348 research outputs found

    Energy Efficient Location Aided Routing Protocol for Wireless MANETs

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any centralized access point, infrastructure, or centralized administration. In this paper we introduce an Energy Efficient Location Aided Routing (EELAR) Protocol for MANETs that is based on the Location Aided Routing (LAR). EELAR makes significant reduction in the energy consumption of the mobile nodes batteries by limiting the area of discovering a new route to a smaller zone. Thus, control packets overhead is significantly reduced. In EELAR a reference wireless base station is used and the network's circular area centered at the base station is divided into six equal sub-areas. At route discovery instead of flooding control packets to the whole network area, they are flooded to only the sub-area of the destination mobile node. The base station stores locations of the mobile nodes in a position table. To show the efficiency of the proposed protocol we present simulations using NS-2. Simulation results show that EELAR protocol makes an improvement in control packet overhead and delivery ratio compared to AODV, LAR, and DSR protocols.Comment: 9 Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.423, http://sites.google.com/site/ijcsis

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    Probabilistic route discovery for Wireless Mobile Ad Hoc Networks (MANETs)

    Get PDF
    Mobile wireless ad hoc networks (MANETs) have become of increasing interest in view of their promise to extend connectivity beyond traditional fixed infrastructure networks. In MANETs, the task of routing is distributed among network nodes which act as both end points and routers in a wireless multi-hop network environment. To discover a route to a specific destination node, existing on-demand routing protocols employ a broadcast scheme referred to as simple flooding whereby a route request packet (RREQ) originating from a source node is blindly disseminated to the rest of the network nodes. This can lead to excessive redundant retransmissions, causing high channel contention and packet collisions in the network, a phenomenon called a broadcast storm. To reduce the deleterious impact of flooding RREQ packets, a number of route discovery algorithms have been suggested over the past few years based on, for example, location, zoning or clustering. Most such approaches however involve considerably increased complexity requiring additional hardware or the maintenance of complex state information. This research argues that such requirements can be largely alleviated without sacrificing performance gains through the use of probabilistic broadcast methods, where an intermediate node rebroadcasts RREQ packets based on some suitable forwarding probability rather than in the traditional deterministic manner. Although several probabilistic broadcast algorithms have been suggested for MANETs in the past, most of these have focused on “pure” broadcast scenarios with relatively little investigation of the performance impact on specific applications such as route discovery. As a consequence, there has been so far very little study of the performance of probabilistic route discovery applied to the well-established MANET routing protocols. In an effort to fill this gap, the first part of this thesis evaluates the performance of the routing protocols Ad hoc On demand Distance Vector (AODV) and Dynamic Source Routing (DSR) augmented with probabilistic route discovery, taking into account parameters such as network density, traffic density and nodal mobility. The results reveal encouraging benefits in overall routing control overhead but also show that network operating conditions have a critical impact on the optimality of the forwarding probabilities. In most existing probabilistic broadcast algorithms, including the one used here for preliminary investigations, each forwarding node is allowed to rebroadcast a received packet with a fixed forwarding probability regardless of its relative location with respect to the locations of the source and destination pairs. However, in a route discovery operation, if the location of the destination node is known, the dissemination of the RREQ packets can be directed towards this location. Motivated by this, the second part of the research proposes a probabilistic route discovery approach that aims to reduce further the routing overhead by limiting the dissemination of the RREQ packets towards the anticipated location of the destination. This approach combines elements of the fixed probabilistic and flooding-based route discovery approaches. The results indicate that in a relatively dense network, these combined effects can reduce the routing overhead very significantly when compared with that of the fixed probabilistic route discovery. Typically in a MANET there are regions of varying node density. Under such conditions, fixed probabilistic route discovery can suffer from a degree of inflexibility, since every node is assigned the same forwarding probability regardless of local conditions. Ideally, the forwarding probability should be high for a node located in a sparse region of the network while relatively lower for a node located in a denser region of the network. As a result, it can be helpful to identify and categorise mobile nodes in the various regions of the network and appropriately adjust their forwarding probabilities. To this end the research examines probabilistic route discovery methods that dynamically adjust the forwarding probability at a node, based on local node density, which is estimated using number of neighbours as a parameter. Results from this study return significantly superior performance measures compared with fixed probabilistic variants. Although the probabilistic route discovery methods suggested above can significantly reduce the routing control overhead without degrading the overall network throughput, there remains the problem of how to select efficiently forwarding probabilities that will optimize the performance of a broadcast under any given conditions. In an attempt to address this issue, the final part of this thesis proposes and evaluates the feasibility of a node estimating its own forwarding probability dynamically based on locally collected information. The technique examined involves each node piggybacking a list of its 1-hop neighbours in its transmitted RREQ packets. Based on this list, relay nodes can determine the number of neighbours that have been already covered by a broadcast and thus compute the forwarding probabilities most suited to individual circumstances

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    DIRECTIONAL ANTENNA BASED EFFICIENT LOCATION AWARE ROUTING IN MOBILE ADHOC NETWORK

    Get PDF
    Mobile Adhoc Network (MANET) also called as wireless ad hoc network is a self-organizing, self-configuring infrastructure less network containing a group of mobile nodes communicating wirelessly. As the hosts move often resulting in dynamic topology of the network, routing seeks more attention. Therefore, routing protocol using node’s location information like LAR (location aided routing) has emerged as potential solution. Here, the route discovery is limited to a small region named as request zone in contrast to blind flooding over the entire network. Also it is noticeable that the shape and size of the request zone play a vital role in enhancing the protocol’s performance. After various analyses it was concluded that for higher node density, elliptical shaped request zone performs better than other possible shapes. Further, suitable route must be chosen based on current load status of the network so that successful delivery of packets is ensured. Generally, omni-directional antennas are used for communication between moving motes. The disadvantage of mobile ad hoc networks with omni-directional antenna lies in the limited capacity caused by high interference and low spatial reuse. This paper focuses on obtaining optimal size for request zone in accordance with varying node density. Further, optimal path between source and destination is selected using Dijkstra’s algorithm. Our simulation results show that directional antennas outshines the performance of omni-directional antennas in increasing transmission range of nodes, reducing the number of redundant nodes involving in data communication etc

    A survey on wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a collection of wireless nodes that can dynamically self-organize into an arbitrary and temporary topology to form a network without necessarily using any pre-existing infrastructure. These characteristics make ad hoc networks well suited for military activities, emergency operations, and disaster recoveries. Nevertheless, as electronic devices are getting smaller, cheaper, and more powerful, the mobile market is rapidly growing and, as a consequence, the need of seamlessly internetworking people and devices becomes mandatory. New wireless technologies enable easy deployment of commercial applications for ad hoc networks. The design of an ad hoc network has to take into account several interesting and difficult problems due to noisy, limited-range, and insecure wireless transmissions added to mobility and energy constraints. This paper presents an overview of issues related to medium access control (MAC), routing, and transport in wireless ad hoc networks and techniques proposed to improve the performance of protocols. Research activities and problems requiring further work are also presented. Finally, the paper presents a project concerning an ad hoc network to easily deploy Internet services on low-income habitations fostering digital inclusion8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore