
HAL Id: hal-01186715
https://hal.archives-ouvertes.fr/hal-01186715

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Mining Complex Sequential Data by Means of FCA
and Pattern Structures

Aleksey Buzmakov, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov, Amedeo
Napoli, Chedy Raïssi

To cite this version:
Aleksey Buzmakov, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov, Amedeo Napoli, et al.. On Mining
Complex Sequential Data by Means of FCA and Pattern Structures. International Journal of General
Systems, Taylor & Francis, 2016, 45 (2), pp.135-159. �10.1080/03081079.2015.1072925�. �hal-01186715�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49494549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01186715
https://hal.archives-ouvertes.fr

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

To appear in the International Journal of General Systems
Vol. 00, No. 00, Month 20XX, 1–23

On mining complex sequential data by means of FCA and pattern

structures

Aleksey Buzmakova,c∗, Elias Eghob,1 , Nicolas Jaya, Sergei O. Kuznetsovc, Amedeo

Napolia and Chedy Räıssia

aOrpailleur, LORIA (CNRS – Inria NGE – University of Lorraine),

Vandœuvre-lès-Nancy, France; b Orange Labs, Lannion, FRANCE cNational Research

University Higher School of Economics, Moscow, Russia

(Received 00 Month 20XX; accepted 00 Month 20XX)

Nowadays data sets are available in very complex and heterogeneous ways. Mining of
such data collections is essential to support many real-world applications ranging from
healthcare to marketing. In this work, we focus on the analysis of “complex” sequential
data by means of interesting sequential patterns. We approach the problem using the
elegant mathematical framework of Formal Concept Analysis (FCA) and its extension
based on “pattern structures”. Pattern structures are used for mining complex data
(such as sequences or graphs) and are based on a subsumption operation, which in our
case is defined with respect to the partial order on sequences. We show how pattern
structures along with projections (i.e., a data reduction of sequential structures), are
able to enumerate more meaningful patterns and increase the computing efficiency of
the approach. Finally, we show the applicability of the presented method for discov-
ering and analyzing interesting patient patterns from a French healthcare data set on
cancer. The quantitative and qualitative results (with annotations and analysis from a
physician) are reported in this use case which is the main motivation for this work.

Keywords: data mining; formal concept analysis; pattern structures; projections;
sequences; sequential data

1. Introduction

Sequence data is present and used in many applications. Mining sequential patterns
from sequence data has become an important data mining task. In the last two
decades, the main emphasis has been on developing efficient mining algorithms and
effective pattern representations (Han et al. 2000; Pei et al. 2001b; Yan, Han, and
Afshar 2003; Ding et al. 2009; Räıssi, Calders, and Poncelet 2008). However, one
problem with traditional sequential pattern mining algorithms (and generally with
all pattern enumeration algorithms) is that they generate a large number of frequent
sequences while a few of them are truly relevant. To tackle this challenge, recent
studies try to enumerate patterns using some alternative interestingness measures or
by sampling representative patterns. A general idea in finding statistically significant
patterns is to extract patterns whose characteristics for a given measure, such as
frequency, strongly deviates from its expected value under a null model, i.e. the value

1Elias Egho was in LORIA (Vandœuvre-lès-Nancy, France) when this work was done.
∗Corresponding author. Email: aleksey.buzmakov@inria.fr

1

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

expected by the distribution of all data. In this work, we focus on complementing the
statistical approaches with a sound algebraic approach trying to answer the following
question: can we develop a framework for enumerating only relevant patterns based
on data lattices and its associated measures?

The above question can be answered by addressing the problem of analyzing
sequential data using the framework of Formal Concept Analysis (FCA), a mathe-
matical approach to data analysis (Ganter and Wille 1999), and pattern structures,
an extension of FCA that handles complex data (Ganter and Kuznetsov 2001). To
analyze a dataset of “complex” sequences while avoiding the classical efficiency bot-
tlenecks, we introduce and explain the usage of projections, which are mathematical
mappings for defining approximations. Projections for sequences allow one to reduce
the computational costs and the volume of enumerated patterns, avoiding the in-
famous “pattern flooding”. In addition, we provide and discuss several measures,
such as stability, to rank patterns with respect to their “interestingness”, giving an
expert order in which the patterns may be efficiently analyzed.

In this paper, we develop a novel, rigorous and efficient approach for working with
sequential pattern structures in formal concept analysis. The main contributions of
this work can be summarized as follows:

• Pattern structure specification and analysis. We propose a novel way of deal-
ing with sequences based on complex alphabets by mapping them to pattern
structures. The genericity power provided by the pattern structures allows
our approach to be directly instantiated with state-of-the-art FCA algorithms,
making the final implementation flexible, accurate and scalable.
• “Projections” for sequential pattern structures. Projections significantly de-

crease the number of patterns, while preserving the most interesting ones for
an expert. Projections are built to answer questions that an expert may have.
Moreover, combinations of projections and concept stability index provide an
efficient tool for the analysis of complex sequential datasets. The second ad-
vantage of projections is its ability to significantly decrease the complexity of
a problem, saving thus computational time.
• Experimental evaluations. We evaluate our approach on real sequence dataset

of a regional healthcare system. The data set contains ordered sets of hospital-
izations for cancer patients with information about the hospitals they visited,
causes for the hospitalizations and medical procedures. These ordered sets are
considered as sequences. The experiments reveal interesting (from a medical
point of view) and useful patterns, and show the feasibility and the efficiency
of our approach.

This paper is an extension of the work presented at CLA’14 conference (Buzmakov
et al. 2013). The main differences w.r.t. the CLA’14 paper are a more complete
explanation of the mathematical framework and a new experimental part evaluating
different aspects of the introduced framework.

The paper is organized as follows. Section 2 introduces formal concept analy-
sis and pattern structures. The specification of pattern structures for the case of
sequences is presented in Section 3. Section 4 describes projections of sequential
pattern structures followed in Section 5 by the evaluation and experimentations.
Finally, related works are discussed before concluding the paper.

2

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Table 1.: A toy FCA context.

m1 m2 m3 m4

g1 x x
g2 x x
g3 x
g4 x x

(; {m1,m2,m3,m4})

(g2; g4; {m3,m4})({g1} ; {m1,m4}) ({g3} ; {m2})

({g1, g2, g4} ; {m4})

({g1, g3, g2, g4} ;)

Figure 1.: Concept Lattice for the toy context

2. FCA and pattern structures

2.1. Formal concept analysis

FCA is a formalism that can be used for guiding data analysis and knowledge
discovery (Ganter and Wille 1999). FCA starts with a formal context and builds a
set of formal concepts organized within a concept lattice. A formal context is a triple
(G,M, I), where G is a set of objects, M is a set of attributes and I is a relation
between G and M , I ⊆ G ×M . In Table 1, a cross table for a formal context is
shown. A Galois connection between G and M is defined as follows:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G

B′ = {g ∈ A | ∀m ∈M, (g,m) ∈ I}, B ⊆M

The Galois connection maps a set of objects to the maximal set of attributes
shared by all objects and reciprocally. For example, {g1, g2}′ = {m4}, while
{m4}′ = {g1, g2, g4}, i.e. the set {g1, g2} is not maximal. Given a set of objects
A, we say that A′ is the description of A.

Definition 1. A formal concept is a pair (A,B), where A ⊆ G is a subset of objects,
B ⊆ M is a subset of attributes, such that A′ = B and A = B′, where A is called
the extent of the concept, and B is called the intent of the concept.

A formal concept corresponds to a pair of maximal sets of objects and attributes,
i.e. it is not possible to add an object or an attribute to the concept without violating
the maximality property. For example a pair ({g1, g2, g4} , {m4}) is a formal concept.
Formal concepts can be partially ordered w.r.t. the extent inclusion (dually, intent
inclusion). For example, ({g1} ; {m1,m4}) ≤ ({g1, g2, g4} , {m4}). This partial order
of concepts is shown in Figure 1. The number of formal concepts for a given context
can be exponential w.r.t. the cardinality of set of objects or set of attributes. It is
easy to see that for context (G,G, IG), where IG = {(x, y) | x ∈ G, y ∈ G, x 6= y},
the number of concepts is equal to 2|G|.

3

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Table 2.: A toy formal context

m1 m2 m3 m4 m5 m6

g1 x x
g2 x x
g3 x x
g4 x x
g5 x

({g1} ; ∗)[0.5] ({g2} ; ∗)[0.5] ({g3} ; ∗)[0.5] ({g4} ; ∗)[0.5] ({g5} ; ∗)[0.5]

(∅; ∗)[1.0]

({g1, g2, g3, g4} ; {m6})[0.69]

({g1, g2, g3, g4, g5} ; ∗)[0.47]

Figure 2.: Concept Lattice for the context in Table 2 with corresponding stability
indexes.

2.2. Stability index of a concept

The number of concepts in a lattice for real-world tasks can be large. To find the
most interesting subset of concepts, different measures can be used such as the
stability of the concept (Kuznetsov 2007) or the concept probability and separa-
tion (Klimushkin, Obiedkov, and Roth 2010). These measures help extracting the
most interesting concepts. However, the last ones are less reliable in noisy data.

Definition 2. Given a concept c, the concept stability Stab(c) of c is the relative
number of subsets of the concept extent (denoted Ext(c)), whose description, i.e. the
result of (·)′, is equal to the concept intent (denoted Int(c)).

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

|℘(Ext(c))|
(1)

Here ℘(P) is the powerset of P . Stability measures how a concept depends on
objects in its extent. The larger the stability is the more combinations of objects
can be deleted from the context without affecting the intent of the concept, i.e. the
intent of the most stable concepts is likely to be a characteristic pattern of a given
phenomenon and not an artifact of a dataset. Of course, stable concepts still depend
on the dataset, and, consequently some important information can be contained in
the unstable concepts. However, the stability can be considered as a good heuristic
for selecting concepts because the more stable the concept is the less it depends on
the given dataset w.r.t. to object removal.

Example 1. Figure 2 shows a lattice for the context in Table 2, for simplic-
ity some intents are not given. Extent of the outlined concept c is Ext(c) =
{g1, g2, g3, g4}, thus, its powerset contains 24 elements. Descriptions of 5 subsets of
Ext(c) ({g1} , . . . , {g4} and ∅) are different from Int(c) = {m6}, while all other sub-

sets of Ext(c) have a common description equal to {m6}. So, Stab(c) = 24−5
24 = 0.69.

One of the fastest algorithm processing a concept lattice L is proposed in (Roth,
Obiedkov, and Kourie 2008) with the worst-case complexity of O(|L|2) where |L| is
the size of the concept lattice. The experimental section shows that for a big lattice,
the stability computation can take much more time than the construction of the

4

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

concept lattice. Thus, the estimation of concept stability is an important question.
Here we present an efficient way for such an estimation. It should be noticed that
in a lattice the extent of any ancestor of a concept c is a superset of the extent
of c, while the extent of any descendant is a subset. Given a concept c and an
immediate descendant d, we have ∀s ⊆ Ext(d), s′′ ⊆ Ext(d), which means that
s′ ⊇ Int(d) ⊃ Int(c), i.e. s′ 6= Int(c). Thus, we can exclude in the computation of
the numerator of stability in (1) all subsets of the extent of a direct descendant c.
Thus, the following bound holds:

Stab(c) ≤ 1− max
d∈DD(c)

1

2∆(c,d)
, (2)

where DD(c) is the set of all direct descendants and ∆(c, d) is the set-difference
between extent of c and extent of d, ∆(c, d) = |Ext(c) \ Ext(d)|.

Example 2. With help of (2) we can find all stable concepts (and some unstable),
i.e. the concepts with a high stability w.r.t. a threshold θ. If θ = 0.97, we should
compute for each concept c in the lattice the following value md(c) = min

d∈DD(c)
∆(c, d)

and then select concepts verifying md(c) ≥ − log(1− 0.97) = 5.06.

2.3. Pattern structures

Although FCA applies to binary contexts, more complex data such as sequences or
graphs can be directly processed as well. For that, pattern structures were intro-
duced in Ganter and Kuznetsov (2001).

Definition 3. A pattern structure is a triple (G, (D,u), δ), where G is a set of
objects, (D,u) is a complete meet-semilattice of descriptions and δ : G → D maps
an object to a description.

The lattice operation in the semilattice (u) corresponds to the similarity between
two descriptions. Standard FCA can be presented in terms of a pattern structure.
In this case, G is the set of objects, the semilattice of descriptions is (℘(M),u) and
a description is a set of attributes, with the u operation corresponding to the set
intersection (℘(M) denotes the powerset of M). If x = {a, b, c} and y = {a, c, d}
then x u y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given by, δ(g) = {m ∈
M | (g,m) ∈ I}, and returns the description for a given object as a set of attributes.

The Galois connection for a pattern structure (G, (D,u), δ) is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

The Galois connection makes a correspondence between sets of objects and de-
scriptions. Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose descrip-
tion subsumes d. More precisely, the partial order (or the subsumption order) on D
(v) is defined w.r.t. the similarity operation u: c v d⇔ cud = c, and c is subsumed
by d.

Definition 4. A pattern concept of a pattern structure (G, (D,u), δ) is a pair (A, d)
where A ⊆ G and d ∈ D such that A� = d and d� = A, A is called the concept

5

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Table 3.: Toy sequential data on patient medical trajectories.

Patient Trajectory

p1 〈[H1, {a}]; [H1, {c, d}]; [H1, {a, b}]; [H1, {d}]〉
p2 〈[H2, {c, d}]; [H3, {b, d}]; [H3, {a, d}]〉
p3 〈[H4, {c, d}]; [H4, {b}]; [H4, {a}]; [H4, {a, d}]〉

extent and d is called the concept intent.

As in standard FCA, a pattern concept corresponds to the maximal set of objects
A whose description subsumes the description d, where d is the maximal common
description for objects in A. The set of all concepts can be partially ordered w.r.t.
partial order on extents (dually, intent patterns, i.e v), within a concept lattice.

An example of pattern structures is given in Table 3, while the corresponding
lattice is depicted in Figure 3.

As stability of concepts only depends on extents, it can be defined by the same
procedure for both formal contexts and pattern structures.

3. Sequential pattern structures

Certain phenomena, such as a patient trajectory (clinical history), can be considered
as a sequence of events. This section describes how FCA and pattern structures can
process sequential data.

