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Abstract

The junction tree algorithm is currently the most popular algorithm for exact inference on Bayesian networks. To improve the time
complexity of the junction tree algorithm, we need to find a triangulation that has the optimal total table size. For this purpose,
Ottosen and Vomlel have proposed a depth-first search (DFS) algorithm. They also introduced several techniques to improve the
DEFS algorithm, including dynamic clique maintenance and coalescing map pruning. Nevertheless, the efficiency and scalability
of that algorithm leave much room for improvement. First, the dynamic clique maintenance allows to recompute some cliques.
Second, in the worst case, the DFS algorithm explores the search space of all elimination orders, which has size n!, where n is
the number of variables in the Bayesian network. To mitigate these problems, we propose an extended depth-first search (EDFS)
algorithm. The new EDFS algorithm introduces the following two techniques as improvements to the DFS algorithm: (1) a new
dynamic clique maintenance algorithm that computes only those cliques that contain a new edge, and (2) a new pruning rule,
called pivot clique pruning. The new dynamic clique maintenance algorithm explores a smaller search space and runs faster than
the Ottosen and Vomlel approach. This improvement can decrease the overhead cost of the DFS algorithm, and the pivot clique
pruning reduces the size of the search space by a factor of O(rn?). Our empirical results show that our proposed algorithm finds an
optimal triangulation markedly faster than the state-of-the-art algorithm does.
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1. Introduction

Bayesian networks are graphical models that encode probabilistic relations among several variables [1]. A
Bayesian network is a directed acyclic graph in which vertices represent random variables and the arcs (or lack of
them) represent the direct dependence (or conditional independence) relations between the variables. Each variable is
associated with a conditional probability table conditioning on its parents, which quantifies the relation between the
variable and its parents. Bayesian networks provide a neat and compact representation of joint probability distribu-
tions.

Probabilistic inference is an extremely common task that is conducted on Bayesian networks. However, exact
computation of posterior marginal distributions in a Bayesian network is known to be NP-hard [2] and even computing
an approximation is computationally intractable in the general case [3]. Consequently, the inference algorithm has a
network size limitation that hinders the more widespread application of Bayesian networks. Many attempts to improve
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the inference algorithm have been made in the past two decades. The junction tree algorithm [4, 5, 6] is currently
among the most prominent exact inference algorithms. In that algorithm, a Bayesian network is first converted into a
special data structure called a junction tree, and then belief is propagated on the tree. A junction tree can be formed if
and only if the moral graph of the Bayesian network is triangulated. If the graph is not triangulated, then we must add
extra edges to it until it becomes so. This process is called triangulation and, in general, any Bayesian network allows
several different triangulations. The triangulation will affect the structure of the junction tree and the performance
of subsequent belief propagation on that tree. So, to perform efficient inference on a Bayesian network by using the
junction tree algorithm, we aim to find a triangulation of the moral graph of the Bayesian network such that the total
table size is minimized [7, 8]. Unfortunately, finding a triangulation with the minimum total table size is NP-hard
[9]. Due to the complexity, early research in this direction focused mainly on developing approximation algorithms,
such as greedy heuristics [7, 9]. Heuristic approaches are useful for triangulation of large-scale Bayesian network,
for which finding an optimal triangulation is infeasible; however, these approximation methods are not guaranteed to
find an optimal triangulation. Finding an optimal triangulation requires additional computational time, but once the
junction of a Bayesian network has been constructed, we can perform efficient probabilistic inference on the same
junction tree to process any evidence [10, 11]. Therefore, an optimal triangulation can be found off-line and saved
for use in inference algorithms. An additional reason to find an optimal triangulation is that performing inference
on Bayesian network systems with real-time computing constraints (including real-time systems [12] and embedded
systems [13]) requires an optimal triangulation to minimize the inference time. Therefore, in this paper, we focus
especially on algorithms for optimal triangulation of Bayesian networks.

In order to construct an efficient junction tree, previous triangulation algorithms have used depth-first search [14],
branch and bound [15], best-first search [16] and dynamic programming [17]. Instead of using the total table size as a
measure, these methods have employed treewidth. The treewidth of a triangulated graph is the maximum clique size
minus one. A junction tree is constructed by connecting the (maximal) cliques of a triangulated graph. The time that
a belief propagation takes to process one clique is proportional to the table size of the clique, which is the size of the
joint state space of the variables represented by the vertices in the clique. For example, when we have a Bayesian
network in which all variables have at most c states, the running time of the belief propagation using a junction tree
with m cliques and treewidth k is of order O(c* - m). However, in practice, the statistical variables in a Bayesian
network might have different numbers of states, and so a triangulation with minimum treewidth might not be optimal
for this algorithm. However, the weighted treewidth of a triangulated graph is the maximum table size required for any
clique. Given a junction tree with m cliques and weighted treewidth w, the running time of a belief propagation is of
order O(w - m). Taking advantage of considering the different number of states over variables, the weighted treewidth
criterion can obtain a better bound for inference time than the treewidth criterion. Several triangulation algorithms
that minimize the weighted treewidth have been proposed previously [18, 19]. Nevertheless, when cliques are not
almost all equal in table size (or, equivalently, weighted clique size), the time bound for the inference algorithm is
loose. Finally, the total table size is the sum of all weighted clique sizes, and the total table size is proportional to the
running time of junction tree inference. Therefore, of all these optimality criteria, the total table size yields the most
exact bound for the time requirement of probabilistic inference [4, 9, 8]. Thus, for inference on a Bayesian network,
a triangulation is optimal when it has the minimum total table size.

A triangulation can be found by an algorithm called elimination. In this algorithm, a triangulated graph is obtained
by eliminating all vertices from a graph according to a particular linear ordering, the so-called elimination order, of the
vertices of the graph. It is well known that the optimal triangulation problem can be formulated as a problem to find an
elimination order such that the triangulated graph obtained according to the ordering has the minimum total table size.
Employing this formulation, Ottosen and Vomlel investigated depth-first search and best-first search algorithms for
exploring the search space of all elimination orders [20]. They claimed that depth-first search uses less memory than
best-first search. Moreover, they demonstrated that the two methods have almost equal run times in computational
experiments: that is, the best-first search, which theoretically has better order, does not necessarily run faster than the
depth-first search in practice because, although the depth-first search expands more search nodes than the best-first
search does, the best-first search has the heavy overhead of maintaining a priority queue. (To avoid confusion, in this
paper, “vertex” is used exclusively in the context of the graph being triangulated and “node” is used exclusively in
reference to the search space of the optimal triangulation algorithm.) We focus mainly on improvements to depth-first
search algorithms for optimal triangulation.

In the depth-first search algorithm, in order to employ the branch and bound method for pruning, it is necessary
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to compute the total table size of each node, which is a lower bound for the node. To compute this quantity, we need
to know the set of cliques of the graph to which each node belongs. A simple method for computing this is to run
the Bron—Kerbosch (BK) algorithm [21] for each node of the graph; however, the complexity of the BK algorithm
is exponential in the number of vertices of the graph [22]. To resolve this problem, Ottosen and Vomlel proposed a
dynamic clique maintenance algorithm [20] that runs the BK algorithm on a smaller subgraph in which all the new
cliques can be found and all known cliques within the subgraph are removed. This dynamic clique maintenance
reduced the overhead cost of each node and made the optimal triangulation algorithm faster. To reduce the search
space, Ottosen and Vomlel also introduced the simplicial vertex rule [23, 19] and coalescing map pruning [16, 11].
Nevertheless, the depth-first search algorithm proposed by Ottosen and Vomlel has the following two performance
problems. First, the dynamic clique maintenance algorithm allows recomputing some cliques. The computational
cost of the method increases with the number of duplicate computations. In the elimination process for triangulating
a graph, it is well known that a new added edge cannot connect to a vertex that has been eliminated. From this
observation, Li and Ueno [24] proposed an improved dynamic clique maintenance algorithm. The Li and Ueno
method reduced the search space of the BK algorithm by removing eliminated vertices from the subgraph explored
during the Ottosen and Vomlel method. However, this method still computes many duplicate cliques. Second, the time
complexity of the depth-first search algorithm is O(n!), where n is the number of variables in the Bayesian network,
because it explores a search space containing all elimination orders. It is known that some different elimination
orders induce identical triangulations. Consequently, the depth-first search algorithm might explore a great number of
equivalent elimination orders.

In this paper, we propose an extended depth-first search algorithm for the optimal triangulation of Bayesian net-
works. The algorithm improves the Ottosen and Vomlel method in two ways.

1. It reduces the overhead cost of each node, and
2. it reduces the size of the search space by a factor of O(n?).

To reduce the overhead cost, we propose a new dynamic clique maintenance algorithm. When new edges are inserted
in a graph during triangulation, we need to update the stored cliques to be those of the new graph. Any new clique in the
updated graph contains at least one new edge, and employing this observation in our method allows not recomputing
those cliques that do not contain a new edge. We run the BK algorithm on the subgraph that contains only the
vertices connected by new edges and all neighboring vertices of new edges. We, therefore, explore an even smaller
subgraph than the one that the Ottosen and Vomlel method explores. Since the computational cost of dynamic clique
maintenance is inherent in expanding each node, improving dynamic clique maintenance can decrease the overhead
of each node. To reduce the size of the search space, we introduce a novel pruning rule, called pivot clique pruning.
The initial search space of the optimal triangulation algorithm includes all elimination orders; pivot clique pruning
removes a large number of equivalent elimination orders from this search space. In a theoretical analysis, we show
that the pruning method reduces the size of the search space by a factor of O(n?). Our empirical results show that the
proposed depth-first search algorithm represents a remarkable improvement over the Ottosen and Vomlel algorithm.

For the triangulation algorithm with treewidth as an objective, Bodlaender et al. [17] proposed a similar pruning
rule. There are some significant differences in algorithms between that in [17] and the one proposed here. First,
the algorithm in [17] selects a maximum clique as a pivot clique before searching starts, and then uses the fixed
pivot clique to prune unnecessary branches. In contrast, our proposed algorithm selects a pivot clique at each node
expansion. Secondly, the method in [17] prunes unnecessary orders on the basis of treewidth optimality. However,
our method prunes unnecessary orders on the basis of total table size optimality.

The rest of this paper is organized as follows. Section 2 introduces the junction tree algorithm and clarifies
the significance of the triangulation. Section 3 introduces the triangulation problem and describes the formulation
of the search space of the depth-first search optimal triangulation algorithm. Section 4 reviews the Ottosen and
Vomlel optimal triangulation algorithm [20]. In Section 5, we propose two techniques for improving the Ottosen and
Vomlel algorithm: a new dynamic clique maintenance algorithm and pivot clique pruning. Section 6 discusses some
experiments to evaluate the proposed method against the state-of-the-art method. Section 7 concludes the paper.
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Figure 1. The Asia Bayesian network

2. Background

A Bayesian network is a directed acyclic graph (DAG) in which the set of vertices corresponds to a set of random
variables X = {xy, x, ..., X,}, and the arcs represent direct dependency relations between the variables. For example,
we show the classical Asia Bayesian network [5] in Fig. 1. More precisely, each variable x; in X is represented
as a vertex in the DAG and is associated with a conditional probability table (CPT), P(x;|PA;), where PA; denotes
the parents of x; in the DAG. The product of CPTs in a Bayesian network gives the joint probability distribution of
variables in the Bayesian network, with

P(X) = P(x1, %2, %) = | | PPy, 1)
i=1

where n is the number of variables in the Bayesian network.

When an inference task is performed on a Bayesian network, we typically compute the posterior marginal distribu-
tions for the unobserved variables given some evidence variables that we have already observed. However, computing
the posterior marginal distributions is known to be NP-hard. Currently, the most efficient algorithm used for comput-
ing this distribution is the junction tree algorithm. The junction tree algorithm uses two processes: compilation and
propagation. The compilation part of the method consists of the following steps:

1. moralize the Bayesian network graph, see Fig. 2;

2. triangulate the moralized graph (i.e., add extra edges such that every cycle of length greater than three has a
chord), see Fig. 3a;

3. identify all cliques of the triangulated graph;
4. construct a junction tree over these cliques, see Fig. 3b.

A junction tree over the cliques is characterized by the junction tree property: given two cliques in the junction tree, C;
and C;, every node on the path between them contains their intersection (C; N C;). In the compilation part, steps 1 and
3 are deterministic but steps 2 and 4 raise optimization problems. For step 2, we will discuss the optimal triangulation
problem in detail in the next section. This paper focuses on the optimal triangulation algorithm. For step 4, Jensen
[25] has proposed an algorithm for optimal junction tree construction.

The propagation part of the method consists of the following steps:

1. giving all links in the junction tree a label consisting of the intersection of the neighboring cliques (these labels
are called separators, see Fig. 4a);

2. forming a potential ¢; for each clique C;, using the CPTs of the Bayesian network and attaching a potential ¢;;
to all separators (initialize all values to one); and
4
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(a) Marring parents (b) Dropping directions

Figure 2. Moralizing the Bayesian network graph: (a) connect the vertices with common children and (b) drop the directions of directed edges.

(a) Triangulated graph (b) Junction tree

Figure 3. (a) Add edges to make the moral graph triangulated and (b) construct a junction tree by connecting the cliques of the triangulated graph.

3. letting the nodes communicate via the separators. For example, see Fig. 4b, a message sent from clique C; to
C; with separator §;; has the form that ¢; is marginalized down to S;;, resulting in ¢; ;> the message q);j/zf),- jis
received by ¢;, and ¢;; on the separator is replaced by ¢;.

Belief propagation begins by choosing an arbitrary clique as the root, from which the propagation is initiated.
Message passing starts from the leaves and is divided into two stages. When a clique receives messages from all
its neighbors except one that lies toward the root, it is allowed to send a message toward the root. This continues
until the root clique has received messages from all its neighbors. This procedure is called COLLECT-EVIDENCE.
Then, the root clique sends messages to all its neighbors. When a clique receives messages from all its neighbors, it
sends a message toward the leaves until all leaves have received a message. This procedure is called DISTRIBUTE-
EVIDENCE. After these two rounds of message passing, each clique potential of the junction tree holds the marginal
probability distribution for the variables belonging to it.

=

[LE] [LB] [EB]
O
G G GEDD ’
—_— —_—
[ £ ] gy Pl
Cat D Cex >
(a) A junction tree with separators (b) message passing on a junction tree

Figure 4. (a) Junction tree and (b) an illustration of message passing
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Given a junction tree with m cliques and assuming only binary variables, performing probabilistic inference on
the tree needs to calculate )i, 2™ parameters, where m; denotes the number of variables in the ith clique. The
number )", 2" is known as the total table size (or total clique tree size [26] or total state space size [7]), and is an
estimation of the time complexity of the junction tree algorithm. We will give a formal definition of total table size
in the next section. A Bayesian network allows several different triangulations, yielding different sets of cliques. The
time complexity of belief propagation heavily depends on the total table size of the triangulated graph. Therefore, it
is necessary to find an optimal total table size triangulation for efficient inference.

3. The triangulation problem

We first introduce some notation and definitions for the description of the triangulation problem. Then we formu-
late the search space of the optimal triangulation algorithm.

3.1. Notation and definitions

Let G = (V,E) be an undirected graph with vertex set V and edge set E, V(G) denotes the vertex set of G
and &(G) denotes the edge set of G. For a set of vertices W € V, G[W] = (W, {(v,w) € Elv,w € W}) is the
subgraph of G induced by W. For a set of edges F, V(F) denotes the set of vertices {v, w|(v,w) € F}. Two vertices
vand win G = (V,E) are said to be adjacent if (v,w) € E. The set of neighbors of v in graph G = (V,E) is
denoted by N(v,G) = {w € V|(v,w) € E}). The family ¥ AU, G) of a set of vertices U C V is defined as the set
(UMEUN(M7 G)) uu.

A graph G is complete if all pairs of vertices (u, v)(u # v) are adjacent in G. A set of vertices W C V is complete
in G if G[W] is a complete graph. If W is a complete set and no complete set U exists such that W is a proper
subset of U, then W is a cligue. (Remark: Any complete set is called a clique in some of the literature. In that
case, what we have defined as a clique is called a maximal clique.) The set of all cliques of graph G is denoted by
C(G). Let G’ = (V,E U F)(F n E = 0) be the graph obtained by adding a set of new edges F' to G = (V, E), then
RC(G,G") = C(G)\C(G") denotes the set of removed cliques, and NC(G,G’) = C(G")\C(G) denotes the set of new
cliques. For example, in Fig. 5, let G be the graph on the left, and G’ be the graph obtained by adding a new edge (c, d)
to G. In this example, we can compute C(G) = {{a, b, c}, {b,d},{d, e}, {c,e}} and C(G’) = {{a, b, c},{b,c,d},{c,d,e}}.
Then we have RC(G,G”") = {{b,d},{d, e}, {c, e}} and NC(G,G’") = {{b, c,d},{c,d,e}}.

Figure 5. Left: Initial graph G = (V, E). Right: Updated graph G’ obtained by adding one edge (¢, d) to G.

The table size of a clique C is defined as £s(C) = [],ec) [sp(v)], where sp(v) denotes the state space of the network
variable corresponding to v. The total table size (tts) of a graph G is defined as t£5(G) = Y ccc) t5(O).

An undirected graph G is triangulated if every cycle of length greater than three has a chord, that is an edge
connecting two nonconsecutive vertices in the cycle. Triangulation of G is defined as adding a set of edges T such that
T NE =0and graph H = (V,E U T) is triangulated. For example, in Fig. 5, the graph on the left is not triangulated
because a chord-less cycle {b, c, e, d} exists. The graph on the right is triangulated, and the edge (c, d) produces a
triangulation for the graph on the left.
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(a) Partially triangulated graph (c) Partially triangulated graph
corresponding to eliminating D corresponding to eliminating D,S

S

(b) Remaining graph (d) Remaining graph
corresponding to eliminating D corresponding to eliminating D,S

Figure 6. An example of eliminating vertices from the moral graph of the Asia network.

The elimination of a vertex v € V from graph G = (V, E) is the process of adding necessary edges F to make
the vertex set N'(v,G) complete, then removing v and its incident edges from G. The edges F added during the
elimination process are called fill-in edges. If F' = 0, then v is called a simplicial vertex of G. An elimination order for
graph G = (V, E) is a bijection  : {1,2,...,|V|} — V describing an order for eliminating all vertices from G, where
n(i) denotes the ith vertex in the order 7. The elimination of vertices from graph G according to order n induces a
remaining graph sequence G, G7, ..., Gy, where graph G| = G and graph G7, | is obtained by eliminating vertex 7 (i)
from graph G7. Moreover, the elimination process induces a sequence of fill-in edges F7, F’ PR where F T are
the fill-in edges introduced when eliminating vertex (i) from G7. Let T™ denote the union of all the fill-in edges that
result from eliminating all vertices from graph G = (V, E) according to order r and let H* = (V, E U T”) denote the
filled-in graph that results from adding edges 77 to G. It is well known that 77 is a triangulation of G, and H" is a
triangulated graph [27]. Now, it suffices to define the partially triangulated graph HY that results from adding fill-in
edges F|, F7,..., FT to graph G. The final partially triangulated graph Hy; (also written as H”) is a triangulated graph.
Let 7 denote a partial elimination order for graph G, which is a sequence of vertices for ordering the elimination
process. The partially triangulated graph H™ and the remaining graph G™ are defined similarly.

Now, we present an example to demonstrate the process of eliminating vertices from the moral graph of the Asia
Bayesian network in Fig. 6. Consider an elimination order r starting with the sequence (D, S ). Because eliminating
vertex n1(1) = D does not add any fill-in edges, F7 is empty and D is a simplicial vertex. This process induces two
associated graphs: a partially triangulated graph HY (see Fig. 6(a)) and a remaining graph G (see Fig. 6(b)). Then we
eliminate vertex 7(2) = §. Eliminating vertex S adds a fill-in edge (L, B), so F7 = {(L, B)}. This process also induces
two associated graphs: the partially triangulated graph H7 is shown in Fig. 6(c) and the remaining graph G7 is shown
in Fig. 6(d). If we continue to eliminate vertices until no vertex is left, the final partially triangulated graph H” is a
triangulated graph that has no chord-less cycles. Triangulation according to a particular elimination order is simple,
but the determination of an optimal elimination order is the most important step. In this paper, we try to find the order
n for eliminating graph G that induces a triangulated graph H™ with the minimum total table size.
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3.2. Search space of the optimal triangulation algorithm

To find an optimal triangulation of a Bayesian network, we can conduct a search in the space of all elimination
orders of the Bayesian network [20]. For this purpose, we generate a search graph that includes all elimination orders
of the Bayesian network. The search graph is a tree with root node corresponding to the initial search node and leaf
nodes corresponding to all distinct elimination orders. Fig. 7 depicts the search space of the optimal triangulation
algorithm on a network graph with five vertices. In this search tree, each non-leaf node is labeled using a partial
elimination order 7 that is a sequence of vertices for ordering the elimination process. We also associate the partially
triangulated graph H and the remaining graph G* with each node for reasons of computational convenience in the
optimal triangulation algorithm. Each child of a node 7 is generated by eliminating a vertex from its parent’s remaining
graph GT and appending that vertex to its parent’s partial elimination order 7. By exploring the search tree, we can
find an elimination order that induces a triangulated graph with the minimum total table size.
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Figure 7. The search tree of the optimal triangulation algorithm for a network graph with five vertices.
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4. The optimal triangulation algorithm

This section reviews the depth-first search optimal triangulation algorithm presented by Ottosen and Vomlel [20].

4.1. Depth-first search algorithm

The naive depth-first branch and bound algorithm for optimal triangulation operates as follows. First, the algorithm
initializes the upper bound (U B) on total table size (¢zs) with the triangulation obtained by the minimum fill-in heuristic
(MinFilD)[7, 9, 11], which greedily selects the next vertex to eliminate if the elimination adds the minimum number
of fill-in edges. Next, it traverses all search tree nodes in a depth-first manner. For each search tree node, we calculate
the tts of the partially triangulated graph corresponding to the node. This quantity is a lower bound for the #s of the
node because the #¢s of a graph cannot be decreased by adding edges [20]. If we find a node for which the #zs is greater
than the tzs of UB, then we prune all the descendants of the node. On the other hand, if we find a leaf node for which
the #ts is smaller than UB, we update UB by replacing UB with the leaf node (including the triangulated graph and
the tts of the node). The search continues until all nodes have been explored. At completion, the algorithm finds an
optimal order or, equivalently, an optimal triangulation. It is noteworthy that the algorithm explores the search space
of all elimination orders.

In the depth-first search algorithm, we intend to use the #s upper bound for pruning nodes that have a greater #¢s.
Therefore, we need to compute the 7¢s of each node in the search tree. The #¢s of a node is easy to compute if we know
the cliques of the partially triangulated graph corresponding to the node. To compute the tts of a node efficiently,
Ottosen and Vomlel associate the following with each node ¢ [20].

8
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t.7: The ordered list of vertices representing the partial elimination order.

e t.H: The partially triangulated graph obtained by adding all fill-in edges accumulated along the 7 to the original
moral graph.

t.C: The set of cliques for H, C(H).
o r.1ts: The total table size of graph H, which is a lower bound on the #¢s of node ¢.
e 1.R: The remaining graph, R = H[V\V(1)], where V(7) denotes the set of vertices that lie in 7.

To compute z.7ts, we need to compute the set of cliques 7.C first. For this purpose, we can use a standard clique
enumeration algorithm, such as the well-known Bron—Kerbosch algorithm (BK algorithm) [21]. Unfortunately, the
BK algorithm has a heavy computational cost. For a graph with n vertices, the worst-case running time of the BK
algorithm is O(3"/?) [22]. Indeed, eliminating one vertex changes only a small part of a partially triangulated graph.
Performing the BK algorithm on the whole graph thus involves many redundant computations. To tackle this problem,
Ottosen and Vomlel [20] proposed a more efficient algorithm for computing the set of cliques in a dynamic graph. We
will explain this dynamic clique maintenance algorithm in Section 4.2. However, the dynamic clique maintenance
algorithm proposed by Ottosen and Vomlel allows computing some duplicate cliques. To resolve this problem, we
propose a new dynamic clique maintenance algorithm in Section 5.1.

Algorithm 1 Depth-first search with coalescing and upper-bound pruning.

1: function TriangulationByDFS(G)
Let s = (G, C(G), tts(G), V)
EliminateSimplicial(s) > Simplicial vertex rule
if |'V(5.R)|=0 then
return s
end if
Let best = MinFill(s) > Best path
Letmap =0 > Coalescing map
ExpandNode(s, best, map) > Start recursive call return best
end function
: procedure ExpandNode(t, &best, &map)
12: for all v € V(¢.R) do

R IR A ol

—_
—_ o

13: Let m = Copy(?)

14: Eliminate Vertex(m, v) > Update graph, cliques and #ts
15: EliminateSimplicial(m) > Simplicial vertex rule
16: if |V (m.R)|=0 then

17: if m.tts < best.tts then

18: Set best =m

19: end if

20: else

21: if m.tts > best.tts then

22: continue > Branch and bound
23: end if

24: if map[m.R].tts < m.tts then

25: continue

26: end if

27: Set map[m.R] = m

28: ExpandNode(m, best, map)

29: end if

30: end for
31: end procedure

We have explained the search tree of depth-first search and how to compute a lower bound for the #¢s for each node.
The depth-first search algorithm presented by Ottosen and Vomlel can be implemented in O(|V]) space and O(|V|!)
9
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time. Pseudocode for the Ottosen and Vomlel algorithm is outlined in Algorithm 1. The procedure Eliminate Vertex(m, v)
eliminates vertex v from the remaining graph of node m and simultaneously updates the set of cliques and the total ta-
ble size. To prune unnecessary search nodes further, Ottosen and Vomlel also introduced the following pruning rules:
(1) a graph reduction technique called the simplicial vertex rule [23, 19], and (2) coalescing of nodes [16, 11]. The
procedure EliminateSimplicial(m, v) sequentially removes all simplicial vertices from the remaining graph of node
m. The coalescing map uses O(2") memory space to prune unnecessary search nodes (see [16, 11, 20] for details).
Although it is well known that a depth-first search algorithm runs in O(|V|!) time, the algorithm combined with the
pruning techniques described above merely hits the upper bound. However, in the worst case, the algorithm might
explore the search space of all elimination orders which has a size of n!, where n is the number of variables in the
Bayesian network. It is known that some different elimination orders induce identical triangulations. Consequently,
the Ottosen and Vomlel algorithm might explore a great number of equivalent elimination orders. In Section 5.2, we
propose a pruning rule, called pivot clique pruning, that removes a large number of superfluous elimination orders
from the search space.

4.2. Previous work on dynamic clique maintenance

Algorithm 2 Dynamic clique maintenance algorithm proposed by Ottosen and Vomlel.

1: procedure CliqueUpdate(G, C(G), F)
2 LetG' =(V,EUF)

3: Let C(G")=C(G)
4 Let U = V(F)
5: for each clique C € C(G") do > Remove old cliques
6: if C N U # 0 then
7: Set C(G") = C(G") \ {C}
8: end if
9: end for
10: let C™" = BKalgorithm(G’[F AU, G")])
11: for each clique C € C"" do > Add new cliques
12: if C N U # 0 then
13: Set C(G") = C(G") U {C}
14: end if
15: end for

16: end procedure

To avoid searching for all cliques in the whole graph as the BK algorithm does, Ottosen and Vomlel proposed
a dynamic clique maintenance algorithm that runs a clique enumeration algorithm on a smaller subgraph in which
all the new cliques can be found and all the existing cliques are removed [20]. This dynamic clique maintenance is
presented in Algorithm 2, where G is the initial graph, C(G) is the set of cliques of G, F signifies the fill-in edges,
and G’ is derived by adding F to G. BKalgorithm(G) returns a set of cliques of the graph G. The dynamic clique
maintenance algorithm is based on the following theorem.

Theorem 1 ([20]). Let G = (V, E) be an undirected graph, and let G’ = (V, E U F) be the graph resulting from adding
a set of new edges F to G. Let U = V(F), and let C(G”) be initialized with C(G). If the cliques in G that intersect with
U are removed from C(G") and the cliques in G'[F A(U, G")] that intersect with U are added to C(G’), then C(G’) is
the set of cliques of G'.

Next, we provide an example to illustrate Algorithm 2.

Example 1. Consider the Fig. 8a. C(G) is the set of cliques of G, {{A, T}, {TL,E}, {E,X}, {S,L}, {S,B}, {B,D,E}}. We
add fill-in edges F = {(L, B)} to graph G, resulting in new graph G’ (corresponding to the graph in Fig. 8b). The set
U = {L, B}, and we let C(G") be initialized with C(G).

First, we scan through the cliques in C(G") to remove the cliques that intersect with U, which is the set of cliques
{T,L,E},{S,L},{S, B},{B, D, E}}. Next, we run the BK algorithm on a subgraph G'[¥ A(U,G")]. Thereby, we obtain
c ={T,L,E},{S,L,B},{L,B,E},{B, DD, E}}.

10
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(a) Partially triangulated graph (b) Partially triangulated graph
corresponding to eliminating D corresponding to eliminating D,S

Figure 8. A sequence of graphs corresponding to eliminating vertices D and S in that order. (L, B) is the fill-in edge.

Finally, we add to C(G’) all the cliques found in the subgraph G’|F A(U, G")] that intersect with U. Now C(G") =
A, TV {E,X),{T,L,E},{S,L,B},{L, B, E}, {B, D, E}}, which is the set of cliques of the new graph G’.

The example shows that the algorithm sometimes removes a clique and then adds it again. Although the Ottosen
and Vomlel method reduces the search space of the BK algorithm from the whole graph G’ to a small subgraph
G'[F AU, G")], the method might present shortcomings in performance when the number of duplicate cliques be-
comes large. In this example, we observed that vertex D has been eliminated. It is well known that a new fill-in
edge cannot connect to a vertex that has been eliminated. Because the neighbors of D are invariant in G and G’, any
clique containing D in the initial graph should remain a clique in the updated graph. Generally, no clique containing
one of the eliminated vertices should be calculated again. Based on this observation, Li and Ueno [24] proposed an
improved dynamic clique maintenance algorithm. The Li and Ueno dynamic clique maintenance procedure is shown
in Algorithm 3, where G, C(G), F are defined in the same manner as presented in Algorithm 2, and W is the set of
vertices that have been eliminated before. The improved dynamic clique maintenance runs the BK algorithm on the
graph G'[F AU, G") \ W], which is a subgraph of G’'[F A(U,G")] that the Ottosen and Vomlel method explores.
Because the complexity of the BK algorithm is exponential in the number of vertices in the subgraph, reducing the
search space of the BK algorithm is important for improving the performance of dynamic clique maintenance. In the
Li and Ueno method, when we remove an old clique C, one more conditional check is necessary to ascertain whether
clique C and W are disjoint. This check is usually not a problem because the complexity of comparison of cliques
is constant if we store a clique using a BitSet Object in the JAVA programming language. However, the method still
computes many duplicate cliques.

Algorithm 3 Dynamic clique maintenance algorithm proposed by Li and Ueno(2012).
1: procedure CliqueUpdate1(G,C(G), F, W)

2: LetG' = (V,EUF)
3: Let C(G") = C(G)
4 Let U = V(F)
5: for each clique C € C(G") do > Remove old cliques
6: if CN U # 0 then
7: if CN'W = 0 then
8: Set C(G") = C(G") \ {C}
9: end if
10: end if
11: end for
12: let C"” = BKalgorithm(G'[F AU, G’) \ W])
13: for each clique C € C"™" do > Add new cliques
14: if CN U # 0 then
15: Set C(G") = C(G") U {C}
16: end if

17: end for
18: end procedure

11
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5. New algorithm

5.1. Proposed dynamic clique maintenance algorithm

Algorithm 4 Proposed dynamic clique maintenance algorithm.

1: procedure CliqueUpdate2(G, C(G), F)
2: LetG' =(V,EUF)

3 Let C(G")=C(G)

4 Let W = F A(F,G")

5: for each clique C € C(G”) do > Remove old cliques
6 if C € W then

7 Set C(G") = C(G")\ {C}

8 end if

9: end for
10: C(G”) = C(G”") U BKalgorithm(G'[W]) > Add new cliques

11: end procedure

In the depth-first search optimal triangulation algorithm, it is necessary to compute the lower bound of tts for
each search node. Therefore, the computational cost of updating cliques is inherent in expanding each node. To
lower the overhead cost of each node, we must compute the cliques of each graph efficiently. In Section 4.2, we have
demonstrated by example that the Ottosen and Vomlel approach might compute some duplicate cliques. To resolve
this problem, we propose a new dynamic clique maintenance algorithm. When some new edges are inserted in a
graph, a new clique contains at least one new edge. The main idea of our method is to avoid recomputing the cliques
that do not contain a new edge.

For a graph G = (V, E) and an edge ¢ = (v,w) € E, we define the neighborhood N(e, G) of an edge e as the set of
vertices U C V such that U contains all the vertices adjacent to both v and w. For a set of edges F, the family #A(F, G)
of F is defined as the set (Usep N(f, G)) UV(F). Let G = (V, E) be the initial graph and let G’ = (V, EUF)(FNE = ()
be the graph obtained by adding a set of new edges F to G. All new cliques and removed cliques are included
in the vertex set ¥ A(F, G") according to the following theorem. Therefore, we can run the BK algorithm on only
the subgraph G[F A(F,G’)]. Note that the family # A(F, G’) is a subset of the family FA(V(F),G"), which is the
subgraph explored during the Ottosen and Vomlel method. The proposed dynamic clique maintenance is shown in
Algorithm 4, where G, F, C(G) are defined in the same manner as presented in Algorithm 2, and W = FA(F,G")
denotes the family of a set of edges F.

The new algorithm is based on the following theorem.

Theorem 2. Let G = (V, E) be an undirected graph, and let G’ = (V, E U F) be the graph resulting from adding a set
of new edges F to G. Let W = ¥ A(F,G’"), and let C(G’) be initialized with C(G). If the cliques that are included in
W are removed from C(G") and the cliques of C(G’[W]) are added to C(G"), then C(G’) is the set of cliques of G.

Proof . If C is a complete set in NC(G,G’) (which means C € C(G") and C ¢ C(G)), then C contains at least one
new edge f € F; otherwise C would be a clique in G. If C is a new clique that contains a new edge f = (v,w) € F,
then any vertex u € C (u # v or w) is included in N(f,G"). Therefore, C C FA(F,G’). Thus, all the new cliques can
be found in the subgraph G[F A(F,G")].

