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Abstract

In the stochastic online vector balancing problem, vectors v1, v2, . . . , vT chosen independently from
an arbitrary distribution in Rn arrive one-by-one and must be immediately given a ± sign. The goal is
to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given
target norm.

We consider some of the most well-known problems in discrepancy theory in the above online
stochastic setting, and give algorithms that match the known offline bounds up to polylog(nT ) factors.
This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha
(STOC’ 20). In particular, for the Komlós problem where ‖vt‖2 ≤ 1 for each t, our algorithm achieves
Õ(1) discrepancy with high probability, improving upon the previous Õ(n3/2) bound. For Tusnády’s
problem of minimizing the discrepancy of axis-aligned boxes, we obtain an O(logd+4 T ) bound for ar-
bitrary distribution over points. Previous techniques only worked for product distributions and gave a
weaker O(log2d+1 T ) bound. We also consider the Banaszczyk setting, where given a symmetric convex
body K with Gaussian measure at least 1/2, our algorithm achieves Õ(1) discrepancy with respect to
the norm given by K for input distributions with sub-exponential tails.

Our results are based on a new potential function approach. Previous techniques consider a potential
that penalizes large discrepancy, and greedily chooses the next color to minimize the increase in potential.
Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector
evolves, allowing us to maintain certain anti-concentration properties. We believe that our techniques to
control the evolution of states could find other applications in stochastic processes and online algorithms.
For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic
chaining. Finally, we also extend these results to the setting of online multi-color discrepancy.
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1 Introduction

We consider the following online vector balancing question, originally proposed by Spencer [Spe77]: vectors
v1, v2, . . . , vT ∈ Rn arrive online, and upon the arrival of vt, a sign χt ∈ {±1} must be chosen irrevocably, so
that the `∞-norm of the discrepancy vector (signed sum) dt := χ1v1 + . . .+χtvt remains as small as possible.
That is, find the smallest B such that maxt∈[T ] ‖dt‖∞ ≤ B. More generally, one can consider the problem
of minimizing maxt∈T ‖dt‖K with respect to arbitrary norms given by a symmetric convex body K.

Offline setting. The offline version of the problem, where the vectors v1, . . . , vT are given in advance, has
been extensively studied in discrepancy theory, and has various applications [Mat09, Cha01, CST+14]. Here
we study three important problems in this vein:

Tusnády’s problem. Given points x1, . . . , xT ∈ [0, 1]d, we want to assign ± signs to the points, so that
for every axis-parallel box, the difference between the number of points inside the box that are assigned
a plus sign and those assigned a minus sign is minimized.

Beck-Fiala and Komlós problem. Given v1, . . . , vT ∈ Rn with Euclidean norm at most one, we want
to minimize maxt∈T ‖dt‖∞. After scaling, a special case of the Komlós problem is the Beck-Fiala setting
where v1, . . . , vT ∈ [−1, 1]n are s-sparse (with at most s non-zeros).

Banaszczyk’s problem. Given v1, . . . , vT ∈ Rn with Euclidean norm at most one, and a convex body
K ∈ Rn with Gaussian measure1 γn(K) ≥ 1− 1/(2T ), find the smallest B so that there exist signs such
that dt ∈ B ·K for all t ∈ [T ].

One of the most general and powerful results here is due to Banaszczyk [Ban12]: there exist signs such that
dt ∈ O(1) · K for all t ∈ [T ] for any convex body K ∈ Rn with Gaussian measure2 γn(K) ≥ 1 − 1/(2T ).
In particular, this gives the best known bounds of O((log T )1/2) for the Komlós problem; for the Beck-Fiala
setting, when the vectors are s-sparse, the bound is O((s log T )1/2).

An extensively studied case, where sparsity plays a key role, is that of Tusnády’s problem (see [Mat09]
for a history), where the best known (non-algorithmic) results, building on a long line of work, are an
O(logd−1/2 T ) upper bound of [Nik17] and an almost matching Ω(logd−1 T ) lower bound of [MN15].

In general, several powerful techniques have been developed for offline discrepancy problems over the last
several decades, starting with initial non-constructive approaches such as [Bec81, Spe85, Glu89, Gia97,
Ban98, Ban12], and more recent algorithmic ones such as [Ban10, LM15, Rot14, MNT14, BDG16, LRR17,
ES18, BDGL18, DNTT18]. However, none of them applies to the online setting that we consider here.

Online setting. A naïve algorithm is to pick each sign χt randomly and independently, which by standard
tail bounds gives B = Θ((T log n)1/2) with high probability. In typical interesting settings, we have T ≥
poly(n), and hence a natural question is whether the dependence on T can be improved from T 1/2 to say,
poly-logarithmic in T , and ideally to even match the known offline bounds.

Unfortunately, the Ω(T 1/2) dependence is necessary if the adversary is adaptive3: at each time t, the ad-
versary can choose the next input vector vt to be orthogonal to dt−1, causing ‖dt‖2 to grow as Ω(T 1/2)
(see [Spe87] for an even stronger lower bound). Even for very special cases, such as for vectors in {−1, 1}n,
strong Ω(2n) lower bounds are known [Bár79]. Hence, we focus on a natural stochastic model where we
relax the power of the adversary and assume that the arriving vectors are chosen in an i.i.d. manner from
some—possibly adversarially chosen—distribution p. In this case, one could hope to exploit that 〈dt−1, vt〉
is not always zero, e.g., due to anti-concentration properties of the input distribution, and beat the Ω(T 1/2)
bound.

1The Gaussian measure γn(S) of a set S ⊆ Rn is defined as P[G ∈ S] where G is standard Gaussian in Rn.
2We remark that if one only cares about the final discrepancy dT , the condition in Banaszczyk’s result can be improved to

γn(K) ≥ 1/2 (though, in all applications we are aware of, this makes no difference if T = poly(n) and makes a difference of at
most

√
log T ) for general T ).

3In the sense that the adversary can choose the next vector vt based on the current discrepancy vector dt−1.
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Recently, Bansal and Spencer [BS19], considered the special case where p is the uniform distribution on all
{−1, 1}n vectors, and gave an almost optimal O(n1/2 log T ) bound for the `∞ norm that holds with high
probability for all t ∈ [T ]. The setting of general distributions p turns out to be harder and was considered
recently by [JKS19] and [BJSS20], motivated by envy minimization problems and an online version of
Tusnády’s problem. The latter was also considered independently by Dwivedi, Feldheim, Gurel-Gurevich,
and Ramadas [DFGGR19] motivated by the problem of placing points uniformly in a grid.

For an arbitrary distribution p supported on vectors in [−1, 1]n, [BJSS20] give an algorithm achieving an
O(n2 log T ) bound for the `∞-norm. In contrast, the best offline bound is O((n log T )1/2), and hence Ω̃(n3/2)

factor worse, where Ω̃(·) ignores poly-logarithmic factors in n and T .

More significantly, the existing bounds for the online version are much worse than those of the offline
version for the case of s-sparse vectors (Beck-Fiala setting) — [BJSS20] obtain a much weaker bound of
O(sn log T ) for the online setting while the offline bound of O((s log T )1/2) is independent of the ambient
dimension n. These technical limitations also carry over to the online Tusnády problem, where previous
works [JKS19, DFGGR19, BJSS20] could only handle product distributions.

To this end, [BJSS20] propose two key problems in the i.i.d. setting. First, for a general distribution p

on vectors in [−1, 1]n, can one get an optimal Õ(n1/2) or even Õ(n) dependence? Second, can one get
poly(s, log T ) bounds when the vectors are s-sparse. In particular, as a special case, can one get (log T )O(d)

bounds for the Tusnády problem, when points arrive from an arbitrary non-product distribution on [0, 1]d.

1.1 Our Results

In this paper we resolve both the above questions of [BJSS20], and prove much more general results that
obtain bounds within poly-logarithmic factors of those achievable in the offline setting.

Online Komlós and Tusnády settings. We first consider Komlós’ setting for online discrepancy min-
imization where the vectors have `2-norm at most 1. Recall, the best known offline bound in this setting is
O((log T )1/2) [Ban12]. We achieve the same result, up to poly-logarithmic factors, in the online setting.

Theorem 1.1 (Online Komlós setting). Let p be a distribution in Rn supported on vectors with Euclidean
norm at most 1. Then, for vectors v1, . . . , vT sampled i.i.d. from p, there is an online algorithm that with
high probability maintains a discrepancy vector dt such that ‖dt‖∞ = O(log4(nT )) for all t ∈ [T ].

In particular, for vectors in [−1, 1]n this gives an O(n1/2 log4(nT )) bound, and for s-sparse vectors in [−1, 1]n,
this gives an O(s1/2 log4(nT )) bound, both of which are optimal up to poly-logarithmic factors.

The above result implies significant savings for the online Tusnády problem. Call a set B ⊆ [0, 1]n an
axis-parallel box if B = I1 × · · · × In for intervals Ii ⊆ [0, 1]. In the online Tusnády problem, we see points
x1, . . . , xT ∈ [0, 1]d and need to assign signs χ1, . . . , χT in an online manner to minimize the discrepancy of
every axis-parallel box at all times. More precisely, for an axis-parallel box B, define4

disct(B) :=
∣∣∣χ11B(x1) + . . .+ χt1B(xt)

∣∣∣.
Our goal is to assign the signs χ1, . . . , χt so as to minimize maxt≤T disct(B) for every axis-parallel box B.

There is a standard reduction (see Section 5.2) from the online Tusnády problem to the case of s-sparse
vectors in RN where s = (log T )d but the ambient dimension N is Od(T d). Using this reduction, along with
Theorem 1.1, directly gives an O(log3d/2+4 T ) bound for the online Tusnády’s problem that works for any
arbitrary distribution on points, instead of just product distributions as in [BJSS20]. In fact, we prove a
more general result where we can choose arbitrary directions to test discrepancy and we use this flexibility
(see Theorem 1.3 below) to improve the exponent of the bound further, and essentially match the best offline
bound of O((logd−1/2 T ) [Nik17].

4Here, and henceforth, for a set S, denote 1S(x) the indicator function that is 1 if x ∈ S and 0 otherwise.
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Theorem 1.2 (Online Tusnády’s problem for arbitrary p). Let p be an arbitrary distribution on [0, 1]d. For
points x1, . . . , xT sampled i.i.d from p, there is an algorithm which selects signs χt ∈ {±1} such that with
high probability for every axis-parallel box B, we have maxt∈[T ] disct(B) = Od(logd+4 T ).

Theorem 1.1 and Theorem 1.2 follow from the more general result below.

Theorem 1.3 (Discrepancy for Arbitrary Test Directions). Let S ⊆ Rn be a finite set of test vectors with
Euclidean norm at most 1 and p be a distribution in Rn supported on vectors with Euclidean norm at most
1. Then, for vectors v1, . . . , vT sampled i.i.d. from p, there is an online algorithm that with high probability
maintains a discrepancy vector dt satisfying

max
z∈S
|d>t z| = O((log(|S|) + log T ) · log3(nT )) for every t ∈ [T ].

In fact, the proof of the above theorem also shows that given any arbitrary distribution on unit test vectors
z, one can maintain a bound on the exponential moment Ez[exp(|〈dt, z〉|)] at all times.

The key idea involved in proving Theorem 1.3 above, is a novel potential function approach. In addition to
controlling the discrepancy dt in the test directions, we also control how the distribution of dt relates to the
input vector distribution p. This leads to better anti-concentration properties, which in turn gives better
bounds on discrepancy in the test directions. We describe this idea in more detail in Sections 1.2 and 2.