3.1. An example of sequential data

Imagine that we have medical trajectories of patients, i.e. sequences of hospital-
izations, where every hospitalization is described by a hospital name and a set of
procedures. An example of sequential data on medical trajectories with three pa-
tients is given in Table 3. We have a set of procedures P = {a, b, c, d}, a set of
hospital names TH = {H1, H2, H3, H4, CL,CH, ∗}, where hospital names are hier-
archically organized (by level of generality). H1 and H2 are central hospitals (CH),
H3 and H4 are clinics (CL), and ∗ denotes the root of this hierarchy. The least
common ancestor in this hierarchy is denoted by h1 u h2, for any h1, h2 ∈ TH , i.e.
H1 uH2 = CH. Every hospitalization is described by one hospital name and may
contain several procedures. The procedure order in each hospitalization is not im-
portant in our case. For example, the first hospitalization [H2, {c, d}] for the second
patient (p2) was a stay in hospital H2 and during this hospitalization the patient
underwent procedures c and d. An important task is to find the “characteristic” se-
quences of procedures and associated hospitals in order to improve hospitalization
planning, optimize clinical processes or detect anomalies.

We approach the search for characteristic sequences by finding the most stable
concepts in the lattice corresponding to a sequential pattern structure. For the
simplification of calculations, subsequences are considered without “gaps”, i.e the
order of non consequent elements is not taken into account. This is reasonable in
this task because experts are interested in regular consecutive events in healthcare
trajectories. A sequential pattern structure is a set of sequences and is based on
the set of maximal common subsequences (without gaps) between two sequences.
Next subsections define partial order on sequences and the corresponding pattern
structures.

6

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

3.2. Partial order on complex sequences

A sequence is constituted of elements from an alphabet. The classical subsequence
matching task requires no special properties of the alphabet. Several generalizations
of the classical case were made by introducing a subsequence relation based on
an itemset alphabet (Agrawal and Srikant 1995) or on a multidimensional and
multilevel alphabet (Plantevit et al. 2010). Here, we generalize the previous cases,
requiring for an alphabet to form a semilattice (E,uE) (We should note that in
this paper we consider two semilattices, the first one is related to the characters of
the alphabet, (E,uE), and the second one is related to pattern structures, (D,u)).
Thanks to the formalism of pattern structures we are able to process in a unified
way all types of sequential datasets with poset-shaped alphabet (it is mentioned
above that any partial order can be transformed into a semilattice). However, some
sequential data can have connections between elements, e.g. (Adda et al. 2010), and,
thus, cannot be straightforwardly processed by our approach.

Definition 5. Given a semilattice (E,uE), also called an alphabet, a sequence is
an ordered list of elements from E. We denote it by 〈e1; e2; · · · ; en〉 where ei ∈ E.

In this alphabet semilattice (E,uE) there is a bottom element ⊥E that can be
matched with any other element. Formally, ∀e ∈ E,⊥E = ⊥E uE e. This element
is required by the lattice structure, but provides no useful information. Thus, it
should be excluded from sequences. The bottom element of E corresponds to the
empty set in sequential mining (Agrawal and Srikant 1995), and the empty set is
always ignored in this domain.

Definition 6. A valid sequence 〈e1; · · · ; en〉 is a sequence where ∀i ∈ {1, · · · , n}ei 6=
⊥E.

Definition 7. Given an alphabet (E,uE) and two sequences t = 〈t1; ...; tk〉 and
s = 〈s1; ...; sn〉 based on E (tq, sp ∈ E), the sequence t is a subsequence of s, denoted
t ≤ s, iff k ≤ n and there exist j1, ..jk such that 1 ≤ j1 < j2 < ... < jk ≤ n and for
all i ∈ {1, 2, ..., k}, ti vE sji, i.e. ti uE sji = ti.

Example 3. In the running example (Section 3.1), the alphabet is E = TH ×℘(P)
with the similarity operation (h1, P1) u (h2, P2) = (h1 u h2, P1 ∩ P2), where
h1, h2 ∈ TH are hospitals and P1, P2 ∈ ℘(P) are sets of procedures. Thus,
the sequence ss1 = 〈[CH, {c, d}]; [H1, {b}]; [∗, {d}]〉 is a subsequence of p1 =
〈[H1, {a}]; [H1, {c, d}]; [H1, {a, b}]; [H1, {d}]〉 because if we set ji = i + 1 (Defini-
tion 7) then ss1

1 v p1
j1

(‘CH’ is more general than H1 and {c, d} ⊆ {c, d}), ss1
2 v p1

j2

(the same hospital and {b} ⊆ {b, a}) and ss1
3 v p1

j3
(‘*’ is more general than H1

and {d} ⊆ {d}).

With complex sequences and this kind of subsequence relation the computation
can be hard. Thus, for the sake of simplification, only “contiguous” subsequences
are considered, where only the order of consequent elements is taken into account,
i.e. given j1 in Definition 7, ji = ji−1 + 1 for all i ∈ {2, 3, ..., k}. Since experts are
interested in regular consecutive events in healthcare trajectories, such a restriction
does make sens for our data. It helps to connect only related hospitalizations.

The next section introduces pattern structures that are based on complex se-
quences with a general subsequence relation, while the experiments are provided for
a “contiguous” subsequence relation.

7

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

3.3. Sequential meet-semilattice

Based on the previous definitions, we can define the sequential pattern structure
used for representing and managing sequences. For that, we make an analogy with
the pattern structures for graphs (Kuznetsov 1999) where the meet-semilattice op-
eration u respects subgraph isomorphism. Thus, we introduce a sequential meet-
semilattice respecting subsequence relation. Given an alphabet lattice (E,uE), S
is the set of all valid sequences based on (E,uE). S is partially ordered w.r.t.
Definition 7. (D,u) is a semilattice on S, where D ⊆ ℘(S) such that, if d ∈ D
contains a sequence s, then all subsequences of s should be included into d,
∀s ∈ d,@s̃ ≤ s : s̃ /∈ d, and the similarity operation is the set intersection for
two sets of sequences. Given two patterns d1, d2 ∈ D, the set intersection operation
ensures that if a sequence s belongs to d1 u d2 then any subsequence of s belongs
to d1 u d2 and thus d1 u d2 ∈ D. As the set intersection operation is idempotent,
commutative and associative, (D,u) is a semilattice.

Example 4. If pattern d1 ∈ D includes sequence ss4 = 〈[∗, {c, d}]; [∗, {b}]〉 (see
Table 4), then it should include also 〈[∗, {d}]; [∗, {b}]〉, 〈[∗, {c, d}]〉, 〈[∗, {d}]〉 and
others. If pattern d2 ∈ D includes ss12 = 〈[∗, {a}]; [∗, {d}]〉, then it should include
〈[∗, {a}]〉, 〈[∗, {d}]〉 and 〈〉. Thus the intersection of two sets d1 and d2 is equal to
the set {〈[∗, {d}]〉 , 〈〉}.

The next proposition stems from the aforementioned and will be used in the proofs
in the next section.

Proposition 1. Given (G, (D,u), δ) and x, y ∈ D, x v y if and only if ∀sx ∈ x
there is a sequence sy ∈ y, such that sx ≤ sy.

The set of all possible subsequences for a given sequence can be large. Thus, it
is more efficient to consider a pattern d ∈ D as a set of only maximal sequences d̃,
d̃ = {s ∈ d | @s∗ ∈ d : s∗ ≥ s}. Furthermore, every pattern will be given only by
the set of all maximal sequences. For example,

{
p2
}
u
{
p3
}

=
{
ss6, ss7, ss8

}
(see

Tables 3 and 4), i.e.
{
ss6, ss7, ss8

}
is the set of all maximal sequences specifying

the intersection of p2 and p3. Similarly we have
{
ss6, ss7, ss8

}
u
{
p1
}

=
{
ss4, ss5

}
.

Note that representing a pattern by the set of all maximal sequences allows for an
efficient implementation of the intersection “u” of two patterns (in Section 5.1 we
give more details on similarity operation w.r.t. a contiguous subsequence relation).

