern per-
forms better. The cause of this variation in performance is
related to the SQL statements derived from each patterns
SQLMAP(), we demonstrate a worked example of this in
section 4.

3.2.1 Parameter Extraction
There are two outputs: a collection of LeafPaths (T1), see

table 3, and a set of query filters, (T2a to T2n). In the case
of example 1 these are:
T2a=‘United States’;

Algorithm 1 FullPath.SQLMAP()

String[] S;
String RFINAL;
Collection T1; // FullPaths
Collection T2; // Predicate expressions
Collection Tp; // Predicate values
for each T2x and TPx do

S[1] += “SELECT PARENT FROM BIT WHERE
NAME = ‘ “+T2x+” ’ ”;
if value filter exists then

S[1] += “ AND VALUE = ‘ “+TPx+” ’ ”;
end if
if node test is attribute then

S[1] += “ AND N TYPE = ATTRIBUTE ”;
else

S[1] += “ AND N TYPE = ELEMENT ”;
end if
if more predicate expressions in T2 then

S[1] += “ INTERSECT ”;
end if

end for
for each T1x do

S[2] += ‘ “+T1x+” ’;
if more paths then

S[2] += “ OR FULLPATH = ”;
end if

end for
if no predicates then

RFINAL = “SELECT PRE FROM BIT WHERE
FULLPATH = ‘ “+S[2]+” ’ ”;

else
RFINAL = S[1] + “ AND PARENT IN (SELECT PRE
FROM BIT WHERE FULLPATH = ‘ “+S2+” ’) ”;

end if

T2b=‘1’.
T2c=‘Creditcard’.

3.3 Filter Pattern
This Filter pattern is used when property 1 holds, but

property 2 does not. This means that the locations steps
for this pattern may contain predicate filters which are not
contained in the right most location step.

3.3.1 Parameter Extraction
There are two outputs: a SQL (S1) statement resulting

from the logic of the adjoining pattern (see combinations
table 2), and a set of node tests (T1) where the first element
(T1a) is the name of the node(s) required and the remaining
node tests (T1b to T1n), let us filter backwards (using the
parent field in the BIT) to allow only nodes that are per-
mitted by the predicate filter to form part of the final result
set.

3.3.2 Performance Cost
There will be an additional SQL substatement for each

node test in T1. This is a limitation as the overall process-
ing time grows linearly by the number of elements in T1.
However, this pattern performs well when the size of T1 is
relatively small.

182

Algorithm 2 LeafPath.SQLMAP()

Collection T1; // collection of “FullPath” Strings
Collection T2; // collection of Predicate “VALUES”
String RFINAL = “(”;
String NodeType;
for Each FullPath IN T1 do

RFINAL += “SELECT “+NodeType+” FROM BIT
WHERE FullPath = ’T1x’“;
if value filter exists then

RFINAL += “ AND VALUE = “+T2x+” ”;
end if
if node test is attribute then

RFINAL += “ AND N TYPE = ATTRIBUTE ”;
else

RFINAL += “ AND N TYPE = ELEMENT ”;
end if
if node test unchanged and more FullPaths then

RFINAL += “ UNION ”;
end if
if node test changed then

R += “) INTERSECT (”;
end if

end for
RFINAL += “)”;

Algorithm 3 Filter.SQLMAP()

String[] S;
String RFINAL ;
Collection T1; // Node Tests
S[2] += “SELECT PRE FROM BIT WHERE NAME =
‘ “+T1a+” ’ ”;
for each node test in (T1b to T1n) do

S[3] += “ AND PARENT IN (SELECT PRE FROM
BIT WHERE NAME = ‘ “+T1x+” ’ ”;

end for
S[4] = “ AND PARENT IN (“+S1+” ”;
RFINAL = S[2] + S[3] + S[4] ;
for each node test in (T1b to T1n) do

RFINAL += “}”;
end for
RFINAL += “}”;

3.4 Parent Pattern
For an arbitrary query S, the Parent Pattern is used when:

1. A location step Sn contains the Parent axis.

2. The location step Sn-1 is contained in the group of
location steps processed by any of the patterns in the
set: {FPP, LP, NP}.

The Parent.SQLMAP() involves retrieving the SQL out-
put from the pattern used from the set in step 2 above, and
joining it with the SQL for Parent pattern to form a single
SQL statement.

