295 research outputs found

    Geometric Algebra Transformers

    Full text link
    Problems involving geometric data arise in a variety of fields, including computer vision, robotics, chemistry, and physics. Such data can take numerous forms, such as points, direction vectors, planes, or transformations, but to date there is no single architecture that can be applied to such a wide variety of geometric types while respecting their symmetries. In this paper we introduce the Geometric Algebra Transformer (GATr), a general-purpose architecture for geometric data. GATr represents inputs, outputs, and hidden states in the projective geometric algebra, which offers an efficient 16-dimensional vector space representation of common geometric objects as well as operators acting on them. GATr is equivariant with respect to E(3), the symmetry group of 3D Euclidean space. As a transformer, GATr is scalable, expressive, and versatile. In experiments with n-body modeling and robotic planning, GATr shows strong improvements over non-geometric baselines

    Scalable Task Parallelism for NUMA: A Uniform Abstraction for Coordinated Scheduling and Memory Management

    Get PDF
    International audienceDynamic task-parallel programming models are popular on shared-memory systems, promising enhanced scalability, load balancing and locality. Yet these promises are undermined by non-uniform memory access (NUMA). We show that using NUMA-aware task and data placement, it is possible to preserve the uniform abstraction of both computing and memory resources for task-parallel programming models while achieving high data locality. Our data placement scheme guarantees that all accesses to task output data target the local memory of the accessing core. The complementary task placement heuristic improves the locality of task input data on a best effort basis. Our algorithms take advantage of data-flow style task parallelism, where the privatization of task data enhances scalability by eliminating false dependences and enabling fine-grained dynamic control over data placement. The algorithms are fully automatic, application-independent, performance-portable across NUMA machines, and adapt to dynamic changes. Placement decisions use information about inter-task data dependences readily available in the run-time system and placement information from the operating system. We achieve 94% of local memory accesses on a 192-core system with 24 NUMA nodes, up to 5Ă— higher performance than NUMA-aware hierarchical work-stealing, and even 5.6Ă— compared to static interleaved allocation. Finally, we show that state-of-the-art dynamic page migration by the operating system cannot catch up with frequent affinity changes between cores and data and thus fails to accelerate task-parallel applications

    Optimizing MPI one-sided synchronization mechanisms on Cray's Cascade HPC systems

    Get PDF
    In this work we proposed Notified Access a new communication model that targets RDMA networks. Our focus was on optimizing producer-consumer computations, avoiding to over synchronize processes in point-to-point communications when it's not needed. We proposed a communication model in which a notification can be coupled with a single Remote Memory Access (RMA). In our model the target of an RMA operation is directly notified after the completion of a notified operation. This approach, avoiding the use of other synchronization primitives, minimizes synchronization latencies while using full hardware offload typical of high-performance networks. In order to demonstrate lower overheads than other point-to-point synchronization mechanisms, we implemented it in an open source MPI-3 library. We evaluated the performances of our implementation in a ping-pong benchmark, a computation/communication overlap benchmark and in three real-world applications: a pipeline stencil, a tree-based reduce and a task based Cholesky factorization. Our analysis shows that Notified Access is a valuable primitive for any RMA system and furthermore we show that the required hardware feature are already available in multiple state-of-the-art high-performance networks

    Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    Get PDF
    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system
    • …
    corecore