Online Banaszczyk setting. Next, we consider discrepancy with respect to general norms given by an
arbitrary convex body K. To recall, in the offline setting, Banaszczyk’s seminal result [Ban12] shows that
if K is any convex body with Gaussian measure 1 − 1/(2T ), then for any vectors v1, . . . , vT of `2-norm at
most 1, there exist signs χ1, . . . , χT such that the discrepancy vectors dt ∈ O(1) ·K for all t ∈ T .
Here we study the online version when the input distribution p ∈ Rn has sufficiently good tails. Specifically,
we say a univariate random variable X has sub-exponential tails if for all r > 0, P

[
|X − E[X]| > rσ(X)

]
≤

e−Ω(r), where σ(X) denotes the standard-deviation of X. We say a multi-variate distribution p ∈ Rn has
sub-exponential tails if all its one-dimensional projections have sub-exponential tails. That is,

Pv∼p
[∣∣∣〈v, θ〉 − µθ]∣∣∣ ≥ σθ · r] ≤ e−Ω(r) for every θ ∈ Sn−1 and every r > 0,

where µθ and σθ are the mean and standard deviation5 of the scalar random variable Xθ = 〈v, θ〉.
Many natural distributions, such as when v is chosen uniform over the vertices of the {±1}n hypercube
(scaled to have Euclidean norm one), uniform from a convex body, Gaussian distribution (scaled to have
bounded norm with high probability), or uniform on the unit sphere, have a sub-exponential tail and in
these cases our bounds match the offline bounds up to poly-logarithmic factors.

Theorem 1.4 (Online Banaszczyk Setting). Let K ⊆ Rn be a symmetric convex body with γn(K) ≥ 1/2
and p be a distribution with sub-exponential tails that is supported over vectors of Euclidean norm at most
1. Then, for vectors v1, . . . , vT sampled i.i.d. from p, there is an online algorithm that with high probability
maintains a discrepancy vector dt satisfying dt ∈ C log5(nT ) ·K for all t ∈ [T ] and a universal constant C.

The proof of the above theorem, while similar in spirit to Theorem 1.3, is much more delicate. In particular,
we cannot use that theorem directly as capturing a general convex body as a polytope may require exponential
number of constraints (the set S of test vectors).

Online Weighted Multi-Color Discrepancy. Finally we consider the setting of weighted multi-color
discrepancy, where we are given vectors v1, . . . , vT ∈ Rn sampled i.i.d. from a distribution p on vectors with
`2-norm at most one, an integer R which is the number of colors available, positive weights wc ∈ [1, η] for
each color c ∈ [R], and a norm ‖·‖∗. At each time t, the algorithm has to choose a color c ∈ [R] for the

5Note that when the input distribution p is α-isotropic, i.e. the covariance is αIn, then σθ = α for every direction θ, but
the above definition is a natural generalization to handle an arbitrary covariance structure.
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arriving vector, so that the discrepancy disct with respect to ‖·‖∗, defined below, is minimized for every
t ∈ [T ]:

disct(‖·‖∗) := max
c 6=c′

disct(c, c
′) where disct(c, c

′) :=

∥∥∥∥dc(t)/wc − dc′(t)/wc′1/wc + 1/wc′

∥∥∥∥
∗
,

with dc(t) being the sum of all the vectors that have been given the color c till time t. We note that (up to
a factor of two) the case of unit weights and R = 2 is the same as assigning ± signs to the vectors (vi)i≤T ,
and we will also refer to this setting as signed discrepancy.

We show that the bounds from the previous results also extend to the setting of multi-color discrepancy.

Theorem 1.5 (Weighted multi-color discrepancy). For any input distribution p and any set S of poly(nT )
test vectors with Euclidean norm at most one, there is an online algorithm for the weighted multi-color
discrepancy problem that maintains discrepancy O(log2(Rη) · log4(nT )) with the norm ‖·‖∗ = maxz∈S |〈·, z〉|.
Further, if the input distribution p has sub-exponential tails then one can maintain multi-color discrepancy
O(log2(Rη) · log5(nT )) for any norm ‖ · ‖∗ given by a symmetric convex body K satisfying γn(K) ≥ 1/2.

As an application, the above theorem implies upper bounds for multi-player envy minimization in the online
stochastic setting, as defined in [BKPP18], by reductions similar to those in [JKS19] and [BJSS20].

We remark that in the offline setting, such a statement with logarithmic dependence in R and η is easy to
prove by identifying the various colors with leaves of a binary tree and recursively using the offline algorithm
for signed discrepancy. It is not clear how to generalize such a strategy to the online stochastic setting, since
the algorithm for signed discrepancy might use the stochasticity of the inputs quite strongly.

By exploiting the idea of working with the Haar basis, we show how to implement such a strategy in the online
stochastic setting: we prove that if there is a greedy strategy for the signed discrepancy setting that uses a
potential satisfying certain requirements, then it can be converted to the weighted multi-color discrepancy
setting in a black-box manner.

1.2 High-Level Approach

Before describing our ideas, it is useful to discuss the bottlenecks in the previous approach. In particular,
the quantitative bounds for the online Komlós problem, as well as for the case of sparse vectors obtained in
[BJSS20] are the best possible using their approach, and improving them further required new ideas. We
describe these ideas at a high-level here, and refer to Section 2 for a more technical overview.

Limitations of previous approach. For intuition, let us first consider the simpler setting, where we
care about minimizing the Euclidean norm of the discrepancy vector dt — this will already highlight the
main issues. As mentioned before, if the adversary is adaptive in the online setting, then they can always
choose the next input vector vt to be orthogonal to dt−1 (i.e., 〈dt−1, vt〉 = 0) causing ‖dt‖2 to grow as T 1/2.
However, if 〈dt−1, vt〉 is typically large, then one can reduce ‖dt‖2 by choosing χt = −sign(〈dt−1, vt〉), as the
following shows:

‖dt‖22 − ‖dt−1‖22 = 2χt · 〈dt−1, vt〉+ ‖vt‖22 ≤ −2|〈dt−1, vt〉|+ 1. (1)

The key idea in [BJSS20] was that if the vector vt has uncorrelated coordinates (i.e. Evt∼p[vt(i)vt(j)] = 0
for i 6= j), then one can exploit anti-concentration properties to essentially argue that |〈dt−1, vt〉| is typically
large when ‖dt−1‖2 is somewhat big, and the greedy choice above works, as it gives a negative drift for the
`2-norm. However, uncorrelated vectors satisfy provably weaker anti-concentration properties, by up to a
n1/2 factor (s1/2 for s-sparse vectors), compared to those with independent coordinates. This leads up to an
extra n1/2 loss in general.

Moreover, to ensure uncorrelation one has to work in the eigenbasis of the covariance matrix of p, which
could destroy sparsity in the input vectors and give bounds that scale polynomially with n. [BJSS20] also
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show that one can combine the above high-level uncorrelation idea with a potential function that tracks a
soft version of maximum discrepancy in any coordinate,

Φt−1 =

n∑
i=1

exp(λdt−1(i)), (2)

to even get bounds on the `∞-norm of dt. However, this is also problematic as it might lead to another
factor n loss, due to a change of basis (twice).

To achieve sparsity based bounds in the special case of online Tusnády’s problem, previous approaches use
the above ideas and exploit the special problem structure. In particular, when the input distribution p
is a product distribution, [BJSS20] (and [DFGGR19]) observe that one can work with the natural Haar
basis which also has a product structure in [0, 1]d — this makes the input vectors uncorrelated, while
simultaneously preserving the sparsity due to the recursive structure of the Haar basis. However, this
severely restricts p to product distributions and previously, it was unclear how to even handle a mixture of
two product distributions.

New potential: anti-concentration from exponential moments. Our results are based on a new
potential. Typical potential analyses for online problems show that no matter what the current state is, the
potential does not rise much when the next input arrives. As discussed above, this is typically exploited
in the online discrepancy setting using anti-concentration properties of the incoming vector vt ∼ p — one
argues that no matter the current discrepancy vector dt−1, the inner product 〈dt−1, vt〉 is typically large so
that a sign can be chosen to decrease the potential (recall (1)).

However, as in [BJSS20], such a worst-case analysis is restrictive as it requires p to have additional desirable
properties such as uncorrelated coordinates. A key conceptual idea in our work is that instead of just
controlling a suitable proxy for the norm of the discrepancy vectors dt, we also seek to control structural
properties of the distribution dt. Specifically, we also seek to evolve the distribution of dt so that it has
better anti-concentration properties with respect to the input distribution. In particular, one can get much
better anti-concentration for a random variable if one also has control on the higher moments. For instance,
if we can bound the fourth moment of the random variable Yt ≡ 〈dt−1, vt〉, in terms of its variance, say
E[Y 4

t ]� E[Y 2
t ]2, then the Paley-Zygmund inequality implies that Yt is far from zero. However, working with

E[Y 4
t ] itself is too weak as an invariant and necessitates looking at even higher moments.

A key idea is that these hurdles can be handled cleanly by looking at another potential that controls the
exponential moment of Yt. Specifically, all our results are based on an aggregate potential function based on
combining a potential of the form (2), which enforces discrepancy constraints, together with variants of the
following potential, for a suitable parameter λ, which enforces anti-concentration constraints:

Φt ∼ Ev[exp(λ|〈dt, v〉|)].

This clearly allows us to control higher moments of 〈dt, v〉, in turn allowing us to show strong anti-
concentration properties without any assumptions on p. We believe the above idea of controlling the space
of possible states where the algorithm can be present in, could potentially be useful for other applications.

To illustrate the idea in the concrete setting of `2-discrepancy, let us consider the case when the input dis-
tribution p is mean-zero and 1/n-isotropic, meaning the covariance Σ = Ev∼p[vv>] = In/n. Here, if we
knew that the exponential moment Ev∼p[exp(|〈dt−1, v〉|)] ≤ T , then it implies that with high probability
|〈dt−1, v〉| ≤ log T for v ∼ p. To avoid technicalities, let us assume that |〈dt−1, v〉| ≤ log T holds with prob-
ability one. Therefore, when vt sampled independently from p arrives, then since E

[
|AB|

]
≥ E[AB]/‖B‖∞

for any coupled random variables A and B, taking A = 〈dt−1, vt〉 and B = 〈dt−1, vt〉/ log T , we get that

E[|〈dt−1, vt〉|] ≥
1

log T
· Evt [d>t−1vtv

>
t dt−1] =

1

log T
· d>t−1Σdt−1 =

‖dt−1‖22
n log T

.

Therefore, whenever ‖dt−1‖2 � (n log T )1/2, then the drift in `2-norm of the discrepancy vector dt is negat-
ive. Thus, we can obtain the optimal `2-discrepancy bound of O((n log T )1/2).

5



Banasaczyk setting. In the Banaszczyk setting, the algorithm uses a carefully chosen set of test vectors
at different scales that come from generic chaining. In particular, we use a potential function based on test
vectors derived from the generic chaining decomposition of the polar K◦ of the body K.

However, as there can now be exponentially many such test vectors, more care is needed. First, we use that
the Gaussian measure of K is large to control the number of test vectors at each scale in the generic chaining
decomposition of K◦. Second, to be able to perform a union bound over the test vectors at each scale, one
needs substantially stronger tail bounds than in Theorem 1.3. To do this, we scale the test vectors to be quite
large, but this becomes problematic with standard tools for potential analysis, such as Taylor approximation,
as the update to each term in the potential can be much larger than potential itself, and hard to control.
Nevertheless, we show that if the distribution has sub-exponential tails, then such an approximation holds
“on average” and the growth in the potential can be bounded.

Concurrent and Independent Work. In a concurrent and independent work, Alweiss, Liu, and Sawhney
[ALS20] obtained online algorithms achieving poly-logarithmic discrepancy bound for the Komlós and Tus-
nády’s problems in the more general setting where the adversary is oblivious. Their techniques, however, are
completely different from the potential function based techniques of the present paper. In fact, as noted by
the authors of [ALS20], a potential function analysis encounters significant difficulties here — the algorithm
is required to control the evolution of the discrepancy vectors and such an invariant is difficult to maintain
with a potential function, even for stochastic inputs. With the techniques and conceptual ideas we intro-
duce, we can overcome this barrier in the stochastic setting. We believe that our potential-based approach
to control the state space of the algorithm could prove useful for other stochastic problems.

2 Proof Overview

Recall the setting: the input vectors (vτ )τ≤T are sampled i.i.d. from p and satisfy ‖v‖2 ≤ 1, and we need to
assign signs χ1, . . . , χT in an online manner so as to minimize some target norm of the discrepancy vectors
dt =

∑
τ≤t χτvτ . Moreover, we may also assume, without loss of generality that the distribution is mean-

zero as the algorithm can toss a coin and work with either v or −v. This means that the covariance matrix
Σ = Ev[vv>] satisfying 0 4 Σ 4 In.