3.4.1 Parameter Extraction
There are three outputs: a SQL (S[1]) statement which is

the output of the previous pattern executed to the imme-
diate left this pattern, a node test NT for the parent axis,
and a set of query tuples containing node identifiers and fil-

ters, (T2a ,TPa) to (T2n,TPn) where predicates exist for the
parent axis.

Algorithm 4 Parent.SQLMAP()

String S1;
String NT;
String RFINAL;
Collection T2;
Collection TP;
S1= getSQL(pattern);
RFINAL += “SELECT PRE FROM BIT WHERE
NAME = ‘ “+NT+” ’ AND PRE IN (”;
if hasPredicates then

for each predicate do
RFINAL += “ SELECT PARENT FROM BIT
WHERE NAME = ‘ “+T2x+” ’ ”;
if predicate has filter then

RFINAL += “ AND VALUE = ‘ “+TPx+” ’ ”;
end if
RFINAL += “ INTERSECT ”;

end for
end if
RFINAL = “SELECT PARENT FROM BIT WHERE
PRE IN (“+S1+”))”;

4. EXPERIMENTS AND RESULTS

4.1 Overview
In this section we evaluate sample queries and show the

comparison times between FASTX and industry leader eXist
to validate our approach. We also provide a work-through
for selected queries to describe the pattern processing and
evaluation in more detail. Experiments ran on a 2.66GHz In-
tel(R) Core(TM)2 Duo CPU machine with 3.25GB of RAM
using Windows XP Professional operating system and the
FASTX query processor was implemented using Java Vir-
tual Machine version 1.6. We altered the default JVM set-
tings from -Xmx128MB to -Xmx1024MB in order to permit
queries which return large result sets. The eXist database
(version=1.2.0-build=20080115) runs on a server with an
identical specification to that of the FASTX query proces-
sor and the default JVM settings were also changed from
the default to that identical to FASTX. Experiments used
two datasets. The first was the DBLP document library [4],
which is a single XML document containing over 10.5 mil-
lion elements, 2 million attributes, 6 levels and has a size of
439Mb. The second was the XMARK standard benchmark
for testing XML databases [5], automatically generated to
226Mb in size, has over 3 million elements, 0.7 million at-
tributes, and 11 levels. The FASTX index was deployed
using an Oracle 10g database, running on a Fedora 7 Linux
platform, with a 3.0GHz Pentium IV processor and 1GB of
RAM.

The queries in this section are largely taken from previous
work [1, 2, 17, 16, 22, 23]. Each query was executed five
times and the times recorded in milliseconds were then av-
eraged and displayed in table 4.2. The Comparison divides
the times of the eXist output by those of FASTX, indicat-
ing that a value of 1 represents an equal score; any figure
less than 1 represents a slower run for our approach; and
figures greater than 1 represents an improvement using our

183

approach, these can be seen in table 4.2.

4.2 Experiments
Table 4 contains the sixteen queries used in our experi-

ments, the axes and dataset used for each query, the Num-
ber of location Steps in each query (NOS), the Node Count
returned: NC and the Pattern(s) applied where relevant.

Query 11 returns: “All proceedings published after any
publication by Amit P. Sheth in 1990” and contains two lo-
cation steps which have the descendant and following axes
respectively. The node test for location step 1 contains the
wildcard character (*) which returns all elements which sat-
isfy the filters contained in the predicates (i.e. author=’Amit
P. Sheth’). This example shows how FASTX compares to
eXist for queries where no pattern may be applied as de-
scribed in section 3.

The other fifteen queries have at least one pattern applied
which, provide excellent response times when compared to
eXist, these are shown in the table in figure 4.2. The query
number is shown in column 1, followed by the query response
time for eXist in column 2 and the times for FASTX in
column 3. The comparison times as previously described in
this section are shown in column 4.

Using an example for each pattern type, we will discuss
the query response times.

4.3 Analysis for Query 3

Find all articles from August 1994.

4.3.1 Classification

The first step in the process is to identify the patterns
that are applicable to the query.

Input
/dblp//article[./month = ‘August’][./year = ‘1994’]

Output

• The FullPath pattern may be applied to location steps
1 & 2.