Example 5. The sequential pattern structure for our example (Subsection 3.1) is
(G, (D,u), δ), where G =

{
p1, p2, p3

}
, (D,u) is the semilattice of sequential de-

scriptions, and δ is the mapping associating an object in G to a description in D
shown in Table 3. Figure 3 shows the resulting lattice of sequential pattern concepts
for this particular pattern structure (G, (D,u), δ).

4. Projections of sequential pattern structures

Pattern structures are hard to process due to the large number of concepts in the
concept lattice, the complexity of the involved descriptions and the similarity opera-
tion. Moreover, a given pattern structure can produce a lattice with a lot of patterns
which are not interesting for an expert. Can we save computational time by avoiding
to compute “useless” patterns? Projections of pattern structures “simplify” to some
degree the computation and allow one to work with a reduced description. In fact,
projections can be considered as filters on patterns respecting mathematical proper-

8

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

({
p2
}
; p2

)({
p1
}
; p1

) ({
p3
}
; p3

)

({
p1, p2

}
; ss2, ss3

) ({
p1, p3

}
; ss11, ss12

) ({
p2, p3

}
; ss6, ss7, ss8

)

({
p1, p2, p3

}
; ss4, ss5

)

(∅; ∗)

Figure 3.: The concept lattice for the pattern structure given by Table 3. Concept
intents reference to sequences in Tables 3 and 4.

Table 4.: Subsequences of patient sequences in Table 3.

Subsequences

ss1 〈[CH, {c, d}]; [H1, {b}]; [∗, {d}]〉
ss2 〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉
ss3 〈[CH, {}]; [∗, {d}]; [∗, {a}]〉
ss4 〈[∗, {c, d}]; [∗, {b}]〉
ss5 〈[∗, {a}]〉
ss6 〈[∗, {c, d}]; [CL, {b}]; [CL, {a}]〉
ss7 〈[CL, {d}]; [CL, {}]〉
ss8 〈[CL, {}]; [CL, {a, d}]〉
ss9 〈[CH, {c, d}]〉
ss10 〈[CL, {b}]; [CL, {a}]〉
ss11 〈[∗, {c, d}]; [∗, {b}]〉
ss12 〈[∗, {a}]; [∗, {d}]〉

ties. These properties ensure that the projection of a semilattice is a semilattice and
that projected concepts are related to original ones (Ganter and Kuznetsov 2001).
Moreover, the stability measure of projected concepts never decreases w.r.t the orig-
inal concepts. We introduce projections on sequential patterns revising Ganter and
Kuznetsov (2001). It is necessary to provide an extended definition of projection in
order to deal with interesting projections for real-world sequential datasets.

Definition 8 (Ganter and Kuznetsov (2001)). A projection ψ : D → D is an
interior operator, i.e. it is (1) monotone (x v y ⇒ ψ(x) v ψ(y)), (2) contractive
(ψ(x) v x) and (3) idempotent (ψ(ψ(x)) = ψ(x)).

Definition 9. A projected pattern structure ψ((G, (D,u), δ)) is a pattern structure
(G, (Dψ,uψ), ψ ◦ δ), where Dψ = ψ(D) = {d ∈ D | ∃d∗ ∈ D : ψ(d∗) = d} and
∀x, y ∈ D,x uψ y := ψ(x u y).

Note that in (Ganter and Kuznetsov 2001) ψ((G, (D,u), δ)) = (G, (D,u), ψ ◦ δ).
Our definition allows one to use a wider set of projections. In fact all projections
that we describe for sequential pattern structures below require Definition 9. Now
we should show that (Dψ,uψ) is a semilattice.

Proposition 2. Given a semilattice (D,u) and a projection ψ, for all x, y ∈ D
ψ(x u y) = ψ(ψ(x) u y).

Proof. (1) ψ(x) v x, thus, x, y w (x u y) w (ψ(x) u y) w ψ(ψ(x) u y)
(2) x v y ⇒ ψ(x) v ψ(y), thus, ψ(x u y) w ψ(ψ(x) u y)
(3) ψ(x u y) u ψ(x) u y =

ψ(xuy)vψ(x)
ψ(x u y) u y =

ψ(xuy)vy
ψ(x u y),

then (ψ(x) u y) w ψ(x u y) and ψ(ψ(x) u y) w ψ(ψ(x u y)) = ψ(x u y)
(4) From (2) and (3) it follows that ψ(x u y) = ψ(ψ(x) u y).

9

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Corollary 1. X1 uψ X2 uψ · · · uψ XN = ψ(X1 uX2 u · · · uXN)

Proof. It can be prooven by induction.

(1) X1 uψ X2 = ψ(X1 uX2) by Definition 9.
(2) If X1 uψ · · · uψ XK = ψ(X1 u · · · uXK), then

X1 uψ · · · uψ XK uψ XK+1 = ψ(X1 u · · · uXK) uψ XK+1 =

= ψ(ψ(X1 u · · · uXK) uXK+1) =
Proposition 2

ψ(X1 u · · · uXK+1)

Corollary 2. Given a semilattice (D,u) and a projection ψ, (Dψ,uψ) is a semi-
lattice, i.e. uψ is commutative, associative and idempotent.

The concepts of a pattern structure and a projected pattern structure are
connected through Proposition 3. This proposition can be found in Ganter and
Kuznetsov (2001), but thanks to Corollary 1, it is valid in our case.

Proposition 3. Given a concept (A, d) in ψ((G, (D,u), δ)), the extent A is an
extent in (G, (D,u), δ). Given a concept (A, dψ) in ψ((G, (D,u), δ)), the intent dψ
is of the form dψ = ψ(d), where (A, d) is a concept in (G, (D,u), δ).

Moreover, while preserving the extents of some concepts, projections cannot de-
crease the stability of the projected concepts, i.e. if the projection preserves a stable
concept, then its stability (Definition 2) can only increase.

Proposition 4. Given a pattern structure (G, (D,u), δ), its concept c and a pro-
jected pattern structure (G, (Dψ,uψ), ψ ◦ δ), and the projected concept c̃, if the con-
cept extents are equal (Ext(c) = Ext(c̃)) then Stab(c) ≤ Stab(c̃).

Proof. Concepts c and c̃ have the same extent. Thus, according to Definition 2, in
order to prove the proposition, it is enough to prove that for any subset A ⊆ Ext(c),
if A� = Int(c) in the original pattern structure, then A� = Int(c̃) in the projected
one.

Suppose that ∃A ⊂ Ext(c) such that A� = Int(c) in the original pattern structure
and A� 6= Int(c̃) in the projected one. Then there is a descendant concept d̃ of c̃ in
the projected pattern structure such that A� = Int(d̃) in the projected lattice. Then
there is an original concept d for the projected concept d̃ with the same extent
Ext(d). Then A� w Int(d) A Int(c) and, so, A� cannot be equal to Int(c) in the
original lattice. Contradiction.

Now we are going to present two projections of sequential pattern structures.
The first projection comes from the following observation. In many cases it may be
more interesting to analyze quite long subsequences rather than short ones. This
kind of projections is called Minimal Length Projection (MLP) and it depends on
the minimal length parameter ` for the sequences in a pattern. The corresponding
function ψ maps a pattern without short sequences to itself, and a sequence with
short sequences to the pattern containing only long sequences w.r.t. a given length
threshold. Later, propositions 1 and 5 state that MLP is coherent with Definition 8.

