300 research outputs found

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    Gap Processing for Adaptive Maximal Poisson-Disk Sampling

    Full text link
    In this paper, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or have their radius changed. We build on the concepts of the regular triangulation and the power diagram. Third, we will show how our analysis can make a contribution to the state-of-the-art in surface remeshing.Comment: 16 pages. ACM Transactions on Graphics, 201

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    A Hierarchical Approach for Regular Centroidal Voronoi Tessellations

    Get PDF
    International audienceIn this paper we consider Centroidal Voronoi Tessellations (CVTs) and study their regularity. CVTs are geometric structures that enable regular tessellations of geometric objects and are widely used in shape modeling and analysis. While several efficient iterative schemes, with defined local convergence properties, have been proposed to compute CVTs, little attention has been paid to the evaluation of the resulting cell decompositions. In this paper, we propose a regularity criterion that allows us to evaluate and compare CVTs independently of their sizes and of their cell numbers. This criterion allows us to compare CVTs on a common basis. It builds on earlier theoretical work showing that second moments of cells converge to a lower bound when optimising CVTs. In addition to proposing a regularity criterion, this paper also considers computational strategies to determine regular CVTs. We introduce a hierarchical framework that propagates regularity over decomposition levels and hence provides CVTs with provably better regularities than existing methods. We illustrate these principles with a wide range of experiments on synthetic and real models

    Constructing L∞ Voronoi diagrams in 2D and 3D

    Get PDF
    Voronoi diagrams and their computation are well known in the Euclidean L2 space. They are easy to sample and render in generalized Lp spaces but nontrivial to construct geometrically. Especially the limit of this norm with p → ∞ lends itself to many quad- and hex-meshing related applications as the level-set in this space is a hypercube. Many application scenarios circumvent the actual computation of L∞ diagrams altogether as known concepts for these diagrams are limited to 2D, uniformly weighted and axis-aligned sites. Our novel algorithm allows for the construction of generalized L∞ Voronoi diagrams. Although parts of the developed concept theoretically extend to higher dimensions it is herein presented and evaluated for the 2D and 3D case. It further supports individually oriented sites and allows for generating weighted diagrams with anisotropic weight vectors for individual sites. The algorithm is designed around individual sites, and initializes their cells with a simple meshed representation of a site's level-set. Hyperplanes between adjacent cells cut the initialization geometry into convex polyhedra. Non-cell geometry is filtered out based on the L∞ Voronoi criterion, leaving only the non-convex cell geometry. Eventually we conclude with discussions on the algorithms complexity, numerical precision and analyze the applicability of our generalized L∞ diagrams for the construction of Centroidal Voronoi Tessellations (CVT) using Lloyd's algorithm

    Centroidal Voronoi Tesselation of Line Segments and Graphs

    Get PDF
    Centroidal Voronoi Tesselation (CVT) of points has many applications in geometry processing, including re-meshing and segmentation to name but a few. In this paper, we propose a new extension of CVT, generalized to graphs. Given a graph and a 3D polygonal surface, our method optimizes the placement of the vertices of the graph in such a way that the graph segments best approximate the shape of the surface. We formulate the computation of CVT for graphs as a continuous variational problem, and present a simple approximated method to solve this problem. Our method is robust in the sense that it is independent of degeneracies in the input mesh, such as skinny triangles, T-junctions, small gaps or multiple connected components. We present some applications, to skeleton fitting and to shape segmentation

    Computing 2D Periodic Centroidal Voronoi Tessellation

    Get PDF
    International audienceIn this paper, we propose an efficient algorithm to compute the centroidal Voronoi tessellation in 2D periodic space. We first present a simple algorithm for constructing the periodic Voronoi diagram (PVD) from a Euclidean Voronoi diagram. The presented PVD algorithm considers only a small set of periodic copies of the input sites, which is more efficient than previous approaches requiring full copies of the sites (9 in 2D and 27 in 3D). The presented PVD algorithm is applied in a fast Newton-based framework for computing the centroidal Voronoi tessellation (CVT). We observe that full-hexagonal patterns can be obtained via periodic CVT optimization attributed to the convergence of the Newton-based CVT computation

    An extension to VORO++ for multithreaded computation of Voronoi cells

    Get PDF
    VORO++ is a software library written in C++ for computing the Voronoi tessellation, a technique in computational geometry that is widely used for analyzing systems of particles. VORO++ was released in 2009 and is based on computing the Voronoi cell for each particle individually. Here, we take advantage of modern computer hardware, and extend the original serial version to allow for multithreaded computation of Voronoi cells via the OpenMP application programming interface. We test the performance of the code, and demonstrate that we can achieve parallel efficiencies greater than 95% in many cases. The multithreaded extension follows standard OpenMP programming paradigms, allowing it to be incorporated into other programs. We provide an example of this using the VoroTop software library, performing a multithreaded Voronoi cell topology analysis of up to 102.4 million particles.Comment: Fix typo and section number
    • …
    corecore