2,994 research outputs found

    Interval Routing Schemes for Circular-Arc Graphs

    Full text link
    Interval routing is a space efficient method to realize a distributed routing function. In this paper we show that every circular-arc graph allows a shortest path strict 2-interval routing scheme, i.e., by introducing a global order on the vertices and assigning at most two (strict) intervals in this order to the ends of every edge allows to depict a routing function that implies exclusively shortest paths. Since circular-arc graphs do not allow shortest path 1-interval routing schemes in general, the result implies that the class of circular-arc graphs has strict compactness 2, which was a hitherto open question. Additionally, we show that the constructed 2-interval routing scheme is a 1-interval routing scheme with at most one additional interval assigned at each vertex and we an outline algorithm to calculate the routing scheme for circular-arc graphs in O(n^2) time, where n is the number of vertices.Comment: 17 pages, to appear in "International Journal of Foundations of Computer Science

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    • …
    corecore