23 research outputs found

    Spatial Correlation-Based Motion-Vector Prediction for Video-Coding Efficiency Improvement

    Get PDF
    H.265/HEVC achieves an average bitrate reduction of 50% for fixed video quality compared with the H.264/AVC standard, while computation complexity is significantly increased. The purpose of this work is to improve coding efficiency for the next-generation video-coding standards. Therefore, by developing a novel spatial neighborhood subset, efficient spatial correlation-based motion vector prediction (MVP) with the coding-unit (CU) depth-prediction algorithm is proposed to improve coding efficiency. Firstly, by exploiting the reliability of neighboring candidate motion vectors (MVs), the spatial-candidate MVs are used to determine the optimized MVP for motion-data coding. Secondly, the spatial correlation-based coding-unit depth-prediction is presented to achieve a better trade-off between coding efficiency and computation complexity for interprediction. This approach can satisfy an extreme requirement of high coding efficiency with not-high requirements for real-time processing. The simulation results demonstrate that overall bitrates can be reduced, on average, by 5.35%, up to 9.89% compared with H.265/HEVC reference software in terms of the Bjontegaard Metric

    A novel motion classification based intermode selection strategy for HEVC performance improvement

    Full text link
    High Efficiency Video Coding (HEVC) standard adopts several new approaches to achieve higher coding efficiency (approximately 50% bit-rate reduction) compared to its predecessor H.264/AVC with same perceptual image quality. Huge computational time has also increased due to the algorithmic complexity of HEVC compared to H.264/AVC. However, it is really a demanding task to reduce the encoding time while preserving the similar quality of the video sequences. In this paper, we propose a novel efficient intermode selection technique and incorporate into HEVC framework to predict motion estimation and motion compensation modes between current and reference blocks and perform faster inter mode selection based on three dissimilar motion types in divergent video sequences. Instead of exploring and traversing all the modes exhaustively, we merely select a subset of candidate modes and the final mode from the selected subset is determined based on their lowest Lagrangian cost function. The experimental results reveal that average encoding time can be downscaled by 40% with similar rate-distortion performance compared to the exhaustive mode selection strategy in HEVC

    Low-Complexity and Hardware-Friendly H.265/HEVC Encoder for Vehicular Ad-Hoc Networks

    Get PDF
    Real-time video streaming over vehicular ad-hoc networks (VANETs) has been considered as a critical challenge for road safety applications. The purpose of this paper is to reduce the computation complexity of high efficiency video coding (HEVC) encoder for VANETs. Based on a novel spatiotemporal neighborhood set, firstly the coding tree unit depth decision algorithm is presented by controlling the depth search range. Secondly, a Bayesian classifier is used for the prediction unit decision for inter-prediction, and prior probability value is calculated by Gibbs Random Field model. Simulation results show that the overall algorithm can significantly reduce encoding time with a reasonably low loss in encoding efficiency. Compared to HEVC reference software HM16.0, the encoding time is reduced by up to 63.96%, while the Bjontegaard delta bit-rate is increased by only 0.76–0.80% on average. Moreover, the proposed HEVC encoder is low-complexity and hardware-friendly for video codecs that reside on mobile vehicles for VANETs

    Maximum-Entropy-Model-Enabled Complexity Reduction Algorithm in Modern Video Coding Standards

    Get PDF
    Symmetry considerations play a key role in modern science, and any differentiable symmetry of the action of a physical system has a corresponding conservation law. Symmetry may be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of modern video coding standards by using the maximum entropy principle. The high computational complexity of the coding unit (CU) size decision in modern video coding standards is a critical challenge for real-time applications. This problem is solved in a novel approach considering CU termination, skip, and normal decisions as three-class making problems. The maximum entropy model (MEM) is formulated to the CU size decision problem, which can optimize the conditional entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem. The classification features consist of the spatio-temporal information of the CU, including the rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC encoder significantly. Compared with the H.265/HEVC reference model, the proposed method can reduce the average encoding time by 53.27% and 56.36% under low delay and random access configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average

    A comprehensive video codec comparison

    Get PDF
    In this paper, we compare the video codecs AV1 (version 1.0.0-2242 from August 2019), HEVC (HM and x265), AVC (x264), the exploration software JEM which is based on HEVC, and the VVC (successor of HEVC) test model VTM (version 4.0 from February 2019) under two fair and balanced configurations: All Intra for the assessment of intra coding and Maximum Coding Efficiency with all codecs being tuned for their best coding efficiency settings. VTM achieves the highest coding efficiency in both configurations, followed by JEM and AV1. The worst coding efficiency is achieved by x264 and x265, even in the placebo preset for highest coding efficiency. AV1 gained a lot in terms of coding efficiency compared to previous versions and now outperforms HM by 24% BD-Rate gains. VTM gains 5% over AV1 in terms of BD-Rates. By reporting separate numbers for JVET and AOM test sequences, it is ensured that no bias in the test sequences exists. When comparing only intra coding tools, it is observed that the complexity increases exponentially for linearly increasing coding efficiency