• The LeafPath pattern may be applied to location steps
1 & 2.

4.3.2 Pattern Selection

The SQL statement resulting from FullPath.SQLMAP()
differs greatly from that of LeafPath.SQLMAP() and the
choice between the two is crucial for optimal performance.
The cause of this variation in response times is attributed
to the time it takes to execute the SQL statements across
our index.

Experimental analysis shows us that the LeafPath.SQL-
MAP() performs better than the FullPath.SQLMAP() when
the number of elements returned by certain SQL query seg-
ments are very high. To illustrate this we must analyse the
two SQL statements and consider their processing times.
We will then discuss how the necessary data to make this
selection possible is gathered.

LeafPath.SQLMAP():

(SELECT PARENT FROM BIT WHERE
FullPath = ‘/dblp/article/month’
AND VALUE = ‘August’ AND N TYPE = ELEMENT)
INTERSECT
(SELECT PARENT FROM BIT WHERE

FullPath = ‘/dblp/article/year’
AND VALUE = ‘1994’ AND N TYPE = ELEMENT)

FullPath.SQLMAP():

SELECT PARENT FROM BIT WHERE NAME =
’month’
AND VALUE = ‘August’ AND N TYPE = ELEMENT
INTERSECT
SELECT PARENT FROM BIT WHERE NAME = ’year’
AND VALUE = ‘1994’ AND N TYPE = ELEMENT
AND PARENT IN
(SELECT PRE FROM BIT WHERE FULLPATH =
‘/dblp/article’)

When the cardinality of the set of nodes returned by the
FullPath(s) (i.e. /dblp/article) is large, the SQL engine must
compare a massive set of nodes against those identified by
the predicates. In the case of the FullPath.SQLMAP() the
last part of the SQL statement is:

(SELECT PRE FROM BIT WHERE FULLPATH =
‘/dblp/article’)

This select statement returns 373,228 nodes and the “IN”
construct in SQL is inefficient for sets of this magnitude. In
contrast the LeafPath.SQLMAP() goes directly to the leaf
nodes which are filtered further by the “AND VALUE =”
and “AND N TYPE =” part of each query segment. This
reduces the search space to a much smaller set of nodes, thus,
the LeafPath.SQLMAP() is much more responsive in this
instance. However, when the number of FullPath instances
is relatively small, the FullPath.SQLMAP() is the highest
performing of the two.

In order to find the number of FullPath instances in ad-
vance of the selection process, we exploit the CARDINALITY

field in the FULLPATH_TABLE which forms part of our index.
This metadata construct contains the number of instances
for each node in the XML repository and is immediately
available to the selection process. We discovered a thresh-
old, T=20,000 nodes, for the maximum number of elements
for the FullPath pattern. After this threshold value, the pro-
cessing algorithm selects the LeafPath pattern as it performs
better in this situation.

Table 5: Comparative Times
Query FPP LP
12 255 296
13 273 380
14 156 54
15 11,112 528
16 234 357

To illustrate why it is optimal to correctly select between
the FullPath and LeafPath Patterns, table 5 shows their
comparative times for queries 12-16. The fastest time in
each case is shown in bold. Continuing with our example,
the output from this step is:

Output
Apply the LeafPath pattern to location steps 1 & 2.

4.3.3 Query Transformation

The LeafPath.SQLMAP() algorithm is executed and the
resulting SQL is output.

184

Table 4: Experiment Details
Query Dataset Axes NOS NC Pattern

1 /dblp/article[year = ‘1990’] DBLP ch 2 6,758 FPP or LP
2 /dblp//author[.=‘John Sieg Jr.’] DBLP ch, des, anc 3 1 FPP or LP, NP

/ancestor::phdthesis
3 /dblp//article[./month = ‘August’] DBLP ch, des 2 12 FPP or LP

[./year = ‘1994’]
4 /dblp//inproceedings[author=‘Jim Gray’] DBLP ch, des 2 1 FPP or LP

[year=‘1980’]
5 //article/title[sub=’2’] DBLP des, ch 2 413 FPP or LP
6 /dblp//year[.=‘1990’] DBLP ch, des, par 3 57 PP

/parent::book
7 //year[.=’1990’]/parent::book[year = ‘1990’] DBLP des, par 2 1 PP