Definition 10. The function ψMLP : D → D of minimal length ` is defined as

ψMLP (d) = {s ∈ d | length(s) ≥ `}

10

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Example 6. If we prefer common subsequences of length ` ≥ 3, then between p2

and p3 in Table 3 there is only one maximal common subsequence, ss6 in Table 4,
while ss7 and ss8 are too short to be considered. Figure 4a shows the lattice of the
projected pattern structure (Table 3) with patterns of length greater or equal to 3.

Proposition 5. The function ψMLP is a monotone, contractive and idempotent
function on the semilattice (D,u).

Proof. The contractivity and idempotency are quite clear from the definition. It
remains to prove the monotonicity.

If X v Y , where X and Y are sets of sequences, then for every sequence x ∈ X
there is a sequence y ∈ Y such that x ≤ y (Proposition 1). We should show that
ψ(X) v ψ(Y), or in other words for every sequence x ∈ ψ(X) there is a sequence
y ∈ ψ(Y), such that x ≤ y. Given x ∈ ψ(X), since ψ(X) is a subset of X and
X v Y , there is a sequence y ∈ Y such that x ≤ y, with |y| ≥ |x| ≥ ` (` is a
parameter of MLP), and thus, y ∈ ψ(Y).

Another important type of projections is related to a variation of the lattice
alphabet (E,uE). One possible variation of the alphabet is to ignore certain fields
in the elements. For example, if a hospitalization is described by a hospital name and
a set of procedures, then either hospital or procedures can be ignored in similarity
computation. For that, in any element the set of procedures should be substituted
by ∅, or the hospital by ∗ (“arbitrary hospital”) which is the most general element
of the taxonomy of hospitals.

Another variation of the alphabet is to require that some field(s) should not be
empty. For example, we want to find patterns with non-empty set of procedures or
the element ∗ of the hospital taxonomy is not allowed in elements of a sequence.
Such variations are easy to realize within our approach. For this, when computing
the similarity operation between elements of the alphabet, one should check if the
result contains empty fields and, if yes, should substitute the result by ⊥. This
variation is useful, as it is shown in the experimental section, but is rather difficult
to define within more classical frequent sequence mining approaches, which will be
discussed later.

Example 7. An expert is interested in finding sequential patterns describing how a
patient changes hospitals, but with little interest in procedures. Thus, any element of
the alphabet lattice, containing a hospital and a non-empty set of procedures can be
projected to an element with the same hospital, but with an empty set of procedures.

Example 8. An expert is interested in finding sequential patterns containing some
information about the hospital in every hospitalization, and the corresponding pro-
cedures, i.e. hospital field in the patterns cannot be equal to ∗, e.g., ss5 is an invalid
pattern, while ss6 is a valid pattern in Table 4. Thus, any element of the alphabet
semilattice with ∗ in the hospital field can be projected to the ⊥E. Figure 4b shows
the lattice corresponding to the projected pattern structure (Table 3) defined by a
projection of the alphabet semilattice.

Below we formally define how the alphabet projection of a sequential pattern
structure should be processed. Intuitively, every sequence in a pattern should be
substituted with another sequence, by applying the alphabet projection to all its
elements. However, the result can be an incorrect sequence, because ⊥E cannot
belong to a valid sequence. Thus, sequences in a pattern should be “developed”
w.r.t. ⊥E , as it is explained below.

11

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Definition 11. Given an alphabet (E,uE), a projection of the alphabet ψ and a
sequence s = 〈s1, · · · , sn〉 based on E, the projection ψ(s) is the sequence s̃ =
〈s̃1, · · · , s̃n〉, such that s̃i = ψ(si).

Here, it should be noticed that s̃ is not necessarily a valid sequence (see Defi-
nition 6), since it can include ⊥E as an element. However, in sequential pattern
structures, elements should include only valid sequences (see Section 3.3).

Definition 12. Given an alphabet (E,uE), a projection of the alphabet ψE, an
alphabet projection for the sequential pattern structure ψ(d) is the set of valid se-
quences smaller than the projected sequences from d:

ψ(d) = {s ∈ S|(∃t ∈ d)s ≤ ψE(t)},

where S is the set of all valid sequences based on (E,uE).

Example 9. {ss6} = {〈[∗, {c, d}]; [CL, {b}]; [CL, {a}]〉} is an alphabet-projected
pattern for the pattern {ss10} = {〈[CL, {b}]; [CL, {a}]〉}, where the alphabet lattice
projection is given in Example 8.

In the case of contiguous subsequences, {〈[CH, {c, d}]〉} is an alphabet-projected
pattern for the pattern {ss2} = {〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉}, where the alphabet
lattice projection is given by projecting every element with medical procedure b to the
element with the same hospital and with the same set of procedures excluding b. The
projection of sequence ss2 is 〈[CH, {c, d}]; [∗, {}]; [∗, {d}]〉, but [∗, {}] = ⊥E, and,
thus, in order to project the pattern {ss2} the projected sequence is substituted by its
maximal subsequences, i.e. ψ({〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉}) = {〈[CH, {c, d}]〉}.

Proposition 6. Considering an alphabet (E,uE), a projection of the alphabet ψ, a
sequential pattern structure (G, (D,u), δ), the alphabet projection (see Definition 12)
is monotone, contractive and idempotent.

Proof. This projection is idempotent, since the projection of the alphabet is idem-
potent and only the projection of the alphabet can change the elements appearing
in sequences.

It is contractive because for any pattern d ∈ D and any sequences s ∈ d, a
projection of the sequence s̃ = ψ(s) is a subsequence of s. In Definition 12 the
projected sequences should be substituted by their subsequences in order to avoid
⊥E , building the sets {s̃i}. Thus, s is a supersequence for any s̃i, and, so, the
projected pattern d̃ = ψ(d) is subsumed by the pattern d.

Finally, we should show monotonicity. Given two patterns x, y ∈ D, such that
x v y, i.e. ∀sx ∈ x, ∃sy ∈ y : sx ≤ sy, consider the projected sequence of sx, ψ(sx).
As sx ≤ sy for some sy then for some j0 < · · · < j|sx| (see Definition 7) sxi vE
syji (i ∈ 1, 2, ..., |sx|), then ψ(sxi) vE ψ(syji) (by the monotonicity of the alphabet

projection), i.e. the projected sequence preserves the subsequence relation. Thus,
the set of allowed subsequences of sx is a subset of the set of allowed subsequences
of sy. Hence, the alphabet projection of the pattern preserves pattern subsumption
relation, ψ(x) ≤ ψ(y) (Proposition 1), i.e. the alphabet projection is monotone.

12

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

({
p2
}
; p2

)({
p1
}
; p1

) ({
p3
}
; p3

)

({
p1, p2

}
; ss2, ss3

) ({
p2, p3

}
; ss6

)
({

p1, p2, p3
}
; ∅
)

(∅; ∗)

(a) MLP projection, l = 3

({
p2
}
; p2

)({
p1
}
; p1

) ({
p3
}
; p3

)

({
p1, p2

}
; ss9

) ({
p2, p3

}
; ss7, ss8, ss10

)
({

p1, p2, p3
}
; ∅
)

(∅; ∗)

(b) Projection removing ‘*’ in the hospi-
tal field

Figure 4.: The projected concept lattices for the pattern structure given by Table 3.
Concept intents refer to the sequences in Tables 3 and 4.