    Towards one video encoder per individual : guided High Efficiency Video Coding

    Get PDF

    Rinnakkainen toteutus H.265 videokoodaus standardille

    Get PDF
    The objective of this study was to research the scalability of the parallel features in the new H.265 video compression standard, also know as High Efficiency Video Coding (HEVC). Compared to its predecessor, the H.264 standard, H.265 typically achieves around 50% bitrate reduction for the same subjective video quality. Especially videos with higher resolution (Full HD and beyond) achieve better compression ratios. Also a better utilization of parallel computing resources is provided. H.265 introduces two novel parallelization features: Tiles and Wavefront Parallel Processing (WPP). In Tiles, each video frame is divided into areas that can be decoded without referencing to other areas in the same frame. In WPP, the relations between code blocks in a frame are encoded so that the decoding process can progress through the frame as a front using multiple threads. In this study, the reference implementation for the H.265 decoder was augmented to support both of these parallelization features. The performance of the parallel implementations was measured using three different setups. From the measurement results it could be seen that the introduction of more CPU cores reduced the total decode time of the video frames to a certain point. When using the Tiles feature, it was observed that the encoding geometry, i.e. how each frame was divided into individually decodable areas, had a noticeable effect on the decode times with certain thread counts. When using WPP, it was observed that what was mostly synchronization overhead, sometimes had a negative effect on the decode times when using larger (4-12) amounts of threads.Tämän tutkimuksen aiheena oli tutkia uuden H.265 videonpakkausstandardin (tunnetaan myös nimellä HEVC (engl. High Efficiency Video Coding)) rinnakkaisuusominaisuuksien skaalautuvuutta. Verrattuna edeltäjäänsä, H.264 videonpakkaustandardiin, H.265 tyypillisesti saavuttaa samalla kuvanlaadulla noin 50% pienemmän pakkauskoon. Erityisesti suuren resoluution videoilla (Full HD ja suuremmat) pakkaustehokkuuden paremmuus korostuu. Huomiota on kiinnitetty myös moniydinprosessoreiden hyödyntämiseen videokoodauksessa. H.265 tarjoaa kaksi uutta rinnakkaisuusominaisuutta: niin kutsutut Tiles- ja WPP-menetelmät (engl. \emph{Wavefront Parallel Processing}). Tiles-menetelmässä jokainen videon kuva jaetaan alueisiin, jotka voidaan purkaa viittaamatta saman kuvan muihin alueisiin. WPP-menetelmässä suhteet kuvan lohkoihin pakataan siten että purkamisprosessi pystyy etenemään kuvan läpi rintamana hyödyntäen useampia säikeitä. Tässä tutkimuksessa H.265 videodekooderin referenssitoteutusta laajennettiin tukemaan molempia näistä rinnakkaisuusominaisuuksista. Suorituskykyä mitattiin käyttäen kolmea eri mittausasetelmaa. Mittaustuloksista ilmeni, että prosessoriydinten lukumäärän kasvattaminen nopeutti videoiden purkamista tiettyyn pisteeseen asti. Tiles-menetelmää mitatessa havaittiin, että alueiden geometrialla, eli kuinka kuva jaettiin riippumattomiin alueisiin, on huomattava vaikutus purkamisnopeuteen tietyillä säiemäärillä. WPP-menetelmää mitattaessa havaittiin että korkeampiin säiemääriin (4-12) siirryttäessä purkamisnopeus alkoi hidastua. Tämä johtui pääasiassa säikeiden keskinäiseen synkronointiin kuluvasta ajasta

    Improved depth coding for HEVC focusing on depth edge approximation

    Get PDF
    The latest High Efficiency Video Coding (HEVC) standard has greatly improved the coding efficiency compared to its predecessor H.264. An important share of which is the adoption of hierarchical block partitioning structures and an extended number of modes. The structure of existing inter-modes is appropriate mainly to handle the rectangular and square aligned motion patterns. However, they could not be suitable for the block partitioning of depth objects having partial foreground motion with irregular edges and background. In such cases, the HEVC reference test model (HM) normally explores finer level block partitioning that requires more bits and encoding time to compensate large residuals. Since motion detection is the underlying criteria for mode selection, in this work, we use the energy concentration ratio feature of phase correlation to capture different types of motion in depth object. For better motion modeling focusing at depth edges, the proposed technique also uses an extra pattern mode comprising a group of templates with various rectangular and non-rectangular object shapes and edges. As the pattern mode could save bits by encoding only the foreground areas and beat all other inter-modes in a block once selected, the proposed technique could improve the rate-distortion performance. It could also reduce encoding time by skipping further branching using the pattern mode and selecting a subset of modes using innovative pre-processing criteria. Experimentally it could save 29% average encoding time and improve 0.10 dB Bjontegaard Delta peak signal-to-noise ratio compared to the HM
    corecore