If K is a complete set in RC(G,G") (which means K € C(G) and K ¢ C(G’)), then there exists a new clique C such
that K € C. Because any new clique is included in F A(F,G") as proved above, C C F A(F,G"). Therefore, each
removed clique K is included in ¥ A(F,G’).

We remove all the old cliques by removing all the cliques included in F A(F,G") from C(G"), and then add all the
new cliques which can be found in the subgraph G[F A(F,G")] to C(G"). Then, C(G’) is the set of cliques of G'. U

The following example illustrates the algorithm.

Example 2. Consider again the graph G and updated graph G’ in Fig. 8. C(G) is the set of cliques of G, C(G) =
A, T AT, L, E,{E, X},{S,L},{S, B},{B, D, E}}. Let C(G’) be initialized with C(G). We first compute the family of
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edge set F, W = FA(F,G") = {S,E,L,B}. Next, we scan through the cliques in C(G") to remove all the cliques
included in W, which is the set of cliques {{S, L},{S, B}}.

Then, we run the BK algorithm on a subgraph G'[W]. We obtain C"" = {{S,L, B},{L, B, E}}. In the Ottosen
and Vomlel method, we run the BK algorithm on G’[F A(U,G")], where F A(U,G’) = {S, T, E, D, L, B}. However, in
our new method, we run the BK algorithm on G’'[W], where W = {S, E, L, B}. It can be easily proved that vertex set
W = FAF,G) is always a subset of F A(V(F),G"). Our method makes the BK algorithm explore less search space
for updating cliques than the Ottosen and Vomlel method. Since the complexity of the BK algorithm is exponential
in the number of vertices in the subgraph, this reduction is important to improve the performance of dynamic clique
maintenance.

Finally, we simply add all new cliques C™" to C(G"). In this example, we only remove cliques RC(G,G") from
C(G") and add cliqgues NC(G,G") to C(G"). In contrast, the Ottosen and Vomlel method removes some duplicate
cliques and then adds them again.

Given a graph G, a set of new edges F and the eliminated vertex set W, consider the problem of computing the
set of cliques of new graph G’. The Ottosen and Vomlel method runs the BK algorithm on G’[F A(V(F), G)], the Li
and Ueno method runs the BK algorithm on G’[F A(V(F),G") \ W] and the proposed method runs the BK algorithm
on G'[F A(F,G")]. The BK algorithm suffers from heavy computational cost, and the proposed method reduces
the search space of the BK algorithm because ¥ A(V(F),G") 2 FA(V(F),G') \ W 2 FA(F,G"). Therefore, our
proposed method is expected to dramatically reduce the running time of dynamic clique maintenance. In the Ottosen
and Vomlel approach, it is necessary to check each clique in G’[F A(V(F),G’)] to ascertain whether it intersects
V(F). However, we can remove this conditional check from our algorithm.

The dynamic clique maintenance algorithms has two main steps: scanning all existing cliques and running the
BK algorithm. If dynamic clique maintenance algorithms are used for computing graphs with many cliques, then the
scanning part will dominate the complexity of the dynamic clique maintenance because they need to scan all existing
cliques in the graphs. In this case, the three dynamic clique maintenance algorithms are expected to perform equally
well. Fortunately, our study of the repository Bayesian networks with less than 100 vertices found that there are not
many cliques with these network graphs. Except on graphs with many cliques, our proposed algorithm is expected
to run faster than the Ottosen and Vomlel method, because it reduces the search space of the BK algorithm. We
demonstrate the superior performance of the new algorithm by considering the results of simulation experiments in
Section 6.

5.2. Pivot clique pruning

In the worst case, the depth-first search algorithm described in Section 4.1 explores the search space of all elimi-
nation orders which has size n!, where # is the number of variables in the Bayesian network. It is known that different
elimination orders can lead to identical triangulations. Consequently, the depth-first search algorithm might unneces-
sarily explore a great number of elimination orders. In order to prune these redundant elimination orders, we propose
a novel pruning rule called pivot clique pruning, which can remove a large number of unnecessary elimination orders
from the search space.

We first show an example of elimination orders leading to duplicate results. Consider the process of eliminating
vertices from the left graph G in Fig. 5. Let 7 = (a, b, e, c, d) be an elimination order. By exchanging the positions of
b and e, we obtain the order 7’ = (a, e, b, ¢, d). If we eliminate all vertices from the graph G according to order r, then
we obtain the triangulated graph H”, which is shown as the right graph in Fig. 5. The order 7’ also leads the identical
triangulated graph, H* = H™. Let G’ and G’f’ be initialized with graph G. We first eliminate vertex (1) = a from
graph G7, and vertex n'(1) = a from graph G’l", then we obtain the identical remaining graphs G7 = G’2”. Next, we
eliminate vertex 71(2) = b from graph G7. In the elimination process, we add fill-in edge (c, d) to make the neighbors
of vertex b, N'(b, G7), complete, then we obtain the remaining graph G7. Because the vertices b and e are not adjacent,
the neighbors of e are the same in graphs G7 and G7%: that is, N(e, GY) = N(e, G%). Next, consider eliminating vertex
7’(2) = e from graph G’zr/. Then we obtain the remaining graph G’;. Because the vertices b and e are not adjacent, we
also have the result N (b, Gg/) = N(b, G’;'). In the order 7, the elimination of vertices b and then e makes N'(b, G7) and
N(e, G%) complete. In the order 7, the elimination of vertices e and then » makes N (e, Gg/) and N (b, G’;) complete.
Because N(b,G}) = N(b, G’;) and N(e,G%) = Ne, Gg/), making these two identical sets complete requires identical
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fill-in edges. In addition, it is clear that the remaining graphs are also equal: G = Gf and G% = G’Sr’. Thus, the fill-in
edges obtained from the orders 7 and n” are identical.

In the optimal triangulation algorithm, if we know two orders engender identical triangulations, then we can prune
one of the two orders from the search space. However, we need not to explicitly identify the equivalent orders. The
following theorems offer a straightforward approach to prune redundant orders with extremely low computational
cost.

Lemma 1. Let G be a graph, and let m = (vy, ..., v,) be an elimination order. The elimination of vertices from graph
G according to order it induces a graph sequence G7,G7, ..., Gy, where GT = G and G7, | is obtained by eliminating
vertex v; from graph G7. If there exist two vertices v; and vy (i < k) such that vy is nonadjacent to vy in Gi_, and v,
is adjacent to vy, for l = i, ...,k — 2, then by moving vy directly before v; to obtain the new order n’=(vy, ..., vi_1, Vi,
Viy v o Vi1, Vit 1s- « » Vn), We find that the orders n and n’ engender identical triangulated graphs.

Proof . First, we prove forl = i, ...,k — 1, v; is nonadjacent to vi. We prove this by contradiction. Assume that there
exists a vertex v;,l € [i,k — 1] such that v; is adjacent to vy. Then, eliminating vertex v; makes vy, adjacent to vy,
because v; is adjacent to both viy1 and vy. Under this assumption, if we eliminated vertices sequentially from v; to
Vi—2, We would obtain the result that vi_; is adjacent to vy, which is a contradiction.

Next, we prove that the filled-in graphs satisfy H* = H* . When a vertex v is eliminated, if a pair of neighbors of v;
is not linked, a fill-in edge is added between these two vertices. In the case of ', eliminating vy before vi(l € [i,k —1])
does not add new neighbors to v;, because vy is nonadjacent to v;. Note that the neighbors of vy are also invariant.
As a result, the fill-in edges introduced by eliminating v((l € [i, k]) are invariant in the two orders m and n’. Thus, we
obtain the result that H* = H™. (]

Lemma 2. Let G be a graph, and let m = (vy, ..., v,;) be an elimination order. The elimination of vertices from graph
G according to order it induces a graph sequence G,G7, ..., G, where GT = G and G7, | is obtained by eliminating
vertex v; from G7. If GT is not complete, there exists a vertex v; (i < j) that is not adjacent to v;. Then, by moving v;
directly before v;, we obtain an order n'=(vy, ..., Vi_1, Vj, Vi, .o Vi1, Vjtl,- - V) With a tts that is smaller than or
equal to the tts of .

Proof . The sequence of vertices (v, ..., v,) is such that either
1. there exists a vertex vi(i < k) such that vi_; is nonadjacent to vy and v; is adjacent to v,y forl =i, ...,k =2, or
2. vy is adjacent to vy, forl = i,...,n — 1.

First, we prove the theorem in the first case. By moving vy directly before v;, we obtain the new order n’'=(vy,
oo Vicly Vi Vi « vy Viel, Viksls- - » Vu). Then, from Lemma I, H™=H", and the tts of m is equal to that of n’ from the
definition of tts.

