498,234 research outputs found

    Performances of Weighted Cyclic Prefix OFDM with Low-Complexity Equalization

    No full text
    International audience—In this paper, we justify low-complexity equalization techniques for weighted cyclic prefix (WCP)-OFDM. This modulation technique refers to filter bank based multicarrier (FBMC) transmission system provided with short filters. It allows the use of non-rectangular waveforms in order to mitigate interference caused by time-frequency selective channels while preserving an efficient implementation. Index Terms—Time-varying multipath channels, filter bank based multicarrier modulations, equalization, efficient realization

    Advanced Satellite Technique for Volcanic Activity Monitoring and Early Warning.

    Get PDF
    Nowadays, satellite remote sensing is an important tool for volcanic activity monitoring, thanks to several operational satellite platforms providing data everywhere with high observational frequencies and generally at low cost. Among different techniques available, an advanced satellite method, named RST (Robust Satellite Technique). based on the multitemporal analysis of satellite data, has shown a high capability in volcanic activity monitoring. This approach has proved capable of identifyimg and tracking volcanic ash Cloud and of correctly detecting and monitoring volcanic thermal anomalies. This paper analyzes some recent results, obtained applying this approach to the last eruptive events of Mt. Etna using both polar and geostationary satellites. In particular, for the first time, this approach is implemented on the present geostationary platform MSG-SEVIRI, with 15 min of temporal resolution. Preliminary results, together with a future potential of this implementation, are shown and discussed. Moreover, a differential RST index in time domain is also proposed for near real-time application, as a possible contribution to the development of an efficient early warning satellite system for volcanic hazard mitigation

    Index-3 divide-and-conquer algorithm for efficient multibody system dynamics simulations: theory and parallel implementation

    Get PDF
    [Abstract] There has been a growing attention to efficient simulations of multibody systems, which is apparently seen in many areas of computer-aided engineering and design both in academia and in industry. The need for efficient or real-time simulations requires high fidelity techniques and formulations that should significantly minimize computational time. Parallel computing is one of the approaches to achieve this objective. This paper presents a novel index-3 divide-and-conquer algorithm for efficient multibody dynamics simulations that elegantly handles multibody systems in generalized topologies through the application of the augmented Lagrangian method. The proposed algorithm exploits a redundant set of absolute coordinates. The trapezoidal integration rule is embedded into the formulation and a set of nonlinear equations need to be solved every time instant. Consequently, the Newton–Raphson iterative scheme is applied to find the system coordinates and joint constraint loads in an efficient and highly parallelizable manner. Two divide-and-conquer based mass-orthogonal projections are performed then to circumvent the effect of constraint violation errors at the velocity and acceleration level. Sample open- and closed-loop multibody system test cases are investigated in the paper to confirm the validity of the approach. Challenging simulations of multibody systems featuring long kinematic chains are also performed in the work to demonstrate the robustness of the algorithm. The details of OpenMP-based parallel implementation on an eight-core shared memory computer are presented in the text and the parallel performance results are extensively discussed. Significant speedups are obtained for the simulations of small- to large-scale multibody open-loop systems. The mentioned features make the proposed algorithm a good general purpose approach for high-fidelity, efficient or real-time multibody dynamics simulations.Ministerio de Economía y Competitividad; JCI-2012-12376Poland. National Science Center; DEC-2012/07/B/ST8/0399

    Advanced satellite technique for volcanic activity monitoring and early warning

    Get PDF
    Nowadays, satellite remote sensing is an important tool for volcanic activity monitoring, thanks to several operational satellite platforms providing data everywhere with high observational frequencies and generally at low cost. Among different techniques available, an advanced satellite method, named RST (Robust Satellite Technique), based on the multitemporal analysis of satellite data, has shown a high capability in volcanic activity monitoring. This approach has proved capable of identifying and tracking volcanic ash cloud and of correctly detecting and monitoring volcanic thermal anomalies. This paper analyzes some recent results, obtained applying this approach to the last eruptive events of Mt. Etna using both polar and geostationary satellites. In particular, for the first time, this approach is implemented on the present geostationary platform MSG-SEVIRI, with 15 min of temporal resolution. Preliminary results, together with a future potential of this implementation, are shown and discussed. Moreover, a differential RST index in time domain is also proposed for near real-time application, as a possible contribution to the development of an efficient early warning satellite system for volcanic hazard mitigation

    Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

    Get PDF
    Subsequence matching has appeared to be an ideal approach for solving many problems related to the fields of data mining and similarity retrieval. It has been shown that almost any data class (audio, image, biometrics, signals) is or can be represented by some kind of time series or string of symbols, which can be seen as an input for various subsequence matching approaches. The variety of data types, specific tasks and their partial or full solutions is so wide that the choice, implementation and parametrization of a suitable solution for a given task might be complicated and time-consuming; a possibly fruitful combination of fragments from different research areas may not be obvious nor easy to realize. The leading authors of this field also mention the implementation bias that makes difficult a proper comparison of competing approaches. Therefore we present a new generic Subsequence Matching Framework (SMF) that tries to overcome the aforementioned problems by a uniform frame that simplifies and speeds up the design, development and evaluation of subsequence matching related systems. We identify several relatively separate subtasks solved differently over the literature and SMF enables to combine them in straightforward manner achieving new quality and efficiency. This framework can be used in many application domains and its components can be reused effectively. Its strictly modular architecture and openness enables also involvement of efficient solutions from different fields, for instance efficient metric-based indexes. This is an extended version of a paper published on DEXA 2012.Comment: This is an extended version of a paper published on DEXA 201

    Convergence and optimality of a new iterative price-based scheme for distributed coordination of flexible loads in the electricity market

    Get PDF
    This paper proposes a novel distributed control strategy for large-scale deployment of flexible demand. The devices are modelled as competing players that respond to iterative broadcasts of price signals, scheduling their power consumption to operate at minimum cost. By describing their power update at each price broadcast through a multi-valued discrete-time dynamical system and by applying Lyapunov techniques, it is shown that the proposed control strategy always converges to a stable final configuration, characterized as a Wardrop (or aggregative) equilibrium. It is also proved that such equilibrium is socially efficient and optimizes some global performance index of the system (e.g. minimizes total generation costs). These results are achieved under very general assumptions on the electricity price and for any penetration level of flexible demand. Practical implementation of the proposed scheme is discussed and tested in simulation on a future scenario of the UK-grid with large numbers of flexible loads
    • …
    corecore