7 research outputs found

    Appropriate Design of Parallel Manipulators

    Get PDF
    International audienceAlthough parallel structures have found a niche market in many applications such as machine tools, telescope positioning or food packaging, they are not as successful as expected. The main reason of this relative lack of success is that the study and hardware of parallel structures have clearly not reached the same level of completeness than the one of serial structures. Among the main issues that have to be addressed, the design problem is crucial. Indeed, the performances that can be expected from a parallel robot are heavily dependent upon the choice of the mechanical structure and even more from its dimensioning. In this chapter, we show that classical design methodologies are not appropriate for such closed-loop mechanism and examine what alternatives are possible

    Development and Characterization of Velocity Workspaces for the Human Knee.

    Get PDF
    The knee joint is the most complex joint in the human body. A complete understanding of the physical behavior of the joint is essential for the prevention of injury and efficient treatment of infirmities of the knee. A kinematic model of the human knee including bone surfaces and four major ligaments was studied using techniques pioneered in robotic workspace analysis. The objective of this work was to develop and test methods for determining displacement and velocity workspaces for the model and investigate these workspaces. Data were collected from several sources using magnetic resonance imaging (MRI) and computed tomography (CT). Geometric data, including surface representations and ligament lengths and insertions, were extracted from the images to construct the kinematic model. Fixed orientation displacement workspaces for the tibia relative to the femur were computed using ANSI C programs and visualized using commercial personal computer graphics packages. Interpreting the constraints at a point on the fixed orientation displacement workspace, a corresponding velocity workspace was computed based on extended screw theory, implemented using MATLAB(TM), and visually interpreted by depicting basis elements. With the available data and immediate application of the displacement workspace analysis to clinical settings, fixed orientation displacement workspaces were found to hold the most promise. Significant findings of the velocity workspace analysis include the characterization of the velocity workspaces depending on the interaction of the underlying two-systems of the constraint set, an indication of the contributions from passive constraints to force closure of the joint, computational means to find potentially harmful motions within the model, and realistic motions predicted from solely geometric constraints. Geometric algebra was also investigated as an alternative method of representing the underlying mathematics of the computations with promising results. Recommendations for improving and continuing the research may be divided into three areas: the evolution of the knee model to allow a representation for cartilage and the menisci to be used in the workspace analysis, the integration of kinematic data with the workspace analysis, and the development of in vivo data collection methods to foster validation of the techniques outlined in this dissertation

    Maximal cable tensions of a N-1 cable-driven parallel robot with elastic or ideal cables

    Get PDF
    International audienceDetermining what will be the maximal cable tensions of a cabledriven parallel robot (CDPR) when it moves over a given workspace is an important step in the design phase as it will allow to choose the cable diameter and to provide a requested information for tuning the CDPR actuation. In this paper we consider a suspended N-1 CDPR with n cables where all cables are attached at the same point, which leads to a 3-dof robot. We assume a quasi-static behavior of the robot and assume that the cable are either ideal or elastic so that we neglect the sagging effect. Under these assumption we show that the maximum of the cable tensions may be determined in a very fast way by solving a set of secondorder polynomials which will lead to the poses at which the maximum of each cable tension will occur. For example for a four-cables CDPR determining the maximal cable tension requires to solve at most 149 second order polynomials

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Aerospace Medicine and Biology: Cumulative index, 1979

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source
    corecore