Next, we prove the theorem in the second case. Lemma 1 cannot be directly applied to prove the theorem, because
vy is adjacent to viyy for | = i,...,n— 1. Therefore, we first introduce a new order w so as to use Lemma 1. Because G
is not complete and G7,_, is complete, there necessarily exists a vertex v, (i < m < n—1) such that Gy, is not complete
and G7, | is complete. Either

(a) v is adjacent to all vertices in G, |, or

v

(b) there exists a vertex vy in G7, |,

such that v,, is not adjacent to v.

Now, we prove the theorem for each case.

(a) In G,,—1, there exists a vertex v (m < k) that is not adjacent to v,,_y, otherwise, eliminating v,,—; would make
G,, complete. By moving vy, directly before v,,, we obtain order w=(Vv1, ..., Vi—1, Vis Vs - - » Vi1, Vk+1,- - » Vn). Because
Vi is adjacent to all vertices in G, |, eliminating vertex v, adds all possible fill-in edges to make Gy, a complete
graph. Therefore, order w will not add different edges from order n. Thus, the filled-in graph H® is a subgraph of H™.
In this case, the tts of H” is smaller than or equal to the tts of H™ because the tts of a graph is greater than or equal

to that of a subgraph [20].
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For the order w, by moving vy directly before v;, we obtain order 1’ = (v, ..., Vi—l, Vio Vis « -+ Viel, Vitlr-
V). Since vertex vy is not adjacent to v,,—1, and vy is adjacent to v, for l = i,...,m — 2, from Lemma 1, H® = H” .
Therefore, the tts of H™ is smaller than or equal to the tts of H™.

(b) In the case of m, eliminating a vertex after vertex v,, does not introduce fill-in edges, because G’ . | is complete.
By moving vy directly before v,,.1, we obtain order w=(v1, ..., Vi, Vio Vintls « - Vi1, Vksl,- - » Vu). In the case of w,
eliminating a vertex after vertex v,, also does not introduce fill-in edges. Because the two orders m and w introduce
the same fill-in edges, H® = H”.

For the order w, by moving vy directly before v;, we obtain order 1’ = (vi, ..., Vi—1, Vio Viy «+ o Vi1, Vktlr-+ - Vn)-
The vertices v,, and vy are nonadjacent, and v; is adjacent to vy for l = i,...m — 1. From Lemma I, H* = H.
Therefore, the tts of H™ is equal to the tts of H™. O

Now, using Lemma 2, the following pivot clique pruning theorem can be derived.

Theorem 3 (pivot clique pruning). Let G be the graph being triangulated, and let t = (1,G™, H", C(H"), tts(H")) be
a non-leaf node in the search tree, where t.G" is a incomplete graph. Pick an arbitrary clique in C(t.G") as the pivot
clique Cpivor. If a child node of t is derived by eliminating a vertex in Cpjyor, then the child node and all its descendants
can be pruned.

Proof . The search tree branches on node t to generate a child node for each vertex v in the remaining graph t.G".
Let U be the set of child nodes of t if the child is derived by eliminating a vertex in Cp;,o, as shown in Fig. 9. Let W
be the set of all child nodes of t except U. We show the following sufficient condition to prove the theorem. For any
leaf node x that is reachable from one node in U, there is another leaf node y that is reachable from one node in W,
such that the tts of y is smaller than or equal to the tts of x.

Figure 9. The part of search tree beginning at node ¢.

Let x be an arbitrary leaf node that is reachable from a node t4 in U, where t4 is a child node of t derived by
eliminating vertex A from t.G". Because ty is in U, A is a vertex of Cpivor. The elimination order of node x is a complete
elimination order 4 that is an extension of the partial elimination order t5.7. Based on Lemma 2, there exists a vertex
B € V(1.G") that is not adjacent to A, such that by moving vertex B directly before A in the order rs, a new order np
is obtained for which the tts is smaller than or equal to that of w4. Let tg be the child node of t derived by eliminating
vertex B from t.G". Then the leaf node y labeled by ntg is reachable from a node tg. Because B and A are not adjacent,
A and B cannot be in the same clique. Since A is a vertex of clique Cpjyo, B is not in Cpjyor. Thus, tg isin W. O

This theorem can be directly applied to prune some nodes in the search tree. Although pivot clique pruning might
remove some optimal solutions, the reduced search tree is guaranteed to contain at least one optimal solution. The
proposed depth-first search algorithm with pivot clique pruning is described in the Algorithm 5. The original depth-
first search algorithm branches on a non-leaf node ¢ for all the vertices in V(¢.R), where ¢.R is the remaining graph
of node . However, in our proposed algorithm on line 3, we generate only child nodes for the vertices in V(t.R)\
SelectPivotClique(C(z.R)). The procedure SelectPivotClique(C(G)) simply iterates through all the cliques of graph G
to choose the largest clique of G. We use this heuristic because it greedily prunes the largest number of child nodes.
Searching the largest clique of the remaining graph #.R seems to be expensive, however, it can be easily computed
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by searching the clique in #.C(H) such that the clique has the largest intersection with V(z.R). It takes linear time
in the number of cliques to run the pivot clique selection heuristic. (Remark: If we cannot ensure the efficiency of
the heuristic, then picking an arbitrary edge as pivot clique takes only constant time.) A pivot clique has at least two
vertices, so we can cut at least two branches of each node according to Theorem 3. The size of the original search tree
for a Bayesian network with n variables is n!. Notice that pivot clique pruning can be applied in a recursive manner,
because each pruning is guaranteed to produce a reduced search tree that has at least one optimal solution. As a result,
the size of the reduced search tree is smaller than or equal to (n — 2)!. To conclude, pivot clique pruning reduces the
size of the search space by a factor of O(n?), while the overhead cost for the pruning can be extremely low.

Algorithm 5 Depth-first search with pivot clique pruning.
1: Insert lines 1-10 of Algorithm in Fig. 1
2: procedure ExpandNode(z, &best, &map)
3: for all v € V(2.R)\ SelectPivotClique(z.C(R)) do > Prune due to Theorem 3
4 Let m = Copy(?)
5 Eliminate Vertex(m, v)
6 EliminateSimplicial(m)
7: Insert lines 16-29 of Algorithm in Fig. 1
8
9:

end for
end procedure

6. Experiments

We conducted computational experiments to evaluate our proposed algorithms on a set of benchmark Bayesian
networks. These networks are obtained from the well-known HUIJI repository!. We also generated a set of ran-
dom graphs for doing controlled experiments. We compared our algorithm with state-of-the-art algorithms on the
benchmark networks and the random graphs. All the algorithms described in this paper are implemented in the Java
language?. The experiments were performed on a Windows 8.1 PC with 2.6 GHz Intel Xeon Processor E5-2640 and
12GB RAM, running version 8 of the Java Virtual Machine.

6.1. Dynamic clique maintenance

We first compare the computational time of our proposed dynamic clique maintenance, described in Section 5.1,
with those of state-of-the-art algorithms. For this purpose, we implemented the following algorithms.

e DFS (OandV): the depth-first search optimal triangulation algorithm proposed by Ottosen and Vomlel, which
uses the Ottosen and Vomlel approach [20] for dynamic clique maintenance.

e DFS (LandU2012): the DFS algorithm with the Li and Ueno dynamic clique maintenance [24].
e DFS (proposed): the DFS algorithm with the proposed dynamic clique maintenance.

All the depth-first search optimal triangulation algorithms have a depth-first search part and a dynamic clique
maintenance part. Therefore, we empirically compared the three algorithms with respect to the total running times, the
depth-first search (DFS) time and the dynamic clique maintenance (DCM) time. We ran each algorithm to triangulate
the eight graphs in the Bayesian network repository. Table 1 shows the results for the three algorithms. For the
Barley Bayesian network, no triangulation algorithm completes the computation within 1 h. Therefore, we reported
the results for only seven Bayesian networks. For the total running times, is clear that our proposed dynamic clique
maintenance remarkably improves the running time of the optimal triangulation algorithm. We also observed that, for
the Alarm and PathFinder Bayesian networks, each triangulation algorithm can find an optimal triangulation in less

! http://www.cs.huji.ac.il/site/labs/compbio/Repository/
2A software package with source code named OptimalTriangulation implementing the proposed algorithm can be downloaded at
http://www.ai.is.uec.ac.jp/optimaltriangulation/
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Table 1. A comparison of the running times (s) for the Ottosen and Vomlel method (OandV), the Li and Ueno method (LandU2012) and the
proposed method.

