29,647 research outputs found

    Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis

    Full text link
    The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be affected significantly by the low-quality, or even ill clusterings. Secondly, they generally focus on the instance level or cluster level in the ensemble system and fail to integrate multi-granularity cues into a unified model. To address these two limitations, this paper proposes to solve the clustering ensemble problem via crowd agreement estimation and multi-granularity link analysis. We present the normalized crowd agreement index (NCAI) to evaluate the quality of base clusterings in an unsupervised manner and thus weight the base clusterings in accordance with their clustering validity. To explore the relationship between clusters, the source aware connected triple (SACT) similarity is introduced with regard to their common neighbors and the source reliability. Based on NCAI and multi-granularity information collected among base clusterings, clusters, and data instances, we further propose two novel consensus functions, termed weighted evidence accumulation clustering (WEAC) and graph partitioning with multi-granularity link analysis (GP-MGLA) respectively. The experiments are conducted on eight real-world datasets. The experimental results demonstrate the effectiveness and robustness of the proposed methods.Comment: The MATLAB source code of this work is available at: https://www.researchgate.net/publication/28197031

    Merging KK-means with hierarchical clustering for identifying general-shaped groups

    Get PDF
    Clustering partitions a dataset such that observations placed together in a group are similar but different from those in other groups. Hierarchical and KK-means clustering are two approaches but have different strengths and weaknesses. For instance, hierarchical clustering identifies groups in a tree-like structure but suffers from computational complexity in large datasets while KK-means clustering is efficient but designed to identify homogeneous spherically-shaped clusters. We present a hybrid non-parametric clustering approach that amalgamates the two methods to identify general-shaped clusters and that can be applied to larger datasets. Specifically, we first partition the dataset into spherical groups using KK-means. We next merge these groups using hierarchical methods with a data-driven distance measure as a stopping criterion. Our proposal has the potential to reveal groups with general shapes and structure in a dataset. We demonstrate good performance on several simulated and real datasets.Comment: 16 pages, 1 table, 9 figures; accepted for publication in Sta

    Ultra-Scalable Spectral Clustering and Ensemble Clustering

    Full text link
    This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for K-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning ten-million-level nonlinearly-separable datasets on a PC with 64GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering, 201

    Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data

    Get PDF
    Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust \emph{time series cluster kernel} (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.Comment: 23 pages, 6 figure
    corecore