[author = ‘Ivan Bratko’]
8 //author[.=‘Peter Van Roy’] DBLP des, par 2 1 PP

/parent::mastersthesis
9 //year[.=‘1990’]/parent::book DBLP des, par 2 57 PP
10 /dblp/inproceedings DBLP ch 3 2 FP

[title=‘Semantic Analysis Patterns.’]/author
11 //*[author=‘Amit P. Sheth’][year=‘1990’] DBLP des, fol 2 2 NP

/following::inproceedings
[author=‘Serge Abiteboul’]

12 /site/regions//item XMARK ch, des 3 2413 FPP or LP
[quantity = ‘1’][payment = ‘Creditcard’]

13 /site/regions//item[location = ‘United States’] XMARK ch, des 3 1,801 FPP or LP
[quantity = ‘1’][payment = ‘Creditcard’]

14 /site/regions/asia/item XMARK ch, des 4 209 FPP or LP
[quantity = ‘1’][payment = ‘Creditcard’]

15 /site/regions/namerica/item XMARK ch, des 4 14,957 FPP or LP
[location = ‘United States’]

16 /site/regions//item XMARK ch, des, par 4 1 FPP or LP, PP
[location = ‘United States’][quantity = ‘1’]
[.//payment = ‘Creditcard’]/parent::namerica

4.3.4 Query Execution

The SQL statement is executed and the result set for this
query is:
{9376937, 9379778, 9384816, 9385619, 9387422, 9388266,
9390605, 9394036, 9405497, 9408325, 9413009, 12609594}
These are the PreOrder values for the nodes which form the
final result set (an XML document).

4.4 Analysis for Query 10

Find the author of all proceedings named ‘Semantic Anal-
ysis Patterns.’

4.4.1 Classification

The filter pattern is used when property 1 holds but prop-
erty 2 does not. In this instance the child ‘author’ appears
after the predicate therefore the filter pattern is applicable.

Input
/dblp/inproceedings[title=‘Semantic Analysis Patterns.’]
/author

Output

• The FullPath pattern may be applied to location steps
1 & 2.

• The LeafPath pattern may be applied to location steps
1 & 2.

• The Filter pattern may be applied to location steps 3

and thus, allows a two pattern combination using one
of the patterns above.

4.4.2 Pattern Selection

The cardinality of the FullPath: “/dblp/inproceedings” is
607,777, therefore the filter pattern is used in conjunction
with the LeafPath pattern.

Output

• Apply the Filter pattern to location step 3 using the
LeafPath pattern for steps 1 & 2.

4.4.3 Query Transformation

The Filter.SQLMAP() algorithm is executed and the re-
sulting SQL is output.

Filter.SQLMAP():

SELECT PRE FROM BASEINDEX TABLE WHERE
NAME = ’author’
AND PARENT IN
(SELECT PARENT FROM BASEINDEX TABLE
WHERE
FullPath = ’/dblp/inproceedings/title’
AND VALUE = ’Semantic Analysis Patterns.’ AND
N TYPE = ELEMENT)

185

Query Exist FASTX Comparison
1 5,831 359 16.24
2 32,168 144 223.39
3 703 78 9.01
4 22,024 115 191.51
5 1,490 150 9.93
6 24,609 909 27.01
7 23,100 7,050 3.28
8 28,821 156 184.75
9 24,321 925 26.29
10 13,859 2,059 6.73
11 35,028 41,452 0.84
12 830 255 3.25
13 1,085 273 3.97
14 101 54 1.87
15 453 528 0.85
16 1,122 234 4.79

Exist FASTX Comparison
1 5831 359 16.24
2 32168 144 223.39
3 703 78 9.01
4 22024 115 191.51
5 1490 150 9.93
6 24609 909 27.01
7 23100 7050 3.28
8 28821 156 184.75
9 24321 925 26.29

10 13859 2059 6.73
11 35028 41452 0.84
12 830 255 3.25
13 1085 273 3.97
14 101 54 1.87
15 453 528 0.85
16 1122 234 4.79

Compare Times

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Query Number

T
im

e
 (

m
il

li
s

e
c

o
n

d
s

)

Exist
FASTX

Figure 1: Experiment Times

4.4.4 Query Execution

The SQL statement is executed and the result set for this
query is: {1996747, 1996746}

4.5 Analysis for Query 16

Find all payments made in the North American region
using a Credit Card when only one item was purchased.

