1,312 research outputs found

    Query Complexity of Correlated Equilibrium

    Full text link
    We study lower bounds on the query complexity of determining correlated equilibrium. In particular, we consider a query model in which an n-player game is specified via a black box that returns players' utilities at pure action profiles. In this model we establish that in order to compute a correlated equilibrium any deterministic algorithm must query the black box an exponential (in n) number of times.Comment: Added reference

    The Computational Power of Optimization in Online Learning

    Full text link
    We consider the fundamental problem of prediction with expert advice where the experts are "optimizable": there is a black-box optimization oracle that can be used to compute, in constant time, the leading expert in retrospect at any point in time. In this setting, we give a novel online algorithm that attains vanishing regret with respect to NN experts in total O~(N)\widetilde{O}(\sqrt{N}) computation time. We also give a lower bound showing that this running time cannot be improved (up to log factors) in the oracle model, thereby exhibiting a quadratic speedup as compared to the standard, oracle-free setting where the required time for vanishing regret is Θ~(N)\widetilde{\Theta}(N). These results demonstrate an exponential gap between the power of optimization in online learning and its power in statistical learning: in the latter, an optimization oracle---i.e., an efficient empirical risk minimizer---allows to learn a finite hypothesis class of size NN in time O(logN)O(\log{N}). We also study the implications of our results to learning in repeated zero-sum games, in a setting where the players have access to oracles that compute, in constant time, their best-response to any mixed strategy of their opponent. We show that the runtime required for approximating the minimax value of the game in this setting is Θ~(N)\widetilde{\Theta}(\sqrt{N}), yielding again a quadratic improvement upon the oracle-free setting, where Θ~(N)\widetilde{\Theta}(N) is known to be tight

    Learning what matters - Sampling interesting patterns

    Get PDF
    In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.Comment: PAKDD 2017, extended versio

    Query Complexity of Approximate Nash Equilibria

    Full text link
    We study the query complexity of approximate notions of Nash equilibrium in games with a large number of players nn. Our main result states that for nn-player binary-action games and for constant ε\varepsilon, the query complexity of an ε\varepsilon-well-supported Nash equilibrium is exponential in nn. One of the consequences of this result is an exponential lower bound on the rate of convergence of adaptive dynamics to approxiamte Nash equilibrium

    Asymptotically Truthful Equilibrium Selection in Large Congestion Games

    Full text link
    Studying games in the complete information model makes them analytically tractable. However, large nn player interactions are more realistically modeled as games of incomplete information, where players may know little to nothing about the types of other players. Unfortunately, games in incomplete information settings lose many of the nice properties of complete information games: the quality of equilibria can become worse, the equilibria lose their ex-post properties, and coordinating on an equilibrium becomes even more difficult. Because of these problems, we would like to study games of incomplete information, but still implement equilibria of the complete information game induced by the (unknown) realized player types. This problem was recently studied by Kearns et al. and solved in large games by means of introducing a weak mediator: their mediator took as input reported types of players, and output suggested actions which formed a correlated equilibrium of the underlying game. Players had the option to play independently of the mediator, or ignore its suggestions, but crucially, if they decided to opt-in to the mediator, they did not have the power to lie about their type. In this paper, we rectify this deficiency in the setting of large congestion games. We give, in a sense, the weakest possible mediator: it cannot enforce participation, verify types, or enforce its suggestions. Moreover, our mediator implements a Nash equilibrium of the complete information game. We show that it is an (asymptotic) ex-post equilibrium of the incomplete information game for all players to use the mediator honestly, and that when they do so, they end up playing an approximate Nash equilibrium of the induced complete information game. In particular, truthful use of the mediator is a Bayes-Nash equilibrium in any Bayesian game for any prior.Comment: The conference version of this paper appeared in EC 2014. This manuscript has been merged and subsumed by the preprint "Robust Mediators in Large Games": http://arxiv.org/abs/1512.0269
    corecore