2.1 Komlos Setting

Here our goal is to minimize ‖dt‖∞. First, consider the potential function Ev∼p[cosh(λ d>t v)] where cosh(a) =
1
2 · (e

a + e−a). This however only puts anti-concentration constraints on the discrepancy vector and does not
track the discrepancy in the coordinate directions. It is natural to add a potential term to enforce discrepancy
constraints. In particular, let px = 1

2p + 1
2py, where py is uniform over the standard basis vectors (ei)i≤n,

then the potential

Φt = Ex∼px [cosh(λ d>t x)], (3)

allows us to control the exponential moments of 〈dt−1, vt〉 as well as the discrepancy in the target test
directions. In particular, if the above potential Φt ≤ poly(T ), then we get a bound of O(λ−1 log T ) on ‖dt‖∞.
Next we sketch a proof that for the greedy strategy using the above potential, one can take λ = 1/ log T , so
that the potential remains bounded by poly(T ) at all times.

Claim 2.1 (Informal: Bounded Drift). If Φt−1 ≤ T 2, then Evt [∆Φt] := Evt [Φt − Φt−1] ≤ 2.

The above implies using standard martingale arguments, that the potential remain bounded by T 2 with high
probability and hence ‖dt‖∞ = polylog(T ) at all times t ∈ [T ].

Let us first make a simplifying assumption that Σ = In/n and that at time t, the condition λ|d>t−1vt| ≤ 2 log T
holds with probability 1. We give an almost complete proof below under these conditions. The first condition
can be dealt with by an appropriate decomposition of the covariance matrix as sketched below. The second
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condition only holds with high probability (1 − 1/poly(T )), because we have a bound on the exponential
moment, but the error event can be handled straightforwardly.

By Taylor expansion, we have that for all a,

cosh(λ(a+ δ))− cosh(λa) ≤ λ sinh(λa) · δ + λ2| sinh(λa)| · δ2 for all |δ| ≤ 1, (4)

where sinh(a) = 1
2 · (e

a − e−a) and we used the approximation that cosh(a) ≈ | sinh(a)|. Therefore, since
dt = dt−1 + χtvt, by the above inequality we have

∆Φt ≤ χt · λEx
[
sinh(λd>t−1x) · x>vt

]
+ λ2Ex

[
| sinh(λd>t−1x)| · |x>vt|2

]
:= χtλL+ λ2Q.

Since the algorithm chooses χt to minimize the potential, we have that Evt [∆Φt] ≤ −λEvt [|L|] + λ2Evt [Q].

Upper bounding the quadratic term: Using that Σ = Evt [vtv>t ] = In/n, we have

Evt [Q] = Evtx[| sinh(λd>t−1x)| · xT vtv>t x] = Ex[| sinh(λd>t−1x)| · xTΣx]

=
1

n
· Ex[| sinh(λd>t−1x)| · ‖x‖2] ≤ 1

n
· Ex[| sinh(λd>t−1x)|],

where the last inequality used that ‖x‖2 ≤ 1.

Lower bounding the linear term: For this we use the aforementioned coupling trick: Evt [|L|] ≥
Evt [LY ]/‖Y ‖∞ for any coupled random variable Y 6. Taking Y = |d>t−1vt|, we have that ‖Y ‖∞ ≤ log T .
Therefore,

Evt [|L|] = Evt
∣∣∣Ex [sinh(λd>t−1x) · x>vt

] ∣∣∣ ≥ 1

log T
· Evtx

[
sinh(λd>t−1x)| · x>vtv>dt−1

]
=

1

2n log T
· Ex[sinh(λd>t−1x) · d>t−1x] ≥ 1

2nλ log T
· Ex[| sinh(λd>t−1x)|]− 2,

using that sinh(a)a ≥ | sinh(a)| − 2 for all a ∈ R.

Therefore, if λ = 1/(2 log T ), we can bound the drift in the potential

Evt [∆Φt] ≤ − λ

2n log T
· Ex[| sinh(λd>t−1x)|] +

λ2

n
· Ex[| sinh(λd>t−1x)|] + 2 ≤ 2.

Non-Isotropic Covariance. To handle the general case when the covariance Σ is not isotropic, let us
assume that all the non-zero eigenvalues are of the form 2−k for integers k ≥ 0. One can always rescale
the input vectors and any potential set of test vectors, so that the covariance satisfies the above, while the
discrepancy is affected only by a constant factor. See Section 4 for details.

With the above assumption Σ =
∑
k 2−kΠk where Πk is the orthogonal projection on to the subspace with

eigenvalues 2−k. Since, we only get T vectors, we can ignore the eigenvalues smaller than (nT )−4 and only
need to consider O(log(nT )) different scales. Then, one can work with the following potential which imposes
the alignment constraint in each such subspace:

Φt =
∑
k

Ex∼px [cosh(λ d>t Πkx)].

As we have O(log(nT )) pairwise orthogonal subspaces, we can still choose λ = 1/polylog(nT ) and with some
care, the drift can be bounded using the aforementioned ideas. Once the potential is bounded, we can bound
‖dt‖∞ as before along with triangle inequality.

6Here ‖Y ‖∞ denotes the largest value of Y in its support.
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2.2 Banaszczyk Setting

Recall that here we are given a convex body K with Gaussian volume at least 1/2 and our goal is to bound
K-norm of the discrepancy vector ‖dt‖K . Here, ‖d‖K intuitively is the minimum scaling γ of K so that
d ∈ γK. To this end, we will use the dual characterization of K: Let K◦ = {y : supx∈K |〈x, y〉| ≤ 1}, then
‖d‖K = supy∈K◦ |〈d, y〉|.
To approach this first note that the arguments from previous section allow us not only to bound ‖dt‖∞ but
also maxz∈S〈dt, z〉 for an arbitrary set of test directions S (of norm at most 1). As long as |S| ≤ poly(nT ),
we can bound maxz∈S〈dt, z〉 = poly(log(nT )).

However, to handle a norm given by an arbitrary convex body K, one needs exponentially many test vectors,
and the previous ideas are not enough. To design a suitable test distribution for an arbitrary convex body K,
we use generic chaining to bound ‖dt‖K = supz∈K◦〈dt, z〉 by choosing epsilon-nets7 of K◦ at geometrically
decreasing scales. Again let us assume that the Σ = In/n for simplicity.

First, assuming Gaussian measure of K is at least 1/2, it follows that diam(K◦) = O(1) (see Section 3.3).
So, one can choose the coarsest epsilon-net at O(1)-scale while the finest epsilon-net can be taken at scale
≈ 1/

√
n since by adding the standard basis vectors to the test set, one can control ‖dt‖2 ≤

√
n (ignoring

polylog factors) by using the previous ideas in the Komlös setting.

0
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Figure 1: The chaining graph G showing epsilon-nets of the convex body at various scales. The edges connect near neighbors
at two consecutive scales. Note that any point z ∈ K◦ can be expressed as the sum of the edge vectors w` where w` = v`−v`−1,
and (v`−1, v`) is an edge between two points at scale 2−(`−1) and 2−`.

Now, one can use generic chaining as follows: define the directed layered graph G (see Figure 1) where the
vertices T` in layer ` are the elements of an optimal ε`-net of K◦ with ε` = 2−`. We add a directed edge
from a vertex u ∈ T` to vertex v ∈ T`+1 if ‖u− v‖2 ≤ ε` and identify the corresponding edge with the vector
v − u. The length of any such edge v − u, defined as ‖v − u‖2, is at most ε`.

Let us denote the set of edges between layer ` and ` + 1 by S`. Now, one can express any z ∈ K◦ as∑
` w` + werr where w` ∈ S` and ‖werr‖2 ≤ 1/

√
n. Then, since we can control ‖dt‖2 ≤

√
n, we have

sup
z∈K◦

〈dt, z〉 ≤
∑
`

max
w∈S`
〈d,w〉+ max

‖w‖2≤n−1/2
〈d,werr〉 = O(log n) ·max

`
max
w∈S`
〈d,w〉.

Thus, it suffices to control maxw∈S`〈d,w〉 for each scale using a suitable test distribution in the potential.

For example, suppose we knew that Ew̃[cosh(λd>w̃)] ≤ T for w̃ uniform in r2 · S` for a scaling factor r2.
Then, it would follow that maxw∈S`〈d,w〉 = O(λ−1r−2 log |S`| · log T ). Standard results in convex geometry
(see Section 3.3) imply that |S`| ≤ eO(1/ε2`), so to obtain a polylog(nT ) bound, one needs to scale the vectors
w ∈ S` by a factor of r = 1/ε`. This implies that the `2-norm of scaled vector r2 ·w could be as large as

√
n.

This makes the drift analysis for the potential more challenging because now the Taylor expansion in (4)
is not always valid as the update δ could be as large as

√
n. This is where the sub-exponential tail of the

7We remark that one can also work with admissible nets that come from Talagrand’s majorizing measures theorem and
probably save a logarithmic factor, but for simplicity we work with epsilon-nets at different scales.
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input distribution is useful for us. Since the input distribution is 1/n-isotropic and sub-exponential tailed,
we know that if ‖w‖2 ≤

√
n , then for a typical choice of v ∼ p, the following holds

〈vt, w〉 ≈ Evt [〈vt, w〉2] = Evt [w>vv>w] =
‖w‖22
n
≤ 1.

Thus, with some work one can show that, the previous Taylor expansion essentially holds "on average" and
the drift can be bounded. The case of general covariances can be handled by doing a decomposition as
before. Although the full analysis becomes somewhat technical, all the main ideas are presented above.

2.3 Multi-color Discrepancy

For the multi-color discrepancy setting, we show that if there is an online algorithm that uses a greedy
strategy with respect to a certain kind of potential Φ, then one can adapt the same potential to the multi-
color setting in a black-box manner.

In particular, let the number of colors R = 2h for an integer h and all weights be unit. Let us identify the
leaves of a complete binary tree T of height h with a color. Our goal is then to assign the incoming vector
to one of the leaves. In the offline setting, this is easy to do with a logarithmic dependence of R — we
start at the root and use the algorithm for the signed discrepancy setting to decide to which sub-tree the
vector be assigned and then we recurse until the vector is assigned to one of the leaves. Such a strategy in
the online stochastic setting is not obvious, as the distribution of the incoming vector might change as one
decides which sub-tree it belongs to.

By exploiting the idea used in [BJSS20] and [DFGGR19] of working with the Haar basis, we can implement
such a strategy if the potential Φ satisfies certain requirements. Let us define d`(t) to be the sum of all the
input vectors assigned to that leaf at time t. In the same way, for an internal node u of T , we can define
du(t) to be the sum of the vectors d`(t) for all the leaves ` in the sub-tree rooted at u. The crucial insight
is then, one can track the difference of the discrepancy vectors of the two children d−u (t) for every internal
node u of the tree T . In particular, one can work with the potential

Ψt =
∑
u∈T

Φ
(
β d−u (t)

)
,

for some parameter β, and assign the incoming vector to the leaf that minimizes the increase in Ψt. Then,
essentially we show that the analysis for the potential Φ translates to the setting of the potential Ψt if Φ
satisfies certain requirements (see Section 7).

3 Preliminaries

3.1 Notation

Throughout this paper, log denotes the natural logarithm unless the base is explicitly mentioned. We use
[k] to denote the set {1, 2, . . . , k}. Sets will be denoted by script letters (e.g. T ).
Random variables are denoted by capital letters (e.g. A) and values they attain are denoted by lower-case
letters possibly with subscripts and superscripts (e.g. a, a1, a

′, etc.). Events in a probability space will be
denoted by calligraphic letters (e.g. E). We also use 1E to denote the indicator random variable for the event
E . We write λp + (1− λ)p′ to denote the convex combination of the two distributions.

Given a distribution p, we use the notation x ∼ p to denote an element x sampled from the distribution p.
For a real function f , we will write Ex∼p[f(x)] to denote the expected value of f(x) under x sampled from
p. If the distribution is clear from the context, then we will abbreviate the above as Ex[f(x)].