4.5.1 Classification

Example using the Parent pattern.
Input
/site/regions//item[location = ‘United States’][quantity =
‘1’][.//payment = ‘Creditcard’]/parent::namerica.

Output

• The FullPath pattern may be applied to location steps
1, 2 & 3.

• The LeafPath pattern may be applied to location steps
1, 2 & 3.

• The Parent pattern may be applied to location step 4
combined with one of the patterns above.

4.5.2 Pattern Selection

The number of instances for the FullPath: “/site/regions-
//item” is 43,500, therefore the Parent pattern is selected in
conjunction with the LeafPath pattern.

Output

• Apply the Parent pattern to location steps 1, 2, 3 & 4
using the LeafPath pattern for steps 1, 2 & 3.

4.5.3 Query Transformation

The Parent.SQLMAP() algorithm is executed and the re-
sulting SQL is output.

4.5.4 Query Execution

The SQL statement is executed and the result set for this
query is: {663739}

5. RELATED RESEARCH
Many of the techniques employed in the XPath Acceler-

ator [28] have been used in our indexing technique. The
XPath Accelerator uses a pre and post order encoding sys-
tem to store XML data elements in a relational database
along with node value and level information. The advan-
tage of this encoding scheme is that it permits traversals
from any arbitrary node in the XML document.

We employ a PreOrder encoding scheme based on this
method and extend it by adding FullPath information. A
FullPath is a metadata construct stored in the index that
provides knowledge on data instances in the data tree. Each
element in the BIT has a FullPath which links it to a FULL-

PATH_TABLE construct. The FULLPATH_TABLE provides addi-
tional information such as the number of instances of each
element and the position of each element in the document
tree. We exploit this feature in order to process a group
of XPath location steps in parallel, and to correctly select
between patterns.

Path summaries are used [1] in a technique which has some
similarities to ours. In this instance path summaries (similar
to our FullPath) are stored and are used as a means of prun-
ing the search space. An XML dataset may contain elements
that appear in structurally different sub-trees. For exam-
ple, in the DBLP [4] dataset elements such as: title, author
and year appear as sub-elements of //inproceedings, //book,
and //article. For a query such as: //book[./author=’Serge
Abiteboul’][./year=’1995’] the path summaries: dblp/book
/author and dblp/book/year are used to eliminate from the
following sub-trees from the search:

• dblp/inproceedings/author

• dblp/inproceedings/year

• dblp/article/author

• dblp/article/year

We extend this approach by identifying query or query
segments where we can use FullPath (path summary) meta-
data to process a group of location steps in parallel. A sys-
tem of patterns is used in our FASTX database to derive

186

the highest performing SQL each time an identified pattern
emerges for a particular group of contiguous location steps.
In instances where two or more patterns may be applied to
the same group of location steps, we use the FullPath meta-
data in the XML repository to select between them.

Translating XPath queries to SQL is fundamental to our
parallel processing strategy and we had to address the large
issue of impedance mismatch between the two query lan-
guages. In [14] we see examples of how XPath queries could
be translated to regular XPath expressions and how these
expressions are then rewritten as SQL in the presence of
well formed XML files using recursive DTDs. In [15] they
rewrite XPath logically before translation to SQL begins.
This process removes wild cards and eliminates the ances-
tor/descendant relationships in order to reduce the size of
the XPath language. In both cases a large amount of log-
ical rewriting of XPath was required in order to increase
efficiency of the derived SQL statements.

While we use similar techniques to transform the XPath
query to SQL, we also target a number of XPath location
steps in parallel. We look for pre-defined patterns in the
query and transform the target location steps to efficient
SQL using not only knowledge of the query, but also knowl-
edge of the data within the XML repository. This hybrid
approach to XPath query transformation ensures that we
always select the highest performing pattern available. In
addition, the system is extensible and new patterns may be
added where identified in our ongoing work.

