14,856 research outputs found

    Viscosity in the escape-rate formalism

    Full text link
    We apply the escape-rate formalism to compute the shear viscosity in terms of the chaotic properties of the underlying microscopic dynamics. A first passage problem is set up for the escape of the Helfand moment associated with viscosity out of an interval delimited by absorbing boundaries. At the microscopic level of description, the absorbing boundaries generate a fractal repeller. The fractal dimensions of this repeller are directly related to the shear viscosity and the Lyapunov exponent, which allows us to compute its values. We apply this method to the Bunimovich-Spohn minimal model of viscosity which is composed of two hard disks in elastic collision on a torus. These values are in excellent agreement with the values obtained by other methods such as the Green-Kubo and Einstein-Helfand formulas.Comment: 16 pages, 16 figures (accepted in Phys. Rev. E; October 2003

    On mining complex sequential data by means of FCA and pattern structures

    Get PDF
    Nowadays data sets are available in very complex and heterogeneous ways. Mining of such data collections is essential to support many real-world applications ranging from healthcare to marketing. In this work, we focus on the analysis of "complex" sequential data by means of interesting sequential patterns. We approach the problem using the elegant mathematical framework of Formal Concept Analysis (FCA) and its extension based on "pattern structures". Pattern structures are used for mining complex data (such as sequences or graphs) and are based on a subsumption operation, which in our case is defined with respect to the partial order on sequences. We show how pattern structures along with projections (i.e., a data reduction of sequential structures), are able to enumerate more meaningful patterns and increase the computing efficiency of the approach. Finally, we show the applicability of the presented method for discovering and analyzing interesting patient patterns from a French healthcare data set on cancer. The quantitative and qualitative results (with annotations and analysis from a physician) are reported in this use case which is the main motivation for this work. Keywords: data mining; formal concept analysis; pattern structures; projections; sequences; sequential data.Comment: An accepted publication in International Journal of General Systems. The paper is created in the wake of the conference on Concept Lattice and their Applications (CLA'2013). 27 pages, 9 figures, 3 table

    Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method

    Full text link
    Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and experimental domains. In this work we consider time-periodically modulated quantum systems which are in contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states of such systems are described by time-periodic density operators. Resolution of these operators constitutes a non-trivial computational task. To go beyond the current size limits, we use the quantum trajectory method which unravels master equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic realization of the method. The algorithm is computationally efficient, allowing for long 'leaps' forward in time, and is numerically exact in the sense that, being given the list of uniformly distributed (on the unit interval) random numbers, {η1,η2,...,ηn}\{\eta_1, \eta_2,...,\eta_n\}, one could propagate a quantum trajectory (with ηi\eta_i's as norm thresholds) in a numerically exact way. %Since the quantum trajectory method falls into the class of standard sampling problems, performance of the algorithm %can be substantially improved by implementing it on a computer cluster. By using a scalable NN-particle quantum model, we demonstrate that the algorithm allows us to resolve the asymptotic density operator of the model system with N=2000N = 2000 states on a regular-size computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are currently performed

    An Overview of Moving Object Trajectory Compression Algorithms

    Get PDF
    Compression technology is an efficient way to reserve useful and valuable data as well as remove redundant and inessential data from datasets. With the development of RFID and GPS devices, more and more moving objects can be traced and their trajectories can be recorded. However, the exponential increase in the amount of such trajectory data has caused a series of problems in the storage, processing, and analysis of data. Therefore, moving object trajectory compression undoubtedly becomes one of the hotspots in moving object data mining. To provide an overview, we survey and summarize the development and trend of moving object compression and analyze typical moving object compression algorithms presented in recent years. In this paper, we firstly summarize the strategies and implementation processes of classical moving object compression algorithms. Secondly, the related definitions about moving objects and their trajectories are discussed. Thirdly, the validation criteria are introduced for evaluating the performance and efficiency of compression algorithms. Finally, some application scenarios are also summarized to point out the potential application in the future. It is hoped that this research will serve as the steppingstone for those interested in advancing moving objects mining

    PRESS: A Novel Framework of Trajectory Compression in Road Networks

    Get PDF
    Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and temporal information of trajectories respectively. PRESS also supports common spatial-temporal queries without fully decompressing the data. Through an extensive experimental study on real trajectory dataset, PRESS significantly outperforms existing approaches in terms of saving storage cost of trajectory data with bounded errors.Comment: 27 pages, 17 figure
    • …
    corecore