5. Sequential pattern structure evaluation

5.1. Implementation

Nearly any state-of-the-art FCA algorithm can be adapted to process pattern struc-
tures. We adapted the AddIntent algorithm (Merwe, Obiedkov, and Kourie 2004),
as the lattice structure is important for us to calculate stability (see an algorithm
for calculating stability in (Roth, Obiedkov, and Kourie 2008)). To adapt the algo-
rithm to our needs, every set intersection operation on attributes is substituted with
the semilattice operation u on corresponding patterns, while every subset checking
operation is substituted with the semilattice order checking v, in particular all (·)′
are substituted with (·)�.

The next question is how the semilattice operation u and subsumption relation
v can be implemented for contiguous sequences. Given two sets of sequences S =
{s1, ...sn} and T = {t1, ..., tm}, the similarity of these sets S u T , is calculated
according to Section 3.3, i.e. maximal sequences among all common subsequences
for any pair of sequences si and tj .

To find all common subsequences of two sequences, the following observations can
be useful. If ss = 〈ss1; ...; ssl〉 is a subsequence of s = 〈s1; ...; sn〉 with jsi = ks+i, i.e.
ssi vE sks+i (Definition 7: ks is the index difference from which ss is a contiguous
subsequence of s) and a subsequence of t = 〈t1; ...; tm〉 with jti = kt + i, i.e. ssi vE
tkt+i, then for any index i ∈ {1, 2, ..., l}, ssi vE (sjsi u tjti). Thus, to find all maximal
common subsequences of s and t, we first align s and t in all possible ways. For each
alignment of s and t we compute the resulting intersection. Finally, we keep only
the maximal intersected subsequences.

For example, let us consider two possible alignments of s1 and s2:
s1 = 〈{a} ; {c, d} ; {b, a}; {d} 〉
s2 = 〈{c, d};{b, d} ; {a, d}〉
ssl = 〈 ∅ ; {d} 〉

s1 = 〈{a} ; {c, d};{b, a}; {d} 〉
s2 = 〈{c, d};{b, d};{a, d}〉
ssr = 〈{c, d}; {b} ; {d} 〉

The left intersection ssl is not retained, as it is not maximal (ssl < ssr), while the
right intersection ssr is kept.

The complexity of the alignment for two sequences s and t is O(|s| · |t| · γ), where
γ is the complexity of computing a common ancestor in the alphabet lattice (E,u).

5.2. Experiments and discussion

The experiments are carried out on a MacBook Pro with a 2.5GHz Intel Core i5,
8GB of RAM Memory running OS X 10.6.8. The algorithms are not parallelized

13

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Figure 5.: A geographical taxonomy of the healthcare institution

and are coded in C++.
Our use-case dataset comes from a French healthcare system, called PMSI2 (Fet-

ter et al. 1980). Each element of a sequence has a “complex” nature. The dataset
contains 500 patients suffering from lung cancer, who live in the Lorraine region
(Eastern France). Every patient is described as a sequence of hospitalizations with-
out any time-stamp. A hospitalization is a tuple with three elements: (i) healthcare
institution (e.g. university hospital of Nancy (CHUNancy)), (ii) reason for the hospi-
talization (e.g. a cancer disease), and (iii) set of medical procedures that the patient
undergoes. An example of a medical trajectory is given below:

〈[CHUNancy,Cancer, {mp1,mp2}] ; [CHParis,Chemo, {}] ; [CHParis,Chemo, {}]〉 .

This sequence represents a patient trajectory with three hospitalizations. It ex-
presses that the patient was first admitted to the university hospital of Nancy
(CHUNancy) for a cancer problem as a reason, and underwent procedures mp1 and
mp2. Then he had two consequent hospitalizations in the general hospital of Paris
(CHParis) for chemotherapy with no additional procedure. Substituting the same
consequent hospitalizations by the number of repetitions, we have a shorter and
more understandable trajectory. For example, the above pattern is transformed
into two hospitalizations where the first hospitalization repeats once and the second
twice:

〈[CHUNancy,Cancer, {mp1,mp2}]× [1]; [CHParis,Chemo, {}]× [2]〉 .

Diagnoses are coded according to the 10th International Classification of Diseases
(ICD10). Based on this coding, diagnoses could be described at 5 levels of granular-
ity: root, chapter, block, 3-character, 4-character, terminal nodes. This taxonomy
has 1544 nodes. The healthcare institution is associated with a geographical taxon-
omy of 4 levels, where the first level refers to the root (France) and the second, the
third and the fourth levels correspond to administrative region, administrative de-
partment and hospital respectively. Figure 5 presents University Hospital of Nancy
(code: 540002078) as a hospital in Meurthe et Moselle, which is a department in
Lorraine, region of France. This taxonomy has 304 nodes. The medical procedures
are coded according to the French nomenclature “Classification Commune des Actes
Médicaux (CCAM)”. The distribution of sequence lengths is shown in Figure 6.

With 500 patient trajectories, the computation of the whole lattice is infeasible.
We are not interested in all possible frequent trajectories, but rather in trajectories
which answer medical analysis questions. An expert may know the minimal size of

2Programme de Médicalisation des Sytèmes d’Information.

14

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Trajectory Length

Trajectory Length

N
um

be
r o

f p
at

ie
nt

s

0
10

20
30

40

Figure 6.: The length distribution of sequences in the dataset

100 200 300 400 500

1
10

10
0

10
00

10
00

0

Database Size

C
om

pu
ta

tio
n

Ti
m

e

GR

GRI

RP

RPI

GRP

GRPI(s
)

(a) MLP projection, ` = 2

100 200 300 400 500

1
10

10
0

10
00

10
00

0

Database Size

C
om

pu
ta

tio
n

Ti
m

e

GR

GRI

RP

RPI

GRP

GRPI

(s
)

(b) MLP projection, ` = 3

Figure 7.: Computational time for different projections

trajectories that he is interested in, i.e. setting the MLP projection. We use the
MLP projection of length 2 and 3 and take into account that most of the patients
has at least 2 hospitalizations in the trajectory (see Figure 6).

Figure 7 shows computational times for different projections as a function of
dataset size. Figure 7a shows different alphabet projections for MLP projection
with ` = 2, while Figure 7b for MLP with ` = 3. Every alphabet projection is given
by the name of fields, that are considered within the projection: G corresponds to
hospital geo-location, R is the reason for a hospitalization, P is medical procedures
and I is repetition interval, i.e. the number of consequent hospitalizations with the
same reason. We can see from these figures that MLP allows one to save some
computational resources with increasing of `. The difference in computational time
between ` = 2 and ` = 3 projections is significant, especially for time consuming
cases. Even a bigger variation can be noticed for the alphabet projections. For
example, computation of the RPI projection takes 100 times more resources than

15

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

0 100 300 500

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Database Size

La
tti

ce
 S

iz
e

GR

GRI

RP

RPI

GRP

GRPI

(a) MLP projection, ` = 2

0 100 300 500

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Database Size

La
tti

ce
 S

iz
e

GR

GRI

RP

RPI

GRP

GRPI

(b) MLP projection, ` = 3

Figure 8.: Lattice size for different projections

Table 5.: Interesting concepts, for different projections.

Projection Intent Stab. Rank Support

1 GR 〈[Lorraine, C341 Lung Cancer]〉 1 287
2 GR2

〈
[Lorraine,Respiratory Disease]; [CHUNancy , Lung Cancer]

〉
26 22

3 GR3 〈[Lorraine, Chemotherapy]× 4〉 1 176
4 RPI3 〈[Preparation for Chemotherapy, {Lung Radiography}]; [Chemotherapy]× [3, 4]〉 5 36

any from GRP, RP, GR, GRP.
The same dependency can be seen in Figure 8, where the number of concepts

for every projection is shown. Consequently, it is important for an expert to pro-
vide a strict projection that allows him to answer his questions in order to save
computational time and memory.

