29 research outputs found

    Apollo experience report: Development of the extravehicular mobility unit

    Get PDF
    The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented

    An autonomous self-reconfigurable modular robotic system with optimised docking connectors

    Get PDF
    Includes bibliographical references.Self-Reconfigurable Modular Robots are robotic systems consisting of a number of self-contained modules that can autonomously interconnect in different positions and orientations thereby varying the shape and size of the overall modular robot. This ground breaking capability is what in theory, makes self-reconfigurable modular robots more suitable for use in the navigation of unknown or unstructured environments. Here, they are required to reconfigure into different forms so as to optimise their navigation capabilities, a feat that is rendered impossible in conventional specialised robots that lack reconfiguration capabilities. However, the frequent development and use of self-reconfigurable modular robots in everyday robotic navigation applications is significantly hampered by the increased difficulty and overall cost of production of constituent robotic modules. One major contributor to this is the difficulty of designing suitably robust and reliable docking mechanisms between individual robotic modules. Such mechanisms are required to be mechanically stable involving a robust coupling mechanism, and to facilitate reliable inter-module power sharing and communication. This dissertation therefore proposes that the design and development of a functional low cost self-reconfigurable modular robot is indeed achievable by optimising and simplifying the design of a robust and reliable autonomous docking mechanism. In this study, we design and develop such a modular robot, whose constituent robotic modules are fitted with specialised docking connectors that utilise an optimised docking mechanism. This modular robot, its robotic modules and their connectors are then thoroughly tested for accuracy in mobility, electrical and structural stability, inter-module communication and power transfer, self-assembly, self-reconfiguration and self-healing, among others. The outcome of these testing procedures proved that it is indeed possible to optimise the docking mechanisms of self-reconfigurable modular robots, thereby enabling the modular robot to more easily exhibit efficient self-reconfiguration, self-assembly and self-healing behaviours. This study however showed that the type, shape, functionality and structure of electrical contacts used within the docking connectors for inter-module signal transfer and communication play a major role in enabling efficient self-assembly, self-reconfiguration and self-healing behaviours. Smooth spring loaded metallic electrical contacts incorporated into the docking connector design are recommended. This study also highlights the importance of closed loop control in the locomotion of constituent robotic modules, especially prior to docking. The open loop controlled locomotion optimisations used in this project were not as accurate as was initially expected, making self-assembly rather inaccurate and inconsistent. It is hoped that the outcomes of this research will serve to improve the docking mechanisms of self-reconfigurable modular robots thereby improving their functionality and pave the way for future large scale use of these robots in real world applications

    Digital flight control actuation system study

    Get PDF
    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations

    Development of System Analysis Methodologies and Tools for Modeling and Optimizing Vehicle System Efficiency.

    Full text link
    Optimizing the vehicle system is essential for achieving higher fuel efficiency. This dissertation addresses the need to better understand energy demand from a vehicle subsystem standpoint and tackles the challenge of optimal hardware and control system design. An energy analysis methodology and Matlab®/Simulink® based tool are developed to account for where the fuel energy supplied to a vehicle system is demanded. A hybrid semi-empirical and analytical approach that combines first principles with detailed component speed and load data is proposed. The methodology and tool are applied to account for the instantaneous and accumulated vehicle subsystem energy usage over a given drive cycle. A comparison of the prevailing fuel economy factors for city and highway driving are presented. Incremental vehicle subsystem changes that account for a fraction of the total energy demand are analyzed to determine individual effects on overall fuel economy. A reverse dynamic optimization methodology is proposed for optimal powertrain integration and control design. A reverse tractive road load demand model developed in Matlab®/Simulink® propagates the required wheel torque and speed derived from vehicle speed and road grade through the powertrain system to determine the required fuel flow for all possible states within the hardware constraints. The control strategy is treated as a multi-stage, multi-dimension decision process, where dynamic programming is applied to find an optimal control policy that minimizes the accumulated fuel flow over a drive cycle. The reverse dynamic optimization methodology and tool are used to assess and develop transmission gear shift, torque converter lock-up clutch, and pedal control strategies that are catered to specific vehicle applications. The reverse model and dynamic optimization technique are extended to virtually optimize variable displacement engine operation taking gear and clutch control interaction effects into account. The reverse model is used for establishing design criteria, such as minimum engine part throttle torque requirements, by determining the required speeds and loads to traverse drive cycles. The advantages of the reverse dynamic optimization approach are demonstrated by performing powertrain matching analyses (i.e., vehicle attribute sensitivity analysis; optimal engine, transmission and axle selection; and variable displacement effects) and key system integration concepts are revealed.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/57640/2/mpapke_1.pd

    Lunar Surface Magnetometer familiarization manual.

    Get PDF
    The two major purposes of this document are: to provide an introduction in depth to the design and design rationale of the Lunar Surface Magnetometer (LSM); and to define certain support requirements relating to instrument transportation, storage, handling, operations, maintenance, and other services that may be needed.Contract No. NAS 2-3554Introduction -- The lunar surface magnetometer experiment -- Physical description and leading particulars -- Functional description -- Maintenance -- Handling, storage, and transportation -- Operational requirements

    NASA Tech Briefs, Summer 1979

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of neW products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Design report for the TIROS Operational Satellite /TOS/ system

    Get PDF
    Spacecraft and systems design for converting TIROS OT-2 from standard axial camera to wheel mode configuration for use in TIROS operational satellite syste

    Cumulative index to NASA Tech Briefs, 1970-1975

    Get PDF
    Tech briefs of technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Abstracts and indexes of subject, personal author, originating center, and tech brief number for the 1970-1975 tech briefs are presented

    NASA Tech Briefs, Spring 1980

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences
    corecore