For a symmetric matrixM , we useM+ to denote the Moore-Penrose pseudo-inverse, ‖M‖op for the operator
norm of M and Tr(M) for the trace of M .
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3.2 Sub-exponential Tails

Recall that a subexponential distribution p on R satisfies the following for every r > 0, Px∼p[|x−µ| ≥ σr] ≤
e−Ω(r) where µ = Ex[x] and σ2 = Ex[(x−µ)2]. A standard property of a distribution with a sub-exponential
tail is hypercontractivity and a bound on the exponential moment (c.f. §2.7 in [Ver18]).

Proposition 3.1. Let p be a distribution on R that has a sub-exponential tail with mean zero and variance
σ2. Then, for a constant C > 0, we have that Ex∼p[es|x|] ≤ C for all |s| ≤ 1/2σ. Moreover, for every k > 0,
we have Ex∼p[|x|k]1/k ≤ C · kσ.

3.3 Convex Geometry

Given a convex body K ⊆ Rn, its polar convex body is defined as K◦ = {y | supx∈K |〈x, y〉| ≤ 1}. If K is
symmetric, then it defines a norm ‖ · ‖K which is defined as ‖ · ‖K = supy∈K◦〈·, y〉.
For a linear subspace H ⊆ Rn, we have that (K ∩H)◦ = ΠH(K◦) where ΠH is the orthogonal projection on
to the subspace H.

Gaussian Measure. We denote by γn the n-dimensional standard Gaussian measure on Rn. More pre-
cisely, for any measurable set A ⊆ Rn, we have

γn(A) =
1

(
√

2π)n

∫
A
e−‖x‖

2
2/2dx.

For a k-dimensional linear subspace H of Rn and a set A ⊆ H, we denote by γk(A) the Gaussian measure
of the set A where H is taken to be the whole space. For convenience, we will sometimes write γH(A) to
denote γdim(H)(A ∩H).

The following is a standard inequality for the Gaussian measure of slices of a convex body. For a proof, see
Lemma 14 in [DGLN16].

Proposition 3.2. Let K ⊆ Rn with γn(K) ≥ 1/2 and H ⊆ Rn be a linear subspace of dimension k. Then,
γk(K ∩H) ≥ γn(K).

Gaussian Width. For a set T ⊆ Rn, let w(T ) = Eg[supx∈T 〈g, x〉] denote the Gaussian width of T where
g ∈ Rn is sampled from the standard normal distribution. Let diam(T ) = supx,y∈T ‖x − y‖2 denote the
diameter of the set T .
The following lemma is standard up to the exact constants. For a proof, see Lemmas 26 and 27 in [DGLN16].

Proposition 3.3. Let K ⊆ Rn be a symmetric convex body with γn(K) ≥ 1/2. Then, w(K◦) ≤ 3
2 and

diam(K◦) ≤ 4.

To prevent confusion, we remark that the Gaussian width is Θ(
√
n) factor larger than the spherical width

defined as Eθ[supx∈T 〈θ, x〉] for a randomly chosen θ from the unit sphere Sn−1. So the above proposition
implies that the spherical width of K◦ is O(1/

√
n).

For a linear subspace H ⊆ Rn and a subset T ⊆ H, we will use the notation wH(T ) = Eg[supx∈T 〈g, x〉] to
denote the Gaussian width of T in the subspace H, where g is sampled from the standard normal distribution
on the subspace H. Proposition 3.2 and Proposition 3.3 also imply that wH(T ) ≤ 3/2.

Covering Numbers. For a set T ⊆ Rn, let N(T , ε) denote the size of the smallest ε-net of T in the
Euclidean metric, i.e., the smallest number of closed Euclidean balls of radius ε whose union covers T .
Then, we have the following inequality (c.f. [Wai19], §5.5).
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Proposition 3.4 (Sudakov minoration). For any set T ⊆ Rn and any ε > 0

w(T ) ≥ ε

2

√
logN(T , ε), or equivalently, N(T , ε) ≤ e4w(T )2/ε2 .

Analogously, for a linear subspace H ⊆ Rn and a subset T ⊆ H, we also have wH(T ) ≥ ε
2

√
logNH(T , ε),

where NH(T , ε) denote the covering numbering of T when H is considered the whole space.

4 Reduction to κ-Dyadic Covariance

For all our problems, we may assume without loss of generality that the distribution p has zero mean, i.e.
Ev∼p[v] = 0, since our algorithm can toss an unbiased random coin and work with either v or −v. Now the
covariance matrix Σ of the input distribution p is given by Σ = Ev∼p[vv>]. Since ‖v‖2 ≤ 1, we have that
0 4 Σ 4 I and Tr(Σ) ≤ 1.

However, it will be more convenient for the proof to assume that all the non-zero eigenvalues of the covariance
matrix Σ are of the form 2−k for an integer k. In this section, by slightly rescaling the input distribution
and the test vectors, we show that one can assume this without any loss of generality.

Consider the spectral decomposition of Σ =
∑n
i=1 σiuiu

>
i , where 0 ≤ σn ≤ . . . ≤ σ1 ≤ 1 and u1, . . . , un form

an orthonormal basis of Rn. Moreover, since we only get T vectors, we can essentially ignore all eigenvalues
smaller than, say (nT )−8, as this error will not affect the discrepancy too much.

For a positive integer κ denoting the number of different scales, we say that Σ is κ-dyadic if every non-zero
eigenvalue σ is 2−k for some k ∈ [κ].

Lemma 4.1. Let S ⊆ Rn be an arbitrary set of test vectors with Euclidean norm at most nT and v ∼ p
with covariance Σ =

∑
i σiuiu

>
i . Then, there exists a positive-semi definite matrix M with ‖M‖op ≤ 1 such

that the covariance of Mv is κ-dyadic for κ = d8 log(nT )e. Moreover, there exists a test set S ′ consisting
of vectors with Euclidean norm at most maxy∈S ‖y‖, such that for any signs (χt)t∈T , the discrepancy vector
dt =

∑t
τ=1 χτvτ satisfies

max
y∈S
|d>t y| = 2 ·max

z∈S′
|(Mdt)

>z|+O(1).

Proof. For notational simplicity, we use d to denote dt. We construct matrix M to be postive semi-definite
with eigenvectors u1, . . . , un. For any i ∈ [n] such that σi ∈ (2−k, 2−k+1] for some k ∈ [κ], we set Mui =
(2kσi)

−1/2 · ui, and for every i ∈ [n] such that σi ≤ 2−κ, we set Mui = 0. It is easy to check that the
covariance of Mv for v ∼ p is κ-dyadic.

We define the new test set to be S ′ = { 1
2M

+y | y ∈ S} where M+ is the pseudo-inverse of M . Note that
‖M+‖op ≤ 2, so every z ∈ S ′ satisfies ‖z‖2 ≤ maxy∈S ‖y‖ ≤ nT . To upper bound the discrepancy with
respect to the test set, let Πerr be the projector onto the span of eigenvectors ui with σi ≤ 2−κ and let Π be
the projector onto its orthogonal subspace. Then, for any y ∈ S, we have

|d>y| ≤ |d>Πy|+ |d>Πerry| ≤ |(Md)>(M+y)|+ nT · ‖Πerrd‖2.

By Markov’s inequality, with probability at least 1 − (nT )−4, we have that ‖Πerrd‖2 ≤ (nT )−1 and hence,
|d>Πerry| = O(1) for every y ∈ S. It follows that

max
y∈S
|d>y| ≤ 2 ·max

z∈S′
|(Md)>z|+O(1).

For all applications in this paper, the test vectors will always have Euclidean norm at most nT , so we
can always assume without loss of generality that the input distribution p, which is supported over vectors
with Euclidean norm at most one, has mean Ev∼p[v] = 0, and its covariance Σ = Ev[vv>] is κ-dyadic
for κ = 8dlog(nT )e. We will make this assumption in the rest of this paper without stating it explicitly
sometimes.
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5 Discrepancy for Arbitrary Test Vectors

In this section, we consider discrepancy minimization with respect to an arbitrary set of test vectors with
Euclidean length at most 1.

Theorem 1.3 (Discrepancy for Arbitrary Test Directions). Let S ⊆ Rn be a finite set of test vectors with
Euclidean norm at most 1 and p be a distribution in Rn supported on vectors with Euclidean norm at most
1. Then, for vectors v1, . . . , vT sampled i.i.d. from p, there is an online algorithm that with high probability
maintains a discrepancy vector dt satisfying

max
z∈S
|d>t z| = O((log(|S|) + log T ) · log3(nT )) for every t ∈ [T ].

Before getting into the details of the proof, we first give two important applications of Theorem 1.3 to the
Komlós problem in Section 5.1 and to the Tusnady’s problem in Section 5.2. The proof of Theorem 1.3 will
be discussed in Section 5.3.

5.1 Discrepancy for Online Komlós Setting

Theorem 1.1 (Online Komlós setting). Let p be a distribution in Rn supported on vectors with Euclidean
norm at most 1. Then, for vectors v1, . . . , vT sampled i.i.d. from p, there is an online algorithm that with
high probability maintains a discrepancy vector dt such that ‖dt‖∞ = O(log4(nT )) for all t ∈ [T ].

Proof of Theorem 1.1. Taking the set of test vectors S = {e1, · · · , en} where ei’s are the standard basis
vectors in Rn, Theorem 1.3 implies an algorithm that w.h.p. maintains a discrepancy vector dt such that
‖dt‖∞ = O(log4(nT )) for all t ∈ [T ].

5.2 An Application to Online Tusnady’s Problem

Theorem 1.2 (Online Tusnády’s problem for arbitrary p). Let p be an arbitrary distribution on [0, 1]d. For
points x1, . . . , xT sampled i.i.d from p, there is an algorithm which selects signs χt ∈ {±1} such that with
high probability for every axis-parallel box B, we have maxt∈[T ] disct(B) = Od(logd+4 T ).

Firstly, using the probability integral transformation along each dimension, we may assume without loss of
generality that the marginal of p along each dimension i ∈ [d], denoted as pi, is the uniform distribution on
[0, 1]. More specifically, we replace each incoming point x ∈ [0, 1]d by (F1(x1), · · · , Fd(xd)), where Fi is the
cumulative density function for pi. Note that Fi(xi) is uniform on [0, 1] when xi ∼ pi. We make such an
assumption throughout this subsection.

A standard approach in tackling Tusnády’s problem is to decompose the unit cube [0, 1]d into a canonical set
of boxes known as dyadic boxes (see [Mat09]). Define dyadic intervals Ij,k = [k2−j , (k + 1)2−j) for j ∈ Z≥0

and 0 ≤ k < 2j . A dyadic box is one of the form

Bj,k := Ij(1),k(1) × . . .× Ij(d),k(d),

with j,k ∈ Zd such that 0 ≤ j and 0 ≤ k < 2j , and each side has length at least 1/T . One can handle the
error from the smaller dyadic boxes separately since few points will land in each such box. Denoting the set
of dyadic boxes as D = {Bj,k | 0 ≤ j ≤ (log T )1 , 0 ≤ k < 2j}, where 1 ∈ Rd is the all ones vector, we note
that |D| = Od(T

d).

Usually, one proves a discrepancy upper bound on the set of dyadic boxes, which implies a discrepancy upper
bound on all axis-parallel boxes since each axis-parallel box can be expressed roughly as the disjoint union of
Od(logd T ) dyadic boxes. This was precisely the approach used for the online Tusnády’s problem in [BJSS20].
However, such an argument has a fundamental barrier. Since each arrival lands in approximately Od(logd T )

boxes in D, one can at best obtain a discrepancy upper bound of Od(logd/2 T ) for the set of dyadic boxes,
which leads to Od(log3d/2 T ) discrepancy for all boxes.
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Using the idea of test vectors in Theorem 1.3, we can save a factor of Od(logd/2 T ) over the approach above.
Roughly, this saving comes from the discrepancy of dyadic boxes accumulates in an `2 manner as opposed
to directly adding up. A similar idea was previously exploited by [BG17] for the offline Tusnády’s problem.

