251 research outputs found

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    An extended depth-first search algorithm for optimal triangulation of Bayesian networks

    Get PDF
    The junction tree algorithm is currently the most popular algorithm for exact inference on Bayesian networks. To improve the time complexity of the junction tree algorithm, we need to find a triangulation with the optimal total table size. For this purpose, Ottosen and Vomlel have proposed a depth-first search (DFS) algorithm. They also introduced several techniques to improve the DFS algorithm, including dynamic clique maintenance and coalescing map pruning. Nevertheless, the efficiency and scalability of that algorithm leave much room for improvement. First, the dynamic clique maintenance allows to recompute some cliques. Second, in the worst case, the DFS algorithm explores the search space of all elimination orders, which has size n!, where n is the number of variables in the Bayesian network. To mitigate these problems, we propose an extended depth-first search (EDFS) algorithm. The new EDFS algorithm introduces the following two techniques as improvements to the DFS algorithm: (1) a new dynamic clique maintenance algorithm that computes only those cliques that contain a new edge, and (2) a new pruning rule, called pivot clique pruning. The new dynamic clique maintenance algorithm explores a smaller search space and runs faster than the Ottosen and Vomlel approach. This improvement can decrease the overhead cost of the DFS algorithm, and the pivot clique pruning reduces the size of the search space by a factor of O(n2). Our empirical results show that our proposed algorithm finds an optimal triangulation markedly faster than the state-of-the-art algorithm does
    • …
    corecore