18,278 research outputs found

    An adaptive quasi harmonic broadcasting scheme with optimal bandwidth requirement

    Full text link
    The aim of Harmonic Broadcasting protocol is to reduce the bandwidth usage in video-on-demand service where a video is divided into some equal sized segments and every segment is repeatedly transmitted over a number of channels that follows harmonic series for channel bandwidth assignment. As the bandwidth of channels differs from each other and users can join at any time to these multicast channels, they may experience a synchronization problem between download and playback. To deal with this issue, some schemes have been proposed, however, at the cost of additional or wastage of bandwidth or sudden extreme bandwidth requirement. In this paper we present an adaptive quasi harmonic broadcasting scheme (AQHB) which delivers all data segment on time that is the download and playback synchronization problem is eliminated while keeping the bandwidth consumption as same as traditional harmonic broadcasting scheme without cost of any additional or wastage of bandwidth. It also ensures the video server not to increase the channel bandwidth suddenly that is, also eliminates the sudden buffer requirement at the client side. We present several analytical results to exhibit the efficiency of our proposed broadcasting scheme over the existing ones.Comment: IEEE International Conference on Informatics, Electronics & Vision (ICIEV), 2013, 6pages, 8 figure

    Networked Multimedia: Are We There Yet?

    Get PDF

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations
    • …
    corecore