Proof of Theorem 1.2. We view Tusnády’s problem as a vector balancing problem in |D|-dimensions with
coordinates indexed by dyadic boxes, where we define vt(B) = 1B(xt) for each arrival t ∈ [T ] and every
dyadic box B ∈ D. Each coordinate B of the discrepancy vector dt =

∑t
i=1 χivi is exactly disct(B). Notice

that ‖vt‖2 ≤ Od(logd/2 T ) since vt is Od(logd T )-sparse. Note that vt’s are the input vectors for the vector
balancing problem.

Now we define the set of test vectors S that will allow us to bound the discrepancy of any axis-parallel
box. For every box B that can be exactly expressed as the disjoint union of several dyadic boxes, i.e.
B = ∪B′∈D′B′ for some subset D′ ⊆ D of disjoint dyadic boxes, we create a test vector zB ∈ {0, 1}|D| with
zB(B′) = 1 if and only if B′ ∈ D′. We call such box B a dyadic-generated box. Since there are multiple
choices of D′ that give the same dyadic-generated box B, we only take D′ to be the one that contains the
smallest number of dyadic boxes. S will be the set of all such dyadic-generated boxes.

Recalling that |D| ≤ 2T , it follows that |S| = Od(T
d) as each coordinate of a box in S corresponds to

an endpoint of one of the dyadic intervals in D. Moreover, every test vector zB ∈ S is Od(logd T )-sparse
and thus ‖zB‖2 ≤ Od(logd/2 T ). Using Theorem 1.3 with both the input and test vectors scaled down by
Od(logd/2 T ), we obtain an algorithm that w.h.p. maintains discrepancy vector dt such that for all t ∈ [T ],

max
zB∈S

|d>t zB | ≤ Od(logd+4 T ).

Since d>t zB = disct(B) which follows from B being a disjoint union of dyadic boxes, we have disct(B) ≤
Od(logd+4 T ) for any dyadic-generated box B.

To upper bound the discrepancy of arbitrary axis-parallel boxes, we first introduce the notion of stripes. A
stripe in [0, 1]d is an axis-parallel box that is of the form I1 × · · · × Id where exactly one of the intervals
Ii is allowed to be a proper sub-interval [a, b] ⊆ [0, 1]. The width of such a stripe is defined to be b − a.
Stripes whose projection is [a, b] in dimension i satisfying b − a = 1/T correspond to the smallest dyadic
interval in dimension i. We call such stripes minimum dyadic stripes. There are exactly T minimum dyadic
stripes for each dimension i ∈ [d]. Since minimum dyadic stripes have width 1/T and the marginal of p along
any dimension is the uniform distribution over [0, 1], a standard application of Chernoff bound implies that
w.h.p. the total number of points in all the minimum dyadic stripes is at most Od(log(T )) points.

For a general axis-parallel box B̃, it is well-known that B̃ can be expressed as the disjoint union of a dyadic-
generated box B together with at most k ≤ 2d boxes B1, . . . , Bk where each Bi ⊆ Si is a subset of a minimum
dyadic stripe. We can thus upper bound

disct(B̃) ≤ disct(B) +

k∑
i=1

disct(Bi) ≤ disct(B) +

k∑
i=1

ri.

where ri is the total number of points in the stripe Si. As mentioned, w.h.p. we can upper bound
∑k
i=1 ri =

Od(log(T )) and thus one obtains disct(B̃) = Od(logd+4 T ) for any axis-parallel box B̃. This proves the
theorem.

5.3 Proof of Theorem 1.3

Potential Function and Algorithm. By Lemma 4.1, it is without loss of generality to assume that p is κ-
dyadic, where κ = 8dlog(nT )e. For any k ∈ [κ], we use Πk to denote the projection matrix onto the eigenspace
of Σ corresponding to the eigenvalue 2−k and define Π =

∑κ
k=1 Πk to be the sum of these projection matrices.

Let Πerr be the projection matrix onto the subspace spanned by eigenvectors corresponding to eigenvalues
of Σ that are at most 2−κ.
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The algorithm for Theorem 1.3 will use a greedy strategy that chooses the next sign so that a certain potential
function is minimized. To define the potential, we first define a distribution where some noise is added to
the input distribution p to account for the test vectors. Let pz be the uniform distribution over the set of
test vectors S. We define the noisy distribution px to be px := p/2 + pz/2, i.e., a random sample from px is
drawn with probability 1/2 each from p or pz. Note that any vector x in the support of px satisfies ‖x‖2 ≤ 1
since both the input distribution p and the set of test vectors S lie inside the unit Euclidean ball.

At any time step t, let dt = χ1v1+. . .+χtvt denote the current discrepancy vector after the signs χ1, . . . , χt ∈
{±1} have been chosen. Set λ−1 = 100κ log(nT ) and define the potential

Φt = Φ(dt) :=

κ∑
k=1

Ex∼px
[
cosh

(
λd>t Πkx

)]
.

When the vector vt arrives, the algorithm greedily chooses the sign χt that minimizes the increase Φt−Φt−1.

Analysis. The above potential is useful because it allows us to give tail bounds on the length of the discrep-
ancy vectors in most directions given by the distribution p while simultaneously controlling the discrepancy
in the test directions. In particular, let Gt denote the set of good vectors v in the support of p that satisfy
λ|d>t Πv| ≤ κ · log(4Φt/δ). Then, we have the following lemma.

Lemma 5.1. For any δ > 0 and any time t, we have

(a) Pv∼p(v /∈ Gt) ≤ δ.

(b) |d>t Πkz| ≤ λ−1 log(4|S|Φt) for all z ∈ S and k ∈ [k].

Proof. (a) Recall that with probability 1/2 a sample from px is drawn from the input distribution p. Using
this and the fact that 0 ≤ exp(x) ≤ 2 cosh(x) for any x ∈ R, we have

∑
k∈[κ] Ev∼p

[
exp(λ|d>t Πkv|)

]
≤

4Φt. Note that for any v /∈ Gt, we have λ|d>t Πv| ≤ κ · log(4Φt/δ) by definition, so it follows that
λ|d>t Πkv| > log(4Φt/δ) for at least one k ∈ [κ]. Thus, applying Markov’s inequality we get that
Pv∼p(v /∈ Gt) ≤ δ.

(b) Similarly, a random sample from px is drawn from the uniform distribution over S with probability 1/2,
so exp

(
λ|d>Πkz|

)
≤ 4|S|Φt for every z ∈ S and k ∈ [κ]. This implies that |d>Πkz| ≤ λ−1 log(4|S|Φt).

The next lemma shows that the expected increase in the potential is small on average.

Lemma 5.2 (Bounded positive drift). At any time step t ∈ [T ], if Φt−1 ≤ 3T 5, then Evt [Φt]− Φt−1 ≤ 2.

Using Lemma 5.2, we first finish the proof of Theorem 1.3.

Proof of Theorem 1.3. We first use Lemma 5.2 to prove that with probability at least 1−T−4, the potential
Φt ≤ 3T 5 for every t ∈ [T ]. Such an argument is standard and has previously appeared in [JKS19, BJSS20].
In particular, we consider a truncated random process Φ̃t which is the same as Φt until Φt0 > 3T 5 for some
time step t0; for any t from time t0 to T , we define Φ̃t = 3T 5. It follows that P[Φ̃t ≥ 3T 5] = P[Φt ≥ 3T 5].
Lemma 5.2 implies that for any time t ∈ [T ], the expected value of the truncated process Φ̃t over the input
sequence v1, . . . , vT is at most 3T . By Markov’s inequality, with probability at least 1− T−4, the potential
Φt ≤ 3T 5 for every t ∈ [T ].

When the potential Φt ≤ 3T 5, part (b) of Lemma 5.1 implies that |d>Πkz| = O(λ−1 · (log(|S|) + log T )) for
any z ∈ S and k ∈ [κ]. Thus, it follows that for every z ∈ S,

|d>z| ≤
∑
k∈[κ]

|d>Πkz| = O(κλ−1(log(|S|) + log T )) = O((log(|S|) + log T ) · log3(nT )),
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which completes the proof of the theorem.

To finish the proof, we prove the remaining Lemma 5.2 next.

Proof of Lemma 5.2. Let us fix a time t. To simplify the notation, let Φ = Φt−1 and ∆Φ = Φt − Φ, and
let d = dt−1 and v = vt. To bound the change ∆Φ, we use Taylor expansion. Since cosh′(a) = sinh(a) and
sinh′(a) = cosh(a), for any a, b ∈ R satisfying |a− b| ≤ 1, we have

cosh(λa)− cosh(λb) = λ sinh(λb) · (a− b) +
λ2

2!
cosh(λb) · (a− b)2 +

λ3

3!
sinh(λb) · (a− b)3 + · · · ,

≤ λ sinh(λb) · (a− b) + λ2 cosh(λb) · (a− b)2,

≤ λ sinh(λb) · (a− b) + λ2| sinh(λb)| · (a− b)2 + λ2(a− b)2,

where the first inequality follows since | sinh(a)| ≤ cosh(a) for all a ∈ R, and since |a − b| ≤ 1 and λ < 1,
so the higher order terms in the Taylor expansion are dominated by the first and second order terms. The
second inequality uses that cosh(a) ≤ | sinh(a)|+ 1 for a ∈ R.

After choosing the sign χt, the discrepancy vector dt = d+χtv. Defining sk(x) = sinh(λ ·d>Πkx) and noting
that |v>Πkx| ≤ 1, the above upper bound on the Taylor expansion gives us that

∆Φ =
∑
k∈[κ]

Ex
[
cosh

(
λ(d+ χtv)>Πkx

)]
−
∑
k∈[κ]

Ex
[
cosh

(
λd>Πkx

)]

≤ χt

∑
k∈[κ]

λ Ex
[
sk(x)v>Πkx

]
︸ ︷︷ ︸

:= χtL

+
∑
k∈[κ]

λ2 Ex
[
|sk(x)| · x>Πkvv

>Πkx
]

︸ ︷︷ ︸
:= Q

+
∑
k∈[κ]

λ2 Ex
[
x>Πkvv

>Πkx
]

︸ ︷︷ ︸
:= Q∗

,

where χtL,Q, and Q∗ denote the first, second, and third terms respectively. Recall that our algorithm uses
the greedy strategy by choosing χt to be the sign that minimizes the potential. Taking expectation over the
random incoming vector v ∼ p, we get

Ev[∆Φ] ≤ −Ev[|L|] + Ev[Q] + Ev[Q∗].

We will prove the following upper bounds on the quadratic (in λ) terms Q and Q∗.

Claim 5.3. Ev[Q] ≤ 2λ2
∑
k∈[κ] 2−k Ex[|sk(x)|] and Ev[Q∗] ≤ 4λ2.

On the other hand, we will show that the linear (in λ) term L is also large in expectation.

Claim 5.4. Ev[|L|] ≥ λB−1
∑
k∈[κ] 2−k Ex[|sk(x)|]− 1 for some value B ≤ 2κ · log(Φ2κn).

By our assumption that Φ ≤ 3T 5, we have that 2λ ≤ B−1. Therefore, combining the above two claims, we
get that

Ev[∆Φ] ≤ (2λ2 − λB−1)

∑
k∈[κ]

2−k Ex[|sk(x)|]

+ 1 + 4λ2 ≤ 2.

This finishes the proof of Lemma 5.2 assuming the claims which we prove next.

Proof of Claim 5.3. Recall that Ev[vv>] = Σ and that ΠkΣΠk = 2−kΠk. Using linearity of expectation,

Ev[Q] =
∑
k∈[κ]

λ2 Ex[|sk(x)| · x>ΠkΣΠkx] = λ2
∑
k∈[κ]

2−k Ex[|sk(x)| · x>Πkx]

≤ 2λ2
∑
k∈[κ]

2−k Ex[|sk(x)|],
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where the last inequality uses that ‖x‖2 ≤ 1. Similarly,

Ev[Q∗] =
∑
k∈[κ]

λ2 Ex
[
x>ΠkΣΠkx

]
≤ 2λ2

∑
k∈[κ]

2−k ≤ 4λ2.

Proof of Claim 5.4. To lower bound the linear term, we use the fact that |L(v)| ≥ ‖f‖−1
∞ · f(v) ·L(v) for any

real-valued non-zero function f . We will choose the function f(v) = d>Πv · 1G(v) where G will be the event
that |d>Πv| is small, which we know is true because of Lemma 5.1.