Table 5 shows some interesting concept intents with the corresponding support
and ranking w.r.t. concept stability. For example the concept #1 is obtained un-
der the projection GR (i.e., we consider only hospital and reason), with the in-
tent 〈[Lorraine, C341 Lung Cancer]〉, where C341 Lung Cancer is a special kind
of lung cancer (malignant neoplasm in Upper lobe, bronchus or lung). This concept
is the most stable concept in the lattice for the given projection, and the size of the
concept extent is 287 patients.

One of the questions that the analyst would like to address here is “Where do
patients stay (i.e. hospital location) during their treatment, and for which reason ?”.
To answer this question, we consider only healthcare institutions and reason fields,
requiring both to “hold” some information and we use the MLP projection of length
2 and 3 (i.e. projections GR2 and GR3). Nearly all frequent trajectories show that
patients usually are treated in the same region. However, pattern #2 obtained under
GR2 projection shows that, “22 patients were first admitted in some healthcare
institution in Lorraine region for a problem related to the respiratory system and
then they were treated for a lung cancer in University Hospital of Nancy.”

Another interesting question is “What are the sequential relations between hos-
pitalization reasons and the corresponding procedures?”. To answer this question,
we are not interested in healthcare institutions. Thus, any alphabet element is pro-
jected by substituting healthcare institution field with ‘*’. As hospitalization reason
is important in each hospitalization, any alphabet element without the hospitaliza-
tion reason is of no use and is projected to the bottom element ⊥E of the alphabet.

16

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Such projections are called RPI2 or RPI3, meaning that we consider the fields
“Reason” and “Procedures”, while the reason should not be empty and the MLP
parameter is 2 or 3. Pattern #4 trivially states that, “36 patients with lung cancer
are hospitalized once for the preparation of chemotherapy and during this hospital-
ization they undergo lung radiography. Afterwards, they are hospitalized between 3
and 4 times for chemotherapy.”

Variability is high in healthcare processes and affects many aspects of health-
care trajectories: patients, medical habits and protocols, healthcare organisation,
availability of treatments and settings. . . Mining sequential pattern structures is
an interesting approach for finding regularities across one or several dimensions of
medical trajectories in a population of patients. It is flexible enough to help health-
care managers to answer specific questions regarding the natural organisation of
care processes and to further compare them with expected or desirable processes.
The use of taxonomies plays also a key role in finding the right level of description
of sequential patterns and reducing the interpretation overhead.

6. Related work

Agrawal and Srikant (1995) introduced the problem of mining sequential patterns
over large sequential databases. Formally, given a set of sequences, where each se-
quence is a list of transactions ordered by time and each transaction is a set of
items, the problem amounts to find all frequent subsequences that appear a suffi-
cient number of times with a user-specified minimum support threshold (minsup).
Following the work of Agrawal and Srikant many studies have contributed to the
efficient mining of sequential patterns (Mooney and Roddick 2013). Most of them
are based on the antimonotonicity property (used in Apriori), which states that any
super pattern of a non-frequent pattern cannot be frequent. The main algorithms
are PrefixSpan (Pei et al. 2001a), SPADE (Zaki 2001), SPAM (Ayres et al. 2002),
PSP (Masseglia, Cathala, and Poncelet 1998), DISC (Chiu, Wu, and Chen 2004),
PAID (Yang, Kitsuregawa, and Wang 2006) and FAST (Salvemini et al. 2011). All
these algorithms aim at discovering sequential patterns from a set of sequences of
itemsets such as customers who frequently buy DVDs of episodes I, II and III of
Stars Wars, then buy within 6 months episodes IV, V, VI of the same famous epic
space opera.

Many studies about sequential pattern discovery focus on single-dimensional se-
quences. However, in many situations, the database is multidimensional in the
sense that items can be of different nature. For example, a consumer database
can hold information such as article price, gender of the customer, location of the
store and so on. Pinto et al. (2001) proposed the first work for mining multidimen-
sional sequential patterns. In this work, a multidimensional sequential database is
defined as a schema (ID,D1, ..., Dm, S), where ID is a unique customer identifier,
D1, ..., Dm are dimensions describing the data and S is the sequence of itemsets.
A multidimensional sequence is defined as a vector 〈{d1, d2, ..., dm}, S1, S2, ..., Sl〉
where di ∈ Di for (i 6 m) and S1, S2, ..., Sl, are the itemsets of sequence S. For
instance, 〈{Metz,Male}, {mp1, mp2}, {mp3}〉 describes a male patient who under-
went procedures mp1 and mp2 in Metz and then underwent mp3 also in Metz. Here,
dimensions remain constant over time, such as the location of the treatment. This
means that it is not possible to have a pattern indicating that when the patient
underwent procedures mp1 and mp2 in Metz then he underwent mp3 in Nancy.
Among other proposals, Yu and Chen (2005) proposed two methods AprioriMD

17

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

and PrefixMDSpan for mining multidimensional sequential patterns in the web do-
main. This study considers pages, sessions and days as dimensions. Actually, these
three different dimensions can be projected into a single dimension corresponding to
web pages, gathering web pages visited during a same session and ordering sessions
w.r.t the day as order.

In real world applications, each dimension can be represented at different levels
of granularity, by using a poset. For example, apples in a market basket analysis
can be either described as fruits, fresh food or food. The interest lies in the capacity
of extracting more or less general/specific multidimensional sequential patterns and
overcome problems of excessive granularity and low support. Srikant and Agrawal
(1996) proposed GSP which uses posets for extracting sequential patterns. The
basic approach is based on replacing every item with all the ancestors in the poset
and then the frequent sequences are generated. This approach is not scalable in a
multidimensional context because the size of the database becomes the product of
maximum height of the posets and number of dimensions.

Plantevit et al. (2010) defined a multidimensional sequence as an ordered list
of multidimensional items, where a multidimensional item is a tuple (d1, ..., dm)
and di is an item associated with the ith dimension. They proposed M3SP , an
approach taking both aspects into account where each dimension is represented
at different levels of granularity, by using a poset. M3SP is able to search for
sequential patterns with the most appropriate level of granularity. Their approach
is based on the extraction of the most specific frequent multidimensional items,
which are then used as alphabet to rephrase the original database. Then, M3SP
uses a standard sequential pattern mining algorithm to extract multidimensional
sequential patterns. However, M3SP is not adapted to mine sequential databases,
where sequences are defined over a combination of sets of items and items lying in
a poset. Then it is not possible to have a pattern indicating that when the patient
went to uhp for a problem of cancer ca, where he underwent procedures mp1 and
mp2, then he went to ghl for the same medical problem ca, where he underwent mp3

(i.e, 〈(uhp, ca, {mp1,mp2}), (ghl, ca, {mp3})〉). Our approach allows us to process
such kind of patterns and in addition the elements of sequences are even more
general. For example, beside multidimensional and multilevel sequences, sequences
of graphs fall under our definition. Moreover, frequent subsequence mining gives
rise to a lot of subsequences which can be hardly analyzed by an expert. Since our
approach is based on Formal Concept Analysis (FCA) (Ganter and Wille 1999), we
can use efficient relevance indexes defined in FCA.