Our query engine required only minimal logical rewriting
of XPath to deal with wild cards, yet out performs indus-
try leaders as our experiments in section 4 show. Logical
rewriting of XPath has the advantage of making the lan-
guage smaller and more efficient. In [6] they describe the
process of optimising XPath to SQL as having two forms:
generating optimal SQL directly from the XPath query, or
generating suboptimal SQL queries, then attempt to opti-
mise the resulting SQL. In our approach we use the former,
which is the approach advocated by [6]. However, their fo-
cus is on how each generated SQL statement has a smaller
simpler version which may be exploited to improve perfor-
mance.

We show some similarities to this in our approach as we
use a complex selection process to apply the pattern (reus-
able solution) which derives the highest performing SQL of
the identified possibilities. However, we focus on how the
structure of the query can impact the SQL resulting from
the translation process, and how XML repository informa-
tion such as the number of instances of elements within the
document can complement this process.

6. CONCLUSIONS
In this paper we introduced our framework for XPath op-

timisation. Our approach to is to optimise XPath query
processing by parsing the query itself, extracting metadata
which allows us to select the most efficient processing logic
for each query or query segment. For this purpose we have
identified a number of patterns each of which allow us to
process a group of XPath location steps in parallel when
certain criteria are met. Our relational index structure en-
ables a more complex selection process in addition to other
optimisation techniques. An important factor in our optimi-
sation strategy is the language mapping between XPath and
SQL, for which we presented a number of the algorithms.

In the experiments section we looked at a set of standard
XPath queries and shown how the application of patterns
as described in 3 can allow structurally different queries to
be processed by the logic most suiting to them. We have
discussed the response times returned by eXist for each of
the queries and compared them to that of FASTX. For each
pattern type we analysed a query to further emphasise our
approach and discussed reasons for the increased response
times in each case.

Our ongoing work is focused on identifying new patterns
which can process different combinations of XPath axes in
parallel using the techniques described in this paper. Fur-
thermore, we aim to provide a more complete mapping pro-
cess between XPath and SQL using techniques such as the
logical rewriting of XPath, and optimising the generated
SQL code in a post transformation process.

In [32] Grust et al. describe how standard off-the-shelf
RDBMSs may be exploited with the appropriate tree en-
codings to build highly efficient XPath processors using a
pre/level/size encoding system. For each node v in this sys-
tem, pre(v) is the PreOrder value of node v, level(v) is v ’s
distance from the root node and size(v) is v ’s number of
descendants. Region identification using pre/level/size or
pre/post information is not part of our current work as we fo-
cused primarily on efficient XPath to SQL translation. How-
ever, we believe that further optimisation can be achieved
by applying the pattern based approach to various other en-
coding systems and may include region identification and
search space pruning techniques as part of our future work.

7. REFERENCES
[1] Barta A., Consens M. and Mendelzon A. Benefits of

Path Summaries in an XML Query Optimizer
Supporting Multiple Access Methods. Proceedings of
the 31st VLDB Conference, Morgan Kaufmann, pp
133-144, 2005.

[2] Boulos J. and Karakashian S. A New Design for a
Native XML Storage and Indexing Manager.
In Proceedings of EDBT 2006, LNCS vol. 3896,
Springer, pp. 755-772, 2006.

[3] Balmin A., Ozcan F., Beyer K., Cochrane R., and
Pirahesh H. A Framework for using Materialized XPath
Views in XML Query Processing. Proceedings of 30th
Conference on Very Large Databases, pp 60-71, Morgan
Kaufmann, 2004.

[4] DBLP Computer Science Bibliography (online).
www.sigmod.org/dblp/db/index.html, 2008.

[5] XMark - An XML Benchmark Project (online).
www.xml-benchmark.org/, 2008.

[6] Rajasekar Krishnamurthy,Raghav Kaushik, Jeffrey F.
Naughton. Efficient XML-to-SQL query translation:
where to add the intelligence? proceedings of the
Thirteenth international conference on Very large data
bases - Volume 30, Toronto, Canada, Pages: 144 - 155,
2004.

[7] Goldman R. and Widom J. DataGuides: Enabling
Query Formulation and Optimisation in Semistructured
Databases. Proceedings of the 23rd VLDB Conference,
Morgan Kaufmann, pp 436-445, 1997.

[8] Kaushik R., Shenoy P., Bohannon P. and Gudes E.
Exploiting Local Similarity for Indexing Paths in
Graph-Structured Data. Proceedings of ICDE, 2002.