In particular, set δ−1 = λΦT and let G denote the set of vectors v in the support of p such that λ|d>Πv| ≤
κ · log(4Φ/δ) := B. Then, f(v) = d>Πv · 1G(v) satisfies ‖f‖∞ ≤ λ−1B, and we can lower bound,

Ev[|L|] ≥
λ

λ−1B

∑
k∈[κ]

Ev,x[sk(x) · d>Πv · v>Πkx · 1G(v)]

=
λ2

B

∑
k∈[κ]

Ex[sk(x) · d>ΠΣΠkx]− λ2

B

∑
k∈[κ]

Ex[sk(x) · d>ΠΣerrΠkx], (5)

where Σerr = Ev[vv>(1 − 1G(v))] satisfies ‖Σerr‖op ≤ Pv∼p(v /∈ G) ≤ δ using Lemma 5.1. To bound the
first term in (5), recall that sk(x) = sinh(λd>Πkx). Using ΠΣΠk = 2−kΠk and the fact that sinh(a)a ≥
| sinh(a)| − 2 for any a ∈ R, we have

λ Ex[sk(x) · d>ΠΣΠkx] = 2−k Ex[sk(x) · λd>Πkx] ≥ 2−k (Ex[|sk(x)|]− 2) .

For the second term, we use the bound ‖Σerr‖op ≤ δ to obtain

|d>ΠΣerrΠkx| ≤ ‖Σerr‖op · ‖d‖2 · ‖x‖2 ≤ δ‖d‖2.

Since ‖d‖2 ≤ T always holds, by our choice of δ,

λ|d>ΠΣerrΠkx| ≤ Φ−1.

Plugging the above bounds in (5),

Ev[|L|] ≥
λ

B

∑
k∈[κ]

2−k (Ex[|sk(x)|]− 2)− λ

B
· Φ−1

∑
k∈[κ]

Ex[|sk(x)|]


≥ λ

B

∑
k∈[κ]

2−k Ex[|sk(x)|]− λ

B

∑
k∈[κ]

2−k+1 − λ

B

≥ λ

B

∑
k∈[κ]

2−k Ex[|sk(x)|]− 1,

where the second inequality follows since
∑
k∈[κ] Ex[|sk(x)|] ≤ Φ.

6 Discrepancy with respect to Arbitrary Convex Bodies

Our main result of this section is the following theorem.

Theorem 1.4 (Online Banaszczyk Setting). Let K ⊆ Rn be a symmetric convex body with γn(K) ≥ 1/2
and p be a distribution with sub-exponential tails that is supported over vectors of Euclidean norm at most
1. Then, for vectors v1, . . . , vT sampled i.i.d. from p, there is an online algorithm that with high probability
maintains a discrepancy vector dt satisfying dt ∈ C log5(nT ) ·K for all t ∈ [T ] and a universal constant C.
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6.1 Potential Function and Algorithm

As in the previous section, it is without loss of generality to assume that p is κ-dyadic, where κ = 8dlog(nT )e.
For any k ∈ [κ], recall that Πk denotes the projection matrix onto the eigenspace of Σ corresponding to the
eigenvalue 2−k and Π =

∑κ
k=1 Πk. Further, let us also recall that Πerr is the projection matrix onto the

subspace spanned by eigenvectors corresponding to eigenvalues of Σ that are at most 2−κ. We also note
that dim(im(Πk)) ≤ min{2k, n} since Tr(Σ) ≤ 1.

Our algorithm to bound the discrepancy with respect to an arbitrary symmetric convex body K ⊆ Rn with
γn(K) ≥ 1/2 will use a greedy strategy with a similar potential function as in §5. Let pz be a distribution on
test vectors in Rn that will be specified later. Define the noisy distribution px = p/2 + pz/2, i.e, a random
sample from px is drawn from p or pz with probability 1/2 each.

At any time step t, let dt = χ1v1+. . .+χtvt denote the current discrepancy vector after the signs χ1, . . . , χt ∈
{±1} have been chosen. Set λ−1 = 100κ log(nT ), and define the potential

Φt = Φ(dt) :=
∑
k∈[κ]

Ex∼px
[
exp

(
λ d>t Πkx

)]
.

When the vector vt arrives, the algorithm chooses the sign χt that minimizes the increase Φt − Φt−1.

Test Distribution. To complete the description of the algorithm, we need to choose a suitable distribution
pz on test vectors to give us control on the norm ‖·‖K = supy∈K◦〈·, y〉. For this, we will use generic chaining.
First let us denote by Hk = im(Πk) the linear subspace that is the image of the projection matrix Πk where
the subspaces {Hk}k∈[κ] are orthogonal and span Rn. Moreover, recall that dim(Hk) ≤ min{2k, n}.
Let us denote by Kk = K∩Hk the slice of the convex body K with the subspace Hk. Proposition 3.2 implies
that γHk(K) ≥ 1/2 for each k ∈ [κ] and combined with Proposition 3.3 this implies that K◦k := (Kk)◦ =
Πk(K◦) satisfies diam(K◦k) ≤ 4 and wHk(K◦k) ≤ 3/2 for every k.

Consider ε-nets of the polar bodies K◦k at geometrically decreasing dyadic scales. Let

εmin(k) = 2
−
⌈
log2

(
1

10λ

√
dim(Hk)

)⌉
and εmax(k) = 2− log2d1/diam(K◦k)e,

be the finest and the coarsest scales for a fixed k, and for integers ` ∈ [log2(1/εmax(k)), log2(1/εmin(k))], define
the scale ε(`, k) = 2−`. We call these admissible scales for any fixed k.

Note that for a fixed k ∈ [κ], the number of admissible scales is at most 2 log2(nT ) since diam(K◦k) ≤ 4.
The smallest scale is chosen because with high probability we can always control the Euclidean norm of
the discrepancy vector in the subspace Hk to be λ−1 log(nT )

√
dim(Hk) using a test distribution as used in

Komlos’s setting.

Let T (`, k) be an optimal ε(`, k)-net of K◦k . For each k, define the following directed layered graph Gk
(recall Figure 1) where the vertices in layer ` are the elements of T (`, k). Note that the first layer indexed
by log2(1/εmax(k)) consists of a single vertex, the origin. We add a directed edge from u ∈ T (`, k) to
v ∈ T (`+ 1, k) if ‖v− u‖2 ≤ ε(`, k). We identify an edge (u, v) with the vector v− u and define its length as
‖v − u‖2. Let S(`, k) denote the set of edges between layer ` and `+ 1. Note that any edge (u, v) ∈ S(`, k)
has length at most ε(`, k) and since wHk(K◦k) ≤ 3/2, Proposition 3.4 implies that,

|S(`, k)| ≤ |T (`+ 1, k)|2 ≤ 216/ε(`,k)2 . (6)

Pick the final test distribution as pz = pΣ/2 + py/2 where pΣ and py denote the distributions given in
Figure 2.

The above test distribution completes the description of the algorithm. Note that adding the eigenvectors
will allow us to control the Euclidean length of the discrepancy vectors in the subspaces Hk as they form
an orthonormal basis for these subspaces. Also observe that, as opposed to the previous section, the test
vectors chosen above may have large Euclidean length as we scaled them. For future reference, we note that
the entire probability mass assigned to length r vectors in the support of py is at most 2−2r2 where r ≥ 1/4.
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(a) pΣ is uniform over the eigenvectors u1, . . . , un of the covariance matrix Σ.

(b) py samples a random vector as follows: pick an integer k uniformly from [κ] and an admissible scale

ε(`, k) with probability
2−2/ε(`,k)2∑
` 2−2/ε(`,k)2

. Choose a uniform vector from r(`, k)2 ·S(`, k), where the scaling

factor r(`, k) := 1/ε(`, k).

Figure 2: Test distributions pΣ and py

6.2 Potential Implies Low Discrepancy

The test distribution pz is useful because of the following lemma. In particular, a poly(n, T ) upper bound
on the potential function implies a polylogarithmic discrepancy upper bound on ‖dt‖K .

Lemma 6.1. At any time t, we have that

‖Πkdt‖2 ≤ λ−1 log(4nΦt)
√

dim(Hk) and ‖dt‖K ≤ O(κ · λ−1 · log(nT ) · log(Φt)).

Proof. To derive a bound on the Euclidean length of Πkdt, we note that a random sample from px is drawn
from the uniform distribution over {ui}i≤n with probability 1/4, so exp

(
λ|d>t Πkui|

)
≤ 4nΦt for every k ∈ [κ]

and every i ∈ [n]. Since {ui}i≤n also form an eigenbasis for Π, we get that |d>t Πkui| ≤ λ−1 log(4nΦt) which
implies that ‖Πkdt‖2 ≤ λ−1 log(4nΦt)

√
dim(Hk).

To see the bound on ‖dt‖K , we note that

‖dt‖K = sup
y∈K◦

〈dt, y〉 ≤
∑
k∈[κ]

sup
y∈K◦k

〈Πkdt, y〉 ≤
∑
k∈[κ]

(
sup

z∈T (`,k)

|d>t Πkz|+ εmin(k)‖Πkdt‖2

)
, (7)

where the last inequality holds since T (`, k) is an εmin(k)-net of K◦k . By our choice of εmin(k) and the bound
on ‖Πkdt‖2 from the first part of the Lemma, we have that εmin(k)‖Πkdt‖2 ≤ 10 log(4nΦt).

To upper bound supz∈T (`,k)〈Πkdt, z〉, we pick any arbitrary z ∈ T (`, k) and consider any path from the
origin to z in the graph Gk. Let (u`, u`+1) be the edges of this path for ` ∈ [log2(1/εmin), log2(1/εmax)] where
u` = 0 for ` = log2(1/εmax) and u` = z for ` = log2(1/εmin). Then z =

∑
` w` where w` = (u`+1 − u`). By

our choice of the test distribution, the bound on the potential implies the following for any edge w ∈ S(`, k),

exp
(
λ · r(`, k)2 · |d>t Πkw|

)
≤ 22/ε(`,k)2 · |S(`, k)| · 4Φt ≤ 218/ε(`,k)2 · 4Φt,

where the second inequality follows from |S(`, k)| ≤ 216/ε(`,k)2 in (6). This implies that for any edge w ∈
S(`, k),

|d>t Πkw| ≤ λ−1 log(4Φt).

Since z =
∑
` w` and there are at most log(n) different scales `, we get that |d>t Πkz| ≤ λ−1 · log(n) · log(4Φt).

Since z was arbitrary in T (`, k), plugging the above bound in (7) completes the proof.

The next lemma shows that the expected increase (or drift) in the potential is small on average.

Lemma 6.2 (Bounded Positive Drift). Let p be supported on the unit Euclidean ball in Rn and has a
sub-exponential tail. There exist an absolute constant C > 0 such that if Φt−1 ≤ T 5 for any t, then
Evt∼p[Φt]− Φt−1 ≤ C.

Analogous to the proof of Theorem 1.3, Lemma 6.2 implies that w.h.p. the potential Φt ≤ T 5 for every
t ∈ [T ]. Combined with Lemma 6.1, and recalling that κ = O(log nT ) and λ−1 = O(κ log(nT )), this proves
Theorem 1.4. To finish the proof, we prove Lemma 6.2 in the next section.
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6.3 Drift Analysis: Proof of Lemma 6.2

The proof is quite similar to the analysis for Komlos’s setting. In particular, we have the following tail
bound analogous to Lemma 5.1. Let Gt denote the set of good vectors v in the support of p that satisfy
λ|d>t Πv| ≤ κ · log(4Φt/δ).

Lemma 6.3. For any δ > 0 and any time t, we have Pv∼p(v /∈ Gt) ≤ δ.

We omit the proof of the above lemma as it is the same as that of Lemma 5.1.

Proof of Lemma 6.2. Recall that our potential function is defined to be

Φt :=
∑
k∈[κ]

Ex∼px
[
exp

(
λ d>t Πkx

)]
,

where px = p/2 + pΣ/4 + py/4 is a combination of the input distribution p and test distributions pΣ and py,
each constituting a constant mass.

