3,518 research outputs found

    The rational SPDE approach for Gaussian random fields with general smoothness

    Get PDF
    A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form Lβu=WL^{\beta}u = \mathcal{W}, where W\mathcal{W} is Gaussian white noise, LL is a second-order differential operator, and β>0\beta>0 is a parameter that determines the smoothness of uu. However, this approach has been limited to the case 2βN2\beta\in\mathbb{N}, which excludes several important models and makes it necessary to keep β\beta fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension dNd\in\mathbb{N} is applicable for any β>d/4\beta>d/4, and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function xβx^{-\beta} to approximate uu. For the resulting approximation, an explicit rate of convergence to uu in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case 2βN2\beta\in\mathbb{N}. Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including β\beta.Comment: 28 pages, 4 figure

    An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a modelling tool for processes with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues, which impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids, and robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analysing the speed of the travelling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator

    Positive approximations of the inverse of fractional powers of SPD M-matrices

    Full text link
    This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the dimension of the computational domain. More recently, an alternative approach aimed at reducing the computational complexity was developed. The linear algebraic system Aαu=f\cal A^\alpha \bf u=\bf f, 0<α<10< \alpha <1 is considered, where A\cal A is a properly normalized (scalded) symmetric and positive definite matrix obtained from finite element or finite difference approximation of second order elliptic problems in ΩRd\Omega\subset\mathbb{R}^d, d=1,2,3d=1,2,3. The method is based on best uniform rational approximations (BURA) of the function tβαt^{\beta-\alpha} for 0<t10 < t \le 1 and natural β\beta. The maximum principles are among the major qualitative properties of linear elliptic operators/PDEs. In many studies and applications, it is important that such properties are preserved by the selected numerical solution method. In this paper we present and analyze the properties of positive approximations of Aα\cal A^{-\alpha} obtained by the BURA technique. Sufficient conditions for positiveness are proven, complemented by sharp error estimates. The theoretical results are supported by representative numerical tests

    Optimal control of fractional systems: a diffusive formulation

    Get PDF
    Optimal control of fractional linear systems on a finite horizon can be classically formulated using the adjoint system. But the adjoint of a causal fractional integral or derivative operator happens to be an anti-causal operator: hence, the adjoint equations are not easy to solve in the first place. Using an equivalent diffusive realization helps transform the original problem into a coupled system of PDEs, for which the adjoint system can be more easily derived and properly studied
    corecore