Bayesian Networks Time(OandV) Time(LandU2012) Time(proposed)
BN \" E | density | DCM | DFS total | DCM | DFS | total | DCM | DFS | total
Insurance | 27 | 70 0.199 1.083 0.21 1.293 0.537 | 0.173 0.71 0.352 | 0.187 | 0.539
water | 32 | 123 0.247 | 6.623 | 0.897 7.52 | 3.883 | 0912 | 4.795 2.621 | 0.978 | 3.599
Mildew 35 80 0.134 | 8.647 | 1.576 | 10.223 | 4.511 | 1.516 | 6.027 | 2.541 | 1.697 | 4.238
alarm 37 65 0.097 | 0.007 | 0.005 0.012 | 0.002 | 0.002 | 0.004 | 0.002 | 0.002 | 0.004
HailFinder | 56 | 99 0.064 | 5.319 1.37 6.689 3.325 | 1.391 | 4.716 1.981 1.35 | 3.331
Win95pts | 76 | 225 0.078 | 36.117 | 7.846 | 43.963 | 23.637 | 7.683 | 31.32 | 14.058 | 7.672 | 21.73
PathFinder | 109 | 208 0.035 0.017 | 0.012 | 0.029 0.01 | 0.003 | 0.013 0.008 | 0.003 | 0.011
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Figure 10. A comparison of the running times for different dynamic clique maintenance algorithms.

than 0.1 s. For DFS times, we observed that, for the seven benchmark Bayesian networks, the DFS times of the three
algorithms are almost same. As a result, the differences among the computational times of the algorithms are only
caused by DCM times. From the DCM time results, we see that the proposed method is faster than the LandU2012
method, and the LandU2012 method is faster than the OandV method. The explanation is that the BK algorithm has
a heavy computational cost and the proposed method reduces the search space of the BK algorithm.

The comparison of dynamic clique maintenance algorithms on the random graphs was done as follows. We
generated 40 random graphs with various densities for each of 25, 50 and 75 vertices. Then we performed the
following test on the dataset. We triangulated each graph in the dataset 1,000 times by sequentially eliminating all
vertices (with a different random elimination order on each run) and saved the total running time. The set of cliques of
the graph was updated after each vertex was eliminated. We then normalized these times to ensure a fair comparison
among graphs with different sizes. For example, the task of 1,000 triangulations of a graph with 25 vertices performed
25,000 dynamic clique maintenance steps. Therefore, we normalized this time by dividing 25. Fig. 10 depicts the
normalized running times of 1,000 triangulations of each graph in the dataset. The results show that the proposed
dynamic clique maintenance algorithm is faster than both the OandV method and the LandU2012 method for all the
random graphs except four data sets (random graphs with more than 50 vertices and density of greater than 0.3). The
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Table 2. A comparison of the running times (s), the numbers of expanded nodes and the sizes of coalescing maps for DFS and EDFS algorithms. The
columns labeled with mean(|spl) and sd(|spl|) give the average number of states of variables in each Bayesian network and the standard deviation,
respectively. Finally, tw denotes the treewidth, and w-tw denotes the weighted treewidth.

Bayesian Networks DFS EDFS Time
name Y E | density | mean(ispl) | sd(spl) | tw w-tw tts | Time (s) | Nodes | Map | Time (s) Nodes Map | DFS/EDFS
child 20 30 0.157 3 1.17 3 144 642 0.003 6 5 0.002 4 3 1.5
Insurance 27 70 0.199 33 0.99 6 4800 23880 0.696 4818 2291 0.199 3096 1919 3.49
water 32 1123 0.247 3.62 0.49 9 589824 3028305 3.859 | 14438 6816 1.078 8049 5187 3.57
mildew 35 80 0.134 17.6 27.01 4 805200 3400464 4.209 | 69310 | 22351 0.668 15349 5222 6.3
alarm 37 65 0.097 2.84 073 | 4 108 996 0.003 35 27 0.002 27 25 1.5
Barley 48 | 126 0.111 8.77 9.05 7 | 6350400 | 17140796 * * * | 2528.636 | 18824900 | 5566501 *
Hailfinder | 56 99 0.064 3.98 1.72 | 4 3267 9406 3.75 | 44270 | 19650 1.655 31289 12537 2.26
WINI9SPTS 76 | 225 0.078 2 0 8 512 2684 24.812 | 74227 | 34993 5.988 32084 14669 4.14
pathfinder | 109 | 208 0.035 4.11 591 7 32256 182641 0.015 30 19 0.004 22 16 3.75

reason for the difference on these sets is that there are too many cliques in a dense graph and so scanning for cliques
dominates the computational complexity. For the ten graphs with 75 vertices and a density of 0.1, the average number
of cliques is 56.3. Because running the BK algorithm dominates the complexity in this case, our proposed algorithm
is the fastest algorithm. However, for the ten graphs with 75 vertices and a density of 0.4, the average number of
cliques is 986.8. Because the scanning for cliques dominates the computational complexity in this case and the three
algorithms have to scan through equally many cliques, the three algorithms performed almost equally well. Because
the the maximum number of cliques in a graph with n vertices and maximum degree d is bounded by O(n - 2¢) [28],
we suspect that dense and large graphs tend to have more cliques than sparse graphs and so make the dynamic clique
maintenance problem more difficult. Finally, it is noteworthy that a Bayesian network with a sparse and small graph
does not indicate an easy triangulation problem. For the Barley network with 48 vertices and a density of 0.11, none
of the three DFS algorithms can find an optimal triangulation within the time limit.

6.2. Depth-first search with pivot clique pruning

To examine the effectiveness of the pivot clique pruning method described in Section 5.2, we compared the fol-
lowing two algorithms.

e DFS: the depth-first search algorithm with the proposed dynamic clique maintenance.
e EDEFS : DFS with pivot clique pruning.

Since our proposed dynamic clique maintenance has been shown to be faster than other methods, both the DFS and
EDFS algorithms use it internally for updating cliques. We empirically compared the two algorithms with respect
to the running times, the number of expanded nodes and the space requirements. In particular, we compared space
requirements by considering the size of the coalescing map, because it is the most space-consuming data structure
that is used.

We performed the two triangulation algorithms on nine benchmark Bayesian networks. The results are presented
in Table2. The Time column lists the running time of the algorithms on these networks. The Nodes column gives
the number of nodes expanded in the algorithms. The Map column gives the size of the coalescing map, which
estimates the memory-consumption of the algorithms. A “*” indicates the algorithm did not finish within the time
limit (one hour). Finally, the last column lists the ratio of the running time of DFS to that of EDFS. We observed
that EDFS has from 1.5 to 6.3 times the speed of DFS. The two triangulation algorithms employ the same dynamic
clique maintenance, but EDFS provides better performances than DFS. EDFS expanded fewer search nodes than
DEFS, because the pivot clique pruning can remove a lot of equivalent nodes from the search tree. We can see that
reducing the number of expanded nodes effectively contributes to the reduction of the running time. For example, on
the Mildew Bayesian network EDFS explored only 15,349 nodes, but DFS explored 69,310 nodes. As a result, EDFS
improved the running time from 4.209 s to 0.668 s. For the Barley network, EDFS is the only algorithm that can find
an optimal triangulation within the time limit. In addition, pivot clique pruning also leads to a considerable reduction
of memory use (see the reduction of the size of coalescing map), which is also due to the reduction of the search tree.

Several graph parameters might affect the speed-up of EDFS over DFS for triangulation of a Bayesian network,
including the number of variables, the number of edges, the density of moral graph, the average number of states of

18



C. Li and M. Ueno / International Journal of Approximate Reasoning 00 (2016) 1-22

Correlation

0.2

Figure 11. The correlation between the speed-up of EDFS over DFS and several factors that might affect the speed-up.
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Table 3. A comparison of DFS and EDFS for graphs with various densities.

BN | V E | density | Time(DFS) | Time(EDFS) | DFS/EDFS
insurance3 | 27 | 106 0.3 86.548 28.388 3.04
insuranced4 | 27 | 141 04 11.932 3.788 3.14
insurance5 | 27 | 176 0.5 3.814 1.123 3.39

water3 | 32 | 149 0.3 230.127 88.589 2.59
waterd | 32 | 199 04 95.226 32.054 2.97
water5 | 32 | 248 0.5 18.217 4.516 4.03
alarm3 | 37 | 200 0.3 8967.604 3277.388 2.73
alarm4 | 37 | 267 0.4 562.412 181.614 3.09
alarm5 | 37 | 333 0.5 66.777 16.416 4.06

variables, the standard deviation of the number of states of variables, treewidth and weighted treewidth. We analyzed
the correlation between those factors and the speed-up of EDFS over DFS. Fig. 11 depicts the results. The most
important factors for determining the speed-up are the weighted treewidth, the #ts, the average number of states of
variables and the standard deviation of the number of states of variables. The correlation values between these factors
and the speed-up are higher than 0.67. Additionally, all the correlation values are positive, indicating that there might
be a higher speed-up when the Bayesian network has a more complex structure. This fact highlights the contribution
of pivot clique pruning.