Let us fix a time t. To simplify the notation, we denote Φ = Φt−1 and ∆Φ = Φt − Φ, and denote d = dt−1

and v = vt. To bound the potential change ∆Φ, we use the following inequality, which follows from a
modification of the Taylor series expansion of cosh(r) and holds for any a, b ∈ R,

cosh(λa)− cosh(λb) ≤ λ sinh(λb) · (a− b) +
λ2

2
cosh(λb) · e|a−b|(a− b)2. (8)

Note that when |a − b| � 1, then e|a−b| ≤ 2, so one gets the first two terms of the Taylor expansion as an
upper bound, but here we will also need it when |a− b| � 1.

Note that every vector in the support of p and pΣ has Euclidean length at most 1, while y ∼ py may have
large Euclidean length due to the scaling factor of r(`, k)2. Therefore, we decompose the distribution px
appearing in the potential as px = 3

4pw + 1
4py, where the distribution pw = 2

3p+ 1
3pΣ is supported on vectors

with Euclidean length at most 1.

After choosing the sign χt for v, the discrepancy vector dt becomes d + χtv. For ease of notation, define
sk(x) = sinh(λ·d>Πkx) and ck(x) = cosh(λ·d>Πkx) for any x ∈ Rn. Now (8) implies that ∆Φ := ∆Φ1+∆Φ2

where

∆Φ1 ≤ χt ·
3

4

∑
k∈[κ]

λ Ew
[
sk(w)v>Πkw

]+
3

4

∑
k∈[κ]

λ2 Ew
[
ck(w) · w>Πkvv

>Πkw
]

:= χtL1 +Q1, and ,

∆Φ2 ≤ χt ·
1

4

∑
k∈[κ]

λ Ey
[
sk(y)v>Πky

]+
1

4

∑
k∈[κ]

λ2 Ey
[
ck(y) · eλ|v

>Πky|y>Πkvv
>Πky

]
:= χtL2 +Q2.

Since our algorithm chooses sign χt to minimize the potential increase, taking expectation over the incoming
vector v, we get

Ev[∆Φ] ≤ −Ev[|L1 + L2|] + Ev[Q1 +Q2].

We will prove the following upper bounds on the quadratic terms (in λ) Q1 and Q2.

Claim 6.4. Ev[Q1 +Q2] ≤ C · λ2
∑
k∈[κ] 2−k Ex[ck(x)‖x‖22] for an absolute constant C > 0.

On the other hand, we will show that the linear (in λ) terms L1 + L2 is also large in expectation.

Claim 6.5. Ev[|L1 + L2|] ≥ λB−1
∑
k∈[κ] 2−k Ex[ck(x)‖x‖22]−O(1) for some B ≤ 4κ log(Φ2nκ).
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By our assumption of Φ ≤ T 5, so it follows that 2λ ≤ B−1. Therefore, combining the above two claims,

Ev[∆Φ] ≤ (2λ2 − λB−1)

∑
k∈[κ]

2−k Ex
[
ck(x)‖x‖22

]+ C ≤ C,

which finishes the proof of Lemma 6.2 assuming the claims.

To prove the missing claims, we need the following property that follows from the sub-exponential tail of the
input distribution p.

Lemma 6.6. There exists a constant C > 0, such that for every integer k ∈ [κ], and any y ∈ im(Πk)
satisfying ‖y‖2 ≤ 1

4

√
min{2k, n}, the following holds

Ev∼p
[
eλ|v

>y| · |v>y|2
]
≤ C · 2−k · ‖y‖22 for all λ ≤ 1.

We remark that this is the only step in the proof which requires the sub-exponential tail, as otherwise the
exponential term above may be quite large. It may however be possible to exploit some more structure from
the test vectors y and the discrepancy vector to prove the above lemma without any sub-exponential tail
requirements from the input distribution.

Proof. As y ∈ im(Πk), we have that v>y = v>Πky which is a scalar sub-exponential random variable with
zero mean and variance at most

σ2
y := Ev[|v>Πky|2] ≤ ‖ΠkΣΠk‖op‖y‖22 ≤ 2−k‖y‖22 ≤ 1/16.

Using Cauchy-Schwarz and Proposition 3.1, we get that

Ev
[
eλ|v

>y| · |v>y|2
]
≤

√
Ev
[
e2λ|v>y|] ·√Ev [|v>y|4] ≤ C · Ev

[
|v>Πky|2

]
≤ C · 2−k ‖y‖22,

where the exponential term is bounded since σy ≤ 1/4.

Proof of Claim 6.4. Recall that Ev[vv>] = Σ which satisfies ΠkΣΠk = 2−kΠk. Therefore, using linearity of
expectation,

Ev[Q1] =
3

4

∑
k∈[κ]

λ2 Ew[ck(w) · w>ΠkΣΠkw] = λ2 · 3

4

∑
k∈[κ]

2−k Ew[ck(w) · w>Πkw]

≤ 2λ2 · 3

4

∑
k∈[κ]

2−k Ew[ck(w)‖w‖22]. (9)

We next use Lemma 6.6 to bound the second quadratic term

Ev[Q2] =
1

4

∑
k∈[κ]

λ2 Ey
[
ck(y) · eλ|v

>Πky|y>Πkvv
>Πky

]
.

For any k ∈ [κ] and any y ∈ im(Πk) that is in the support of py, we have that

λ‖Πky‖2 ≤ λ · ‖y‖2 ≤ λ/εmin(k) ≤ λ · 1

10λ
·
√

dim(Hk) ≤ 1

4

√
min{n, 2k}.

On the other hand, if y ∈ im(Πk′) for k′ 6= k, then the above quantity is zero. Lemma 6.6 then implies that
for any y in the support of py,

Ev[e|λv
>Πky| · |λv>Πky|2] ≤ C1 · 2−k‖λΠky‖22 ≤ C1λ

2 · 2−k‖y‖22,
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where C1 is some absolute constant. Therefore, we obtain the following bound

Ev[Q2] ≤ C1 · λ2 ·
∑
k∈[κ]

2−k Ey[ck(y)‖y‖22]. (10)

Summing up (9) and (10) finishes the proof of the claim.

Proof of Claim 6.5. Let L = L1 + L2. To lower bound the linear term, we proceed similarly as in the proof
of Claim 5.4 and use the fact that |L(v)| ≥ ‖f‖−1

∞ · f(v) · L(v) for any real-valued non-zero function f . We
will choose the function f(v) = d>Πv · 1G(v) where G will be the event that |d>Πv| is small which we know
is true because of Lemma 6.3.

In particular, set δ−1 = λ−2n · Φ · log(4nΦ) and let G denote the set of vectors v in the support of p such
that λ|d>Πv| ≤ κ · log(4Φ/δ) := B. Then, f(v) = d>Πv · 1G(v) satisfies ‖f‖∞ ≤ λ−1B, and we can lower
bound,

Ev[|L|] ≥
λ

λ−1B
· 3

4

∑
k∈[κ]

Evw[sk(w) · d>Πv · v>Πkw · 1G(v)]

+
λ

λ−1B
· 1

4

∑
k∈[κ]

Evy[sk(y) · d>Πv · v>Πky · 1G(v)]

=
λ2

B
· 3

4

∑
k∈[κ]

Ew[sk(w) · d>ΠΣΠkw] − λ2

B
· 3

4

∑
k∈[κ]

Ew[sk(w) · d>ΠΣerrΠkw]

+
λ2

B
· 1

4

∑
k∈[κ]

Ey[sk(y) · d>ΠΣΠky] − λ2

B
· 1

4

∑
k∈[κ]

Ey[sk(y) · d>ΠΣerrΠky], (11)

where Σerr = Ev[vv>(1− 1G(v))] satisfies ‖Σerr‖op ≤ Pv∼p(v /∈ G) ≤ δ using Lemma 5.1.

To bound the terms involving Σ in (11), we recall that sk(x) = sinh(λd>Πkx) and ck(x) = cosh(λd>Πkx).
Using ΠΣΠk = 2−kΠk and the fact that sinh(a)a ≥ cosh(a)|a| − 2 for any a ∈ R, we have

λ Ew[sk(w) · d>ΠΣΠkw] = 2−k Ew[sk(w) · λd>Πkw] ≥ 2−k
(
Ew[ck(w)|λd>Πkw|]− 2

)
,

and similarly for y.

The terms with Σerr can be upper bounded using ‖Σerr‖op ≤ δ. In particular, we have

|d>ΠΣerrΠkx| ≤ ‖Πd‖2‖Σerr‖op‖x‖2 ≤ δ‖Πd‖2‖x‖2.

Since Π =
∑
k∈[κ] Πk and (Πk)k∈[κ] are orthogonal projectors, Lemma 6.1 implies that ‖Πd‖2 ≤ λ−1 log(4nΦ)

√
n.

Moreover, we have ‖w‖2 ≤ 1 and ‖y‖2 ≤ mink{1/εmin(k)} ≤ 1
10λ ·

√
n. Then, by our choice of δ−1 =

λ−2nΦ · log(4nΦ), we have

λ |d>ΠΣerrΠkx| ≤ δλ−1n log(4nΦ) = Φ−1.

Plugging the above bounds in (11), we obtain

Ev[|L|] ≥
λ

B
· 3

4

∑
k∈[κ]

2−k Ew[ck(w)|λd>Πkw|] +
λ

B
· 1

4

∑
k∈[κ]

2−k Ey[ck(y)|λd>Πky|]− 4 (12)

where we used the upper bound
∑
k∈[κ] Ex[|sk(x)|] ≤ Φ to control the error term involving Σerr.

To finish the proof, we bound the two terms in (12) separately. We first use the inequality that cosh(a)a ≥
cosh(a)− 2 for all a ∈ R and the fact that ‖w‖2 ≤ 1 for every w in the support of pw to get that

Ew[ck(w)|λd>Πkw|] ≥ Ew[ck(w)]− 2 ≥ Ew[ck(w)‖w‖22]− 2. (13)

21



To bound the second term in (12), we recall that the entire probability mass assigned to length r vectors (i.e.
ε(`, k) = 1/r) in the support of py is at most 2−2r2 , where r ≥ 1/4. Let E be the event that |λd>Πky| ≤ ‖y‖22.
Note that ck(y)‖y‖22 ≤ 2r

2

r2 if ‖y‖2 = r. This implies that

Ey[ck(y)|λd>Πky|] ≥ Ey[ck(y)‖y‖22]− Ey[ck(y)‖y‖22 · 1E(y)]

≥ Ey[ck(y)‖y‖22]−
∫ ∞

1/4

2−2r22r
2

r2 ≥ Ey[ck(y)‖y‖22]− 1. (14)

Since px = 3
4pw+ 1

4py, plugging (13) and (14) into (12) give that Ev[|L|] ≥ λB−1
∑
k∈[κ] 2−k Ex[ck(x)‖x‖22]−

C, for some constant C > 0, which completes the proof of the claim.

7 Generalization to Weighted Multi-Color Discrepancy

In this section, we prove Theorem 1.5 which we restate below for convenience.

Theorem 1.5 (Weighted multi-color discrepancy). For any input distribution p and any set S of poly(nT )
test vectors with Euclidean norm at most one, there is an online algorithm for the weighted multi-color
discrepancy problem that maintains discrepancy O(log2(Rη) · log4(nT )) with the norm ‖·‖∗ = maxz∈S |〈·, z〉|.
Further, if the input distribution p has sub-exponential tails then one can maintain multi-color discrepancy
O(log2(Rη) · log5(nT )) for any norm ‖ · ‖∗ given by a symmetric convex body K satisfying γn(K) ≥ 1/2.

Theorem 1.5 follows from a black-box way of converting an algorithm for the signed discrepancy setting to
the multi-color setting.

In particular, for a parameter 0 ≤ λ ≤ 1, let Φ : Rn → R+ be a potential function satisfying

Φ(d+ αv) ≤ Φ(d) + λαLd(v) + λ2α2Qd(v) for every d, v ∈ Rn and |α| ≤ 1, and,

− λ · Ev∼p[|Ld(v)|] + λ2 · Ev∼p[Qd(v)] = O(1) for any d such that Φ(d) ≤ 3T 5,
(15)

where Ld : Rn → R and Qd : Rn → R+ are arbitrary functions of v that depend on d.

