12 research outputs found

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    Improved Algorithmic Bounds for Discrepancy of Sparse Set Systems

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most tt sets. We give an algorithm that finds a coloring with discrepancy O((tlognlogs)1/2)O((t \log n \log s)^{1/2}) where ss is the maximum cardinality of a set. This improves upon the previous constructive bound of O(t1/2logn)O(t^{1/2} \log n) based on algorithmic variants of the partial coloring method, and for small ss (e.g.s=poly(t)s=\textrm{poly}(t)) comes close to the non-constructive O((tlogn)1/2)O((t \log n)^{1/2}) bound due to Banaszczyk. Previously, no algorithmic results better than O(t1/2logn)O(t^{1/2}\log n) were known even for s=O(t2)s = O(t^2). Our method is quite robust and we give several refinements and extensions. For example, the coloring we obtain satisfies the stronger size-sensitive property that each set SS in the set system incurs an O((tlognlogS)1/2)O((t \log n \log |S|)^{1/2}) discrepancy. Another variant can be used to essentially match Banaszczyk's bound for a wide class of instances even where ss is arbitrarily large. Finally, these results also extend directly to the more general Koml\'{o}s setting

    Vector Balancing in Lebesgue Spaces

    Full text link
    A tantalizing conjecture in discrete mathematics is the one of Koml\'os, suggesting that for any vectors a1,,anB2m\mathbf{a}_1,\ldots,\mathbf{a}_n \in B_2^m there exist signs x1,,xn{1,1}x_1, \dots, x_n \in \{ -1,1\} so that i=1nxiaiO(1)\|\sum_{i=1}^n x_i\mathbf{a}_i\|_\infty \le O(1). It is a natural extension to ask what q\ell_q-norm bound to expect for a1,,anBpm\mathbf{a}_1,\ldots,\mathbf{a}_n \in B_p^m. We prove that, for 2pq2 \le p \le q \le \infty, such vectors admit fractional colorings x1,,xn[1,1]x_1, \dots, x_n \in [-1,1] with a linear number of ±1\pm 1 coordinates so that i=1nxiaiqO(min(p,log(2m/n)))n1/21/p+1/q\|\sum_{i=1}^n x_i\mathbf{a}_i\|_q \leq O(\sqrt{\min(p,\log(2m/n))}) \cdot n^{1/2-1/p+ 1/q}, and that one can obtain a full coloring at the expense of another factor of 11/21/p+1/q\frac{1}{1/2 - 1/p + 1/q}. In particular, for p(2,3]p \in (2,3] we can indeed find signs x{1,1}n\mathbf{x} \in \{ -1,1\}^n with i=1nxiaiO(n1/21/p1p2)\|\sum_{i=1}^n x_i\mathbf{a}_i\|_\infty \le O(n^{1/2-1/p} \cdot \frac{1}{p-2}). Our result generalizes Spencer's theorem, for which p=q=p = q = \infty, and is tight for m=nm = n. Additionally, we prove that for any fixed constant δ>0\delta>0, in a centrally symmetric body KRnK \subseteq \mathbb{R}^n with measure at least eδne^{-\delta n} one can find such a fractional coloring in polynomial time. Previously this was known only for a small enough constant -- indeed in this regime classical nonconstructive arguments do not apply and partial colorings of the form x{1,0,1}n\mathbf{x} \in \{ -1,0,1\}^n do not necessarily exist.Comment: 19 page

    The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues

    Get PDF
    A classic result of Banaszczyk (Random Str. & Algor. 1997) states that given any n vectors in Rm with ℓ2-norm at most 1 and any convex body K in Rm of Gaussian measure at least half, there exists a ±1 combination of these vectors that lies in 5K. Banaszczyk’s proof of this result was non-constructive and it was open how to find such a ±1 combination in polynomial time. In this paper, we give an efficient randomized algorithm to find a ±1 combination of the vectors which lies in cK for some fixed constant c > 0. This leads to new efficient algorithms for several problems in discrepancy theory

    Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem

    Get PDF
    An important theorem of Banaszczyk (Random Structures & Algorithms `98) states that for any sequence of vectors of 2\ell_2 norm at most 1/51/5 and any convex body KK of Gaussian measure 1/21/2 in Rn\mathbb{R}^n, there exists a signed combination of these vectors which lands inside KK. A major open problem is to devise a constructive version of Banaszczyk's vector balancing theorem, i.e. to find an efficient algorithm which constructs the signed combination. We make progress towards this goal along several fronts. As our first contribution, we show an equivalence between Banaszczyk's theorem and the existence of O(1)O(1)-subgaussian distributions over signed combinations. For the case of symmetric convex bodies, our equivalence implies the existence of a universal signing algorithm (i.e. independent of the body), which simply samples from the subgaussian sign distribution and checks to see if the associated combination lands inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which allows us to reduce to the case where the body is symmetric. As our second main contribution, we show that the above framework can be efficiently implemented when the vectors have length O(1/logn)O(1/\sqrt{\log n}), recovering Banaszczyk's results under this stronger assumption. More precisely, we use random walk techniques to produce the required O(1)O(1)-subgaussian signing distributions when the vectors have length O(1/logn)O(1/\sqrt{\log n}), and use a stochastic gradient ascent method to implement the recentering procedure for asymmetric bodies

    Online Discrepancy Minimization for Stochastic Arrivals

    Get PDF
    In the stochastic online vector balancing problem, vectors v1,v2,,vTv_1,v_2,\ldots,v_T chosen independently from an arbitrary distribution in Rn\mathbb{R}^n arrive one-by-one and must be immediately given a ±\pm sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to polylog(nT)\mathsf{polylog}(nT) factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC' 20). In particular, for the Koml\'{o}s problem where vt21\|v_t\|_2\leq 1 for each tt, our algorithm achieves O~(1)\tilde{O}(1) discrepancy with high probability, improving upon the previous O~(n3/2)\tilde{O}(n^{3/2}) bound. For Tusn\'{a}dy's problem of minimizing the discrepancy of axis-aligned boxes, we obtain an O(logd+4T)O(\log^{d+4} T) bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker O(log2d+1T)O(\log^{2d+1} T) bound. We also consider the Banaszczyk setting, where given a symmetric convex body KK with Gaussian measure at least 1/21/2, our algorithm achieves O~(1)\tilde{O}(1) discrepancy with respect to the norm given by KK for input distributions with sub-exponential tails. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy

    Online discrepancy minimization for stochastic arrivals

    Get PDF
    In the stochastic online vector balancing problem, vectors v1, v2,..., vT chosen independently from an arbitrary distribution in Rn arrive one-by-one and must be immediately given a ± sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to polylog(nT) factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC' 20). In particular, for the Komlós problem where kvtk2 ≤ 1 for each t, our algorithm achieves Oe(1) discrepancy with high probability, improving upon the previous Oe(n3/2) bound. For Tusnády's problem of minimizing the discrepancy of axis-aligned boxes, we obtain an O(logd+4 T) bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker O(log2d+1 T) bound. We also consider the Banaszczyk setting, where given a symmetric convex body K with Gaussian measure at least 1/2, our algorithm achieves Oe(1) discrepancy with respect to the norm given by K for input distributions with sub-exponential tails. Our results are based on a new potential function approach. Previous techniques consider a potential that penalizes large discrepancy, and greedily chooses the next color to minimize the increase in potential. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. We believe that our techniques to control the evolution of states could find other applications in stochastic processes and online algorithms. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multicolor discrepancy

    Online discrepancy minimization for stochastic arrivals

    Get PDF
    In the stochastic online vector balancing problem, vectors v1,v2,…,vT chosen independently from an arbitrary distribution in Rn arrive one-by-one and must be immediately given a ± sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to polylog(nT) factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC' 20). In particular, for the Komlos problem where ∥v_t∥_2≤1 for each t, our algorithm achieves ˜O(1) discrepancy with high probability, improving upon the previous ˜O(n3/2) bound. For Tusnády's problem of minimizing the discrepancy of axis-aligned boxes, we obtain an O(log^{d+4}T) bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker O(log^{2d+1}T) bound. We also consider the Banaszczyk setting, where given a symmetric convex body K with Gaussian measure at least 1/2, our algorithm achieves \tilde{O}(1) discrepancy with respect to the norm given by K for input distributions with sub-exponential tails. Our results are based on a new potential function approach. Previous techniques consider a potential that penalizes large discrepancy, and greedily chooses the next color to minimize the increase in potential. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. We believe that our techniques to control the evolution of states could find other applications in stochastic processes and online algorithms. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy.</p
    corecore