58,799 research outputs found

    Efficient Algorithms for Geometric Partial Matching

    Get PDF
    Let A and B be two point sets in the plane of sizes r and n respectively (assume r <= n), and let k be a parameter. A matching between A and B is a family of pairs in A x B so that any point of A cup B appears in at most one pair. Given two positive integers p and q, we define the cost of matching M to be c(M) = sum_{(a, b) in M}||a-b||_p^q where ||*||_p is the L_p-norm. The geometric partial matching problem asks to find the minimum-cost size-k matching between A and B. We present efficient algorithms for geometric partial matching problem that work for any powers of L_p-norm matching objective: An exact algorithm that runs in O((n + k^2)polylog n) time, and a (1 + epsilon)-approximation algorithm that runs in O((n + k sqrt{k})polylog n * log epsilon^{-1}) time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in O(min{n^2, rn^{3/2}}polylog n) time

    Subsumption Algorithms for Three-Valued Geometric Resolution

    Full text link
    In our implementation of geometric resolution, the most costly operation is subsumption testing (or matching): One has to decide for a three-valued, geometric formula, if this formula is false in a given interpretation. The formula contains only atoms with variables, equality, and existential quantifiers. The interpretation contains only atoms with constants. Because the atoms have no term structure, matching for geometric resolution is hard. We translate the matching problem into a generalized constraint satisfaction problem, and discuss several approaches for solving it efficiently, one direct algorithm and two translations to propositional SAT. After that, we study filtering techniques based on local consistency checking. Such filtering techniques can a priori refute a large percentage of generalized constraint satisfaction problems. Finally, we adapt the matching algorithms in such a way that they find solutions that use a minimal subset of the interpretation. The adaptation can be combined with every matching algorithm. The techniques presented in this paper may have applications in constraint solving independent of geometric resolution.Comment: This version was revised on 18.05.201

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Multi-Image Semantic Matching by Mining Consistent Features

    Full text link
    This work proposes a multi-image matching method to estimate semantic correspondences across multiple images. In contrast to the previous methods that optimize all pairwise correspondences, the proposed method identifies and matches only a sparse set of reliable features in the image collection. In this way, the proposed method is able to prune nonrepeatable features and also highly scalable to handle thousands of images. We additionally propose a low-rank constraint to ensure the geometric consistency of feature correspondences over the whole image collection. Besides the competitive performance on multi-graph matching and semantic flow benchmarks, we also demonstrate the applicability of the proposed method for reconstructing object-class models and discovering object-class landmarks from images without using any annotation.Comment: CVPR 201
    corecore