One can verify that the first condition is always satisfied for the potential functions used for proving The-
orem 1.3 and Theorem 1.4, while the second condition holds for λ = O(1/ log2(nT )) because of Lemma 5.2
and Lemma 6.2.

Moreover, for parameters n and T , let B‖·‖∗ be such that if the potential Φ(d) = Φ, then the corresponding
norm ‖d‖∗ ≤ B‖·‖∗ log(nTΦ). Part (b) of Lemma 5.1 implies that for any test set S of poly(nT ) vectors
contained in the unit Euclidean ball, if the norm ‖·‖∗ = maxz∈S |〈·, z〉|, then B‖·‖∗ = O(log3(nT )). Similarly,
if ‖·‖∗ is given by a symmetric convex body with Gaussian measure at least 1/2, then Lemma 6.1 implies
that B‖·‖∗ = O(log4(nT )).

We will use the above properties of the potential Φ to give a greedy algorithm for the multi-color discrepancy
setting.

7.1 Weighted Binary Tree Embedding

We first show how to embed the weighted multi-color discrepancy problem into a binary tree T of height
O(log(Rη). For each color c, we create bwcc nodes with weight wc/bwcc ∈ [1, 2] each. The total number
of nodes is thus M` =

∑
c∈[R]bwcc = O(Rη). In the following, we place these nodes as the leaves of an

(incomplete) binary tree.

Take the height h = O(log(Rη)) to be the smallest exponent of 2 such that 2h ≥ M`. We first remove
2h −M` < 2h−1 leaves from the complete binary tree of height h such that none of the removed leaves are
siblings. Denote the set of remaining leaves as L(T ). Then from left to right, assign the leaves in L(T ) to
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the R colors so that leaves corresponding to the same color are consecutive. For each leaf node ` ∈ L(T )
that is assigned the color c ∈ [R], we assign it the weight w` = wc/bwcc.
We index the internal nodes of the tree as follows: for integers 0 ≤ j ≤ h− 1 and 0 ≤ k ≤ 2j , we use (j, k)
to denote the 2k-th node at depth j. Note that the left and right children of a node (j, k) are the nodes
(j + 1, 2k) and (j + 1, 2k + 1). The weight wj,k of an internal node (j, k) is defined to be sum of weights of
all the leaves in the sub-tree rooted at (j, k). This way of embedding satisfies certain desirable properties
which we give in the following lemma.

Lemma 7.1 (Balanced tree embedding). For the weighted (incomplete) binary tree T defined above, for any
two nodes (j, k) and (j, k′) in the same level,

1/4 ≤ wj,k/wj,k′ ≤ 4.

Proof. Observe that each leaf node ` ∈ L(T ) has weight w` ∈ [1, 2]. Moreover, for each internal node
(h − 1, k) in the level just above the leaves, at least one of its children is not removed in the construction
of T . Therefore, it follows that wj,k = aj,k2h−j for some aj,k ∈ [1/2, 2] and similarly for (j, k′). The lemma
now immediately follows from these observations.

Induced random walk on the weighted tree. Randomly choosing a leaf with probability proportional
to its weight induces a natural random walk on the tree T : the walk starts from the root and moves down
the tree until it reaches one of the leaves. Conditioned on the event that the walk is at some node (j, k)
in the j-th level, it goes to left child (j + 1, 2k) with probability qlj,k = wj+1,2k/wj,k and to the right child
(j + 1, 2k + 1) with probability qrj,k = wj+1,2k+1/wj,k. Note that by Lemma 7.1 above, we have that both
qlj,k, q

r
j,k ∈ [1/20, 19/20] for each internal node (j, k) in the tree. Note that wj,k/w0,0 denotes the probability

that the random walk passes through the vertex j, k.

7.2 Algorithm and Analysis

Recall that each leaf ` ∈ L(T ) of the tree T is associated with a color. Our online algorithm will assign each
arriving vector vt to one of the leaves ` ∈ L(T ) and its color will then be the color of the corresponding leaf.

For a leaf ` ∈ L(T ), let d`(t) denote the sum of all the input vectors that are associated with the leaf ` at
time t. For an internal node (j, k), we define dj,k(t) to be the sum

∑
`∈L(Tj,k) d`(t) where L(Tj,k) is the set

of all the leaves in the sub-tree rooted at (j, k). Also, let dlj,k(t) = dj+1,2k(t) and drj,k(t) = dj+1,2k+1(t) be
the vectors associated with the left and right child of the node (j, k).

Finally let,

d−j,k(t) =
dlj,k(t)/qlj,k − drj,k(t)/qrj,k

1/qlj,k + 1/qrj,k
= qrj,kd

l
j,k(t)− qlj,kdrj,k,

denote the weighted difference between the two children vectors for the (j, k)-th node of the tree.

Algorithm. For β = 1/(400h), consider the following potential function

Ψt =
∑
j,k∈T

Φ(β d−j,k(t)),

where the sum is over all the internal nodes (j, k) of T .
The algorithm assigns the incoming vector vt to the leaf ` ∈ L(T ), so that the increase in the potential
Ψt −Ψt−1 is minimized. The color assigned to the vector vt is then the color of the corresponding leaf `.

We show that if the potential Φ satisfies (15), then the drift for the potential Ψ can be bounded.

Lemma 7.2. If at any time t, if Ψt−1 ≤ T 5, then the following holds

Evt∼p[∆Ψt] := Evt∼p[Ψt −Ψt−1] = O(1).
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Using standard arguments as used in the proof of Theorem 1.3, this implies that with high probability
Ψt ≤ T 5 at all times t.

Moreover, the above potential also gives a bound on the discrepancy because of the following lemma.

Lemma 7.3. If Ψt ≤ T 5, then disct = O(β−1h ·B‖·‖∗ · log(nTΨt)) = O(h2 ·B‖·‖∗ · log(nT )).

Combined with part (b) of Lemma 5.1 and Lemma 6.1, the above implies Theorem 1.5. Next we prove
Lemma 7.3 and Lemma 7.2 in that order.

Bounded Potential Implies Low Discrepancy

For notational simplicity, we fix a time t and drop the time index below.

Proof of Lemma 7.3. First note that Φ(β · d−j,k) ≤ Ψ, and therefore,
∥∥∥d−j,k∥∥∥∗ ≤ β−1B(‖·‖∗) := U for every

internal node (j, k).

We next claim by induction that the above implies the following for every internal node (j, k),∥∥∥∥dj,k − d0,0 ·
wj,k
w0,0

∥∥∥∥
∗
≤ βjU, (16)

where βj = 1 + 19/20 + · · ·+ (19/20)j .

The claim is trivially true for the root. For an arbitrary node (j + 1, 2k) at depth j that is the left child of
some node (j, k), we have that∥∥∥∥dj+1,2k − d0,0 ·

wj+1,2k

w0,0

∥∥∥∥
∗
≤
∥∥∥∥dj+1,2k − dj,k ·

wj+1,2k

wj,k

∥∥∥∥
∗

+ qlj,k ·
∥∥∥∥dj,k − d0,0 ·

wj,k
w0,0

∥∥∥∥
∗

≤
∥∥dlj,k − dj,k · qlj,k∥∥∗ + qlj,kβjU,

since wj+1,2k/wj,k = qlj,k and qlj,k, q
r
j,k ∈ [1/20, 19/20]. Note that dj,k = dlj,k + drj,k, so the first term above

equals
∥∥∥d−j,k∥∥∥∗. Therefore, it follows that ‖dj+1,2k − d0,0 · (wj+1,2k/w0,0)‖∗ ≤ βj+1U . The claim follows

analogously for all nodes that are the right children of its parent.

To see the statement of the lemma, consider any color c ∈ [R]. We say that an internal node has color c if
all its leaves are assigned color c. A maximal color-c node is a node that has color c but its ancestor doesn’t
have color c. We denote the set of maximal c-color node to be Mc. Notice that |Mc| ≤ 2h since c-color
leaves are consecutive. Also, note that

∑
(j,k)∈Mc

wj,k = wc and that
∑

(j,k)∈Mc
dj,k = dc is exactly the sum

of vectors with color c. Therefore, we have

‖dc/wc − d0,0/w0,0‖∗ ≤
∥∥∥∥dc − d0,0 ·

wc
w0,0

∥∥∥∥
∗
≤

∑
(j,k)∈Mc

∥∥∥∥dj,k − d0,0 ·
wj,k
w0,0

∥∥∥∥
∗

= O(h · U),

where the first inequality follows since wc ≥ 1 and the last follows from (16).

Thus, for any two colors c 6= c′, we have

disct(c, c
′) =

∥∥∥∥dc/wc − dc′/wc′1/wc + 1/wc′

∥∥∥∥
∗
≤
∥∥∥∥dc/wc − d0,0/w0,0

1/wc + 1/wc′

∥∥∥∥
∗

+

∥∥∥∥dc′/wc′ − d0,0/w0,0

1/wc + 1/wc′

∥∥∥∥
∗

= O(h · U).

This finishes the proof of the lemma.
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Bounding the Drift

Proof of Claim 7.2. We fix the time t and write d−j,k = d−j,k(t− 1). Let Xj,k(`) · vt denote the change of d−j,k
when the leaf chosen for vt is `. More specifically, Xj,k(`) is qrj,k if the leaf ` belongs to the left sub-tree of
node (j, k), is −qlj,k if it belongs to the right sub-tree, and is 0 otherwise. Then, d−j,k(t) = d−j,k +Xj,k(`) · vt
if the leaf ` is chosen.

By our assumption on the potential, we have that ∆Ψt ≤ βλL+ β2λ2Q where

L =
∑

(j,k)∈P(`)

Xj,k(`) · Lj,k(vt)

Q =
∑

(j,k)∈P(`)

Xj,k(`)2 ·Qj,k(vt),

and P(`) is the root-leaf path to the leaf `.

Consider choosing leaf ` (and hence the root-leaf path P(`)) randomly in the following way: First pick a
uniformly random layer j∗ ∈ {0, 1, · · · , h− 1} (i.e., level of the tree), then starting from the root randomly
choose a child according to the random walk probability for all layers except j∗; for layer j∗, suppose we
arrive at node (j∗, k), we pick the left child if Lj∗,k(vt) ≤ 0, and the right child otherwise. Note that
conditioned on a fixed value of j∗, this ensures that E`[Xj,kLj,k(vt)] is always negative if j = j∗ and is zero
otherwise.

Since we follow the random walk before layer j∗, for a fixed choice of j∗ we get a node in its layer proportional
to their weights. Let us write Nj for the set of all nodes at depth j. In expectation over the randomness of
the input vector vt and our random choice of leaf `, we have

Evt,`[L] ≤ − 1

h
·
h−1∑
j=0

∑
k∈Nj

wj,k∑
j∈Nj wj,k

·min{qlj,k, qrj,k} · Evt [|Lj,k|].

For the Q term, recall that one is randomly picking a child until layer j∗, in which one picks a child
depending on Lj∗,k, and then we continue randomly for the remaining layers. Note that since Q is always
positive, this can be at most 20 times a process that always picks a random root-leaf path, since we have
qlj,k, q

r
j,k ∈ [1/20, 19/20]. Therefore, we have

Evt,`[Q] ≤ 20 ·
h−1∑
j=0

∑
k∈Nj

wj,k∑
j∈Nj wj,k

· Evt [Qj,k].

By our choice of β = 1/(400h), the above implies that

Evt [∆Ψt] ≤ −
h−1∑
j=0

∑
k∈Nj

wj,k∑
j∈Nj wj,k

·
(
− βλ

20h
Evt [|Lj,k|] + 20β2λ2Evt [Qj,k]

)

≤ −
h−1∑
j=0

∑
k∈Nj

wj,k∑
j∈Nj wj,k

· 1

8000h2
·
(
−λEvt [|Lj,k|] + λ2Evt [Qj,k]

)
= O(1).

Since the algorithm is greedy, the leaf ` it assigns to the incoming vector v produces an even smaller drift,
so this completes the proof.
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