187

[9] Meier W. eXist: An Open Source Native XML
Database. In Web, Web-Services, and Database
Systems, LNCS Vol. 2593, Springer, pp. 169-183, 2002.

[10] Sedna - Native XML Database.
http://modis.ispras.ru/sedna/, 2008.

[11] MonetDB - open source XML database.
http://monetdb.cwi.nl/, 2008.

[12] The World Wide Web Consortium.
http://www.w3.org/, 2008.

[13] Noonan C., Durrigan C. and Roantree M. Using an
Oracle Repository to Accelerate XPath Queries. In
17th International Conference on Database and Expert
Systems Applications (DEXA 2006), LNCS vol. 4080,
pp. 73-82, Springer, 2006.

[14] Wenfei Fan., Jeffrey Xu Yu., Hongjun Lu., Jianhua
Lu. and Rajeev Rastogi. Query Translation from XPath
to SQL in the presence of recursive DTDs. Proc. of the
31st International Conference on Very Large Databases,
ACM, pp. 337-348, 2005.

[15] Jun Gao1., Dongqing Yang1 and Yunfeng Liu1. X2S:
Translating XPath into Efficient SQL Queries.
Conceptual Modeling for Advanced Application
Domains, PSpringer Berlin / CoMWIM 2004. Web
Information Integration, Pages 210-222.

[16] Noonan C. and Roantree M. Optimising XML-based
Web Information Systems. In Proceedings on
International Workshop on Web Information Systems
Modeling (WISM), pp. 803-814, Tapir Academic Press,
2007.

[17] O’Connor M., Bellahsene Z. and Roantree M. An
Extended PreOrder Index for Optimising XPath
Expressions. Proceedings of 3rd XML Database
Symposium, LNCS Vol. 3671, Springer, pp 114-128,
2005.

[18] Qun C., Lim A. and Ong K. D(k)-Index: An Adaptive
Structural Summary for Graph-Structured Data.
Proceedings of the 29th VLDB Conference, Morgan
Kaufmann, 2003.

[19] Noonan C. Masters Thesis. Pruning XML Trees for
XPath Query Optimisation. School of Computing,
Dublin City University, 2007.

[20] Suciu D. and Miklau G. University of Washington’s
XML Repository.
at: URL
http://www.cs.washington.edu/research/xmldatasets,
2002.

[21] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, Michael Stal. Pattern - Oriented
Software Architecture: A System Of Patterns, ISBN: 0
471 95869 7.

[22] Weigel F. et al. Content and Structure in Indexing
and Ranking XML. In Proceedings of the Seventh
International Workshop on the Web and Databases
(WebDB), pp. 67-72, 2004.

[23] Zhang N. et al. FIX: Feature-based Indexing
Technique for XML Documents. In Proceedings of the
32nd VLDB Conference, pp.359-370, 2006.

[24] O’Connor M. F., Roantree M. FASTX Repository
Processing Framework. Technical Report ISG-08-01,
Dublin City University, March 2008.

[25] Megginson D., SAX - The Simple API for XML

Version 2.0. Online Resource, 2008.
http://www.saxproject.org/

[26] Document Object Model (DOM) Level 3.0. World
Wide Web Consortium, 2004.
http://www.w3.org/DOM/

[27] PostgreSQL, An Open Source Relational Database
System Release 8.3.0. Online Resource, 2008.
http://www.postgresql.org

[28] Grust T. Accelerating XPath Location Steps.
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp.109-120, ACM
Press, 2002.

[29] Lu Qin and Jeffrey Xu Yu and Bolin Ding DASFAA,
pp.850-862, Springer, 2007.

[30] Nicolas Bruno and Nick Koudas and Divesh Srivastava
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pp.310-321, ACM,
2002.

[31] Songting Chen and Hua-Gang Li and Junichi
Tatemura and Wang-Pin Hsiung and Divyakant
Agrawal and K. Selçuk Candan Proceedings of the 32nd
international conference on Very large data bases,
pp.283-294, VLDB Endowment, 2006.

[32] Grust, T., Rittinger, J., and Teubner, J. 2007. Why
off-the-shelf RDBMSs are better at XPath than you
might expect. In Proceedings of the 2007 ACM
SIGMOD international Conference on Management of
Data, Beijing, China, June 2007.

188