Our comparison between DFS and EDFS so far is based on the results for sparse graphs because the repository
provides only a few sparse Bayesian networks. However, it is not clear how much improvement in running time can
be obtained by EDFS for dense graphs. To answer this question, we generated a set of random graphs with various
densities. In particular, we generated random graphs by adding some edges uniformly at random to the Insurance,
Water and Alarm Bayesian networks. For each moral graph of the Bayesian network, we generated three random
graphs with densities of 0.3, 0.4 and 0.5 (in total 9 random graphs). Because each group of three graphs has the same
number of variables and their variables have the same state spaces, experiments on them can better demonstrate the
performance of pivot clique pruning for various densities. Table 3 lists the running times of DFS and EDFS for the
random graphs. The last column of the table lists the ratio of the running time of DFS to that of EDFS. We also
calculated the correlation between the time ratio and the density of graphs; this is 0.75. The result indicates that there
is a higher speed-up when the Bayesian network has a denser graph. The reason is that our pivot clique pruning works
well on dense graphs, because dense graphs tend to have more large cliques and then the more branches are pruned by
the larger pivot cliques. As we showed in Section 6.1, for dense graphs, our proposed dynamic clique method does not
improve the optimal triangulation algorithms much; however, the pivot clique pruning works better on dense graphs.
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Table 4. A comparison of the different objective functions.

EDFS,tts EDFS, 1w EDFS,w-tw EDFS, fillin MinFill
BN tts | tw w-tw | fillin | tw tts w-tw tts | fillin tts s | tw w-tw | fillin
child 642 | 4 216 2| 4 678 144 678 2 678 678 | 4 216 2
Insurance 23880 | 7 4800 26 | 7 29352 4800 29352 26 29352 29352 | 17 7200 26
water | 3028305 | 10 | 589824 47 | 10 | 3657180 | 589824 | 3657180 46 | 3657180 | 3657180 | 11 | 1769472 47
Mildew | 3400464 | 5 | 1249280 19 | 5| 4434860 | 805200 | 4434860 19 | 4434860 | 4434860 | 5 | 1756800 19
alarm 9% | 5 108 515 1038 108 1038 5 1038 1038 | 5 144 5
Barley | 17140796 | 8 | 7257600 46 | 8 | 17140796 | 6350400 | 17140796 45 | 17140796 | 17140796 | 8 | 7257600 46
HailFinder 9406 | 5 3267 17| 5 9706 3267 9706 16 9706 9706 | 5 3267 16
Win95pts 2684 | 9 512 281 9 2684 512 2684 28 2684 2684 | 9 512 28
PathFinder 182641 | 7 32256 77 182641 32256 182641 7 182641 182641 | 7 32256 7

6.3. Triangulation with different objective functions

To perform efficient inference on a Bayesian network using the junction tree algorithm, we employed the total table
size as the objective function to obtain the optimal triangulation of the Bayesian network. For general triangulation
problems, the objective functions commonly have employed the treewidth, the weighted treewidth and the minimum
number of fill-in edges. However, these objective functions are not guaranteed to optimize the total table size criterion.
Therefore, this study assumes that directly optimizing the total table size improves the obtained triangulation of
Bayesian networks. To ascertain this, we compared the performances of these objective functions with those of the
total table size. Specifically, we performed EDFS, employing these objective functions on nine repository Bayesian
networks and compared the total table sizes (¢ts) and the corresponding objective values (the treewidths (rw), the
weighted treewidths (w-tw) and the minimum numbers of fill-in edges (fillin) ) of the obtained triangulations with
those of EDFS employing the total table size. In addition, we also applied the minimum fill-in heuristic (MinFill) on
those networks to compare its performance for the obtained triangulations because it is a well-known heuristic that
provides a good approximation to the exact solution (e.g. Gogate and Dechter [14]).

Table 4 indicates the computational results. The main observation is that EDFS with #ts as objective function
(EDFS,tts) found triangulations with smaller total table sizes than the other methods did on six Bayesian networks.
However, on Barley, Win95pts and PathFinder, our proposed algorithm EDFS,¢ts provided the same total table sizes
that MinFill did. Although MinFill just greedily selects the next vertex to eliminate, it works surprisingly well on
the three networks. For Barley, Win95pts and PathFinder, EDFS,tzs could use the exact optimal solution as an upper
bound, since the MinFill provided the minimum total table sizes on the three networks. Taking advantage of using the
tight initial upper bound, EDFS,#ts was able to find an optimal total table size triangulation on PathFinder within 0.004
s and on Win95pts within 5.988 s. On Barley, although EDFS,¢ts benefits from using the tight bound, surprisingly
it took extremely long (2528 s) to find an optimal total table size triangulation. This result suggests the importance
of future work toward finding a good lower bound for the total table size. Interestingly, EDFS,tts also found the
triangulations with the minimum treewidth for all the repository networks. This means that although the optimal
total table size triangulation does not guarantee the minimum treewidth, it usually finds a triangulation with small
treewidth.

For all the repository networks other than water, the triangulation found by MinFill also provided the minimum
treewidth. Our results confirm the observation of Gogate and Dechter [14], that the minimum treewidth algorithm
rarely finds better triangulations of the repository networks than MinFill does. In addition, MinFill also provided a
good approximation to the minimum number of fill-in edges, which is obtained by EDFS, fillin. EDFS,w-tw provided
a lower weighted treewidth than MinFill did.

Focusing on the total table size, the algorithms EDFS,tw, EDFS,w-tw and EDFS, fillin provided the same total
table sizes that MinFill did. However, EDFS with tzs found better triangulations with smaller total table sizes for all
the repository networks except for Barley, Win95pts and Pathfinder. Thus, the results demonstrate that employing the
total table size improves the triangulations of Bayesian networks.

7. Conclusions

In this paper, we have proposed an extended depth-first search (EDFS) algorithm for the optimal triangulation
of Bayesian networks. The new EDFS algorithm improves the state-of-the-art Ottosen and Vomlel (DFS) algorithm
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in two orthogonal directions: (1) reduction of the overhead cost and (2) reduction of the size of the search space.
Theoretical analysis and experiments reveal that the EDFS algorithm is superior to the DFS algorithm. The EDFS
algorithm lowers the time complexity of the Ottosen and Vomlel algorithm from O(B(n)-n!) to O(y(n)-(n—2)!) , where
n is the number of vertices in the graph, and 8(n) and y(n) stand for the overheads for DFS and EDFS, respectively.

To reduce the overhead cost per node, we developed a new algorithm for maintaining the cliques of a dynamic
graph. The performance of the proposed algorithm was compared with the state-of-the-art Ottosen and Vomlel [20]
and Li and Ueno [24] methods. Our experiments show that the new method is superior to the other methods for graphs
with moderate size and low density. Because the moral graphs of Bayesian network are typically moderate in size and
sparse, our proposed method provides the best performance for triangulation of Bayesian networks. By introducing
the new dynamic clique maintenance, the overhead cost is reduced from B(n) to y(n).

To reduce the number of nodes in the search tree, we proposed the pivot clique pruning theorem in Section 5.2.
In a theoretical analysis, we showed that the pruning reduced the size of the search tree from n! to O((n — 2)!). The
reduction of the search tree achieved by introducing pivot clique pruning contributes effectively to the reduction of
the running time of the optimal triangulation algorithm. If we do not apply any other pruning techniques, such as
branch and bound, coalescing map pruning and simplicial vertex rule pruning, pivot clique pruning will at least cut
the number of nodes by (n! — (n — 2)!). In this case, our pruning provides n(n — 1) times speed-up over the original
algorithm. However, it is difficult to analyze the time complexity of the optimal triangulation algorithm combining
all these smart pruning techniques. Nevertheless, experiments show that EDFS is 1.3 to 6.3 times faster than DFS
(with the proposed dynamic clique maintenance) for the repository datasets. The pivot clique pruning also engenders
a considerable memory reduction, which is also due to the reduction of the search space.

Although our two proposed methods contributed to improvements in the running time and scalability of the op-
timal triangulation algorithms, the algorithms are still limited to relatively small size and sparse Bayesian networks.
Nevertheless, exact optimal triangulation algorithms are valuable because the optimal triangulation enables time-
efficient inference using the junction tree algorithm. Optimal triangulation requires additional work time, but once the
triangulation of a Bayesian network has been done off-line, propagation can be done many times on the same junction
tree to process any evidence. In addition, total table size is important in estimating the running time for inference on
Bayesian networks. In the study of the relationship between the junction tree inference time and the structure of the
Bayesian network, Ole J. Mengshoel used a heuristic triangulation which obtained an approximate total table size to
estimate inference time [26]. Our study on optimal triangulation might improve Mengshoel’s results.
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