This paper is not the first attempt to use FCA for the analysis of sequential
data. Ferré (2007) processes sequential datasets based on a “simple” alphabet with-
out involving any partial order. In Casas-Garriga (2005) only sequences of itemsets
are considered. All closed subsequences are firstly mined and then regrouped by a
specialized algorithm in order to obtain a lattice similar to the FCA lattice. This ap-
proach was not verified experimentally. Moreover, compared with both approaches,
i.e. Ferré (2007) and Casas-Garriga (2005), our approach suggests a more general
definition of sequences and, thanks to pattern structures, there is no ‘pre-mining’
step to find frequent (or maximal) subsequences. This allows us to apply different
“projections” specializing the request of an expert and simplifying the computa-
tions. In addition, in our approach nearly all state-of-the-art FCA algorithms can
be used in order to efficiently process a dataset.

There is a number of approaches that help to analyze medical treatment data.
However, the direct comparison of them is hardly possible, because every approach
is designed for its own problem. For example, (Tsumoto et al. 2014) analyze data of

18

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

one hospital and provide a different view on the processes within the hospital w.r.t.
our approach. Finally and naturally, the most similar approach to our work can be
found in (Egho et al. 2014a,b), as some authors of the present paper are involved
in this alternative work. In (Egho et al. 2014a,b), authors mine frequent sequences
of the dataset similar to the sequences studied here. However, they approach the
complexity of the analysis of such data in a different way. They use a support
threshold in order to specify the outcome of the algorithm and do not provide any
order in which one can analyze the result. In our case we rely on projections that
are usually simpler to incorporate expert knowledge than a support threshold and
we give an order (w.r.t. stability of a concept) which can be used to simplify the
analysis of the treatment data.

7. Conclusion

In this paper, we have presented a novel approach for analyzing sequential data
within the framework of pattern structures, an extension of Formal Concept Anal-
ysis dealing with complex data. It is based on the formalism of sequential pattern
structures and projections. Our work complements the general orientations towards
statistically significant patterns by presenting strong formal results on the notion of
interestingness from a concept lattice viewpoint. The framework of pattern struc-
tures is very flexible and shows some important properties, for example in allowing
to reuse state-of-the-art and efficient FCA algorithms. Using pattern structures leads
to the construction of a pattern concept lattice, which does not require the setting
of a support threshold, as usually needed in classical sequential pattern mining.
Moreover, the use of projections gives a lot of flexibility especially for mining and
interpreting special kinds of patterns (patterns can be proposed at several levels of
complexity w.r.t. extraction and interpretation).

Our framework was tested on a real-world dataset with patient hospitalization
trajectories. Interesting patterns answering questions of an expert are extracted
and interpreted, showing the feasibility and usefulness of the approach, and the im-
portance of the stability as a pattern-selection procedure. In particular, projections
play an important role here: mainly, they provide means to select patterns of a spe-
cial interest and they help to save computational time (which could be otherwise
very large).

For future work, we are planning to more deeply investigate projections, their
potential w.r.t. the types of patterns. It can be interesting to introduce and evaluate
the stability measure directly on sequences. Another research direction is mining of
association rules or building a Horn approximation (Balcázar and Casas-Garriga
2005) from the stable part of the pattern lattice or stable sequences. Finally, as
discussed above, a precise study combining frequent subsequence mining and FCA-
based approaches should be carried out.

Acknowledgments

The fourth co-author was supported within the framework of the Basic Research
Program at National Research University Higher School of Economics (Moscow).

19

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Notes on contributors

Aleksey Buzmakov is a PhD student in Informatics at Université de Lorraine (Vandœvre
de Nance, France). He holds master and bachelor degree in applied mathematics and
physics from Moscow Institute of Physics and Technology. His research interest in-
cludes data mining and artificial intelligences. In particular he works with Formal
Concept Analysis and Pattern Structure in order to mine complex data such as se-
quences or graphs.

Elias Egho is a Post Doctoral Researcher in Orange Labs (France Telecom Research and
Development) with Profiling & Data Mining team. In 2014, he received a PhD degree
in Computer Science from University of Lorraine, Nancy, France in LORIA-INRIA
Nancy Grand Est laboratory. His main research interest is mining sequential patterns
for detection and classification of sequential data.

Nicolas Jay is a professor of biostatistics and medical informatics at the Université de
Lorraine. His research interests include medical knowledge representation and knowl-
edge discovery in medical databases, with applications to patient trajectory analysis.
He works as a public health physician at the University Hospital of Nancy.

Sergei O. Kuznetsov is a professor of the National Research University Higher School
of Economics (HSE), Moscow, where he is the head of department of data analysis
and artificial intelligence. He defended habilitation thesis (“Doctor of Science”) at
the Computer Center of the Russian Academy of Sciences (Moscow, Russia) in 2002.
He holds the “Candidate of Science” degree (PhD equivalent) from VINITI (Moscow,
Russia) since 1990. His research interests include mathematical models, algorithms
and algorithmic problems of machine learning, formal concept analysis, data mining,
and knowledge discovery.

Amedeo Napoli is a CNRS senior scientist (DR CNRS) and the scientific leader of the
Orpailleur research team at LORIA/Inria Laboratory in Nancy. His scientific in-
terests are knowledge discovery (pattern mining and Formal Concept Analysis) and
knowledge representation (ontology engineering). He is involved in many national and
international research projects with applications in agronomy, biology, chemistry, and
medicine.

Chedy Räısi received his PhD in Computer Science from the University of Montpellier
and the Ecole des Mines d’Alès in July 2008. He is currently a research scientist
(“Chargé de recherche 1”) at the Institut ”National de Recherche en Informatique et
en Automatique” (INRIA) in France. His research interests includes pattern mining
and privacy-preserving data analysis.

References

Adda, Mehdi, Petko Valtchev, Rokia Missaoui, and Chabane Djeraba. 2010. “A framework
for mining meaningful usage patterns within a semantically enhanced web portal.” In
Proceedings of the 3rd C* Conference on Computer Science and Software Engineering,
C3S2E ’10. 138–147. New York, NY, USA: ACM.

Agrawal, Rakesh, and Ramakrishnan Srikant. 1995. “Mining Sequential Patterns.” In Pro-
ceedings of the Eleventh International Conference on Data Engineering, ICDE ’95. 3–14.
Washington, DC, USA: IEEE Computer Society.

Ayres, Jay, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. “Sequential PAttern
mining using a bitmap representation.” In KDD, 429–435.

Balcázar, José L, and Gemma Casas-Garriga. 2005. “On Horn Axiomatizations for Sequen-
tial Data.” In ICDT, 215–229.

Buzmakov, Aleksey, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov, Amedeo Napoli, and
Chedy Räıssi. 2013. “On Projections of Sequential Pattern Structures (with an applica-
tion on care trajectories).” In Proc. 10th International Conference on Concept Lattices
and Their Applications, 199–208.

Casas-Garriga, Gemma. 2005. “Summarizing Sequential Data with Closed Partial Orders..”
In Proc. of the 5th SIAM Int’l Conf. on Data Mining (SDM’05), .

Chiu, Ding-Ying, Yi-Hung Wu, and Arbee L. P. Chen. 2004. “An Efficient Algorithm for

20

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

Mining Frequent Sequences by a New Strategy without Support Counting.” In ICDE,
375–386.

Ding, Bolin, David Lo, Jiawei Han, and Siau-Cheng Khoo. 2009. “Efficient Mining of Closed
Repetitive Gapped Subsequences from a Sequence Database.” In Proc. of IEEE 25th
International Conference on Data Engineering, 1024–1035. IEEE. Mar..

Egho, Elias, Nicolas Jay, Chedy Räıssi, Dino Ienco, Pascal Poncelet, Maguelonne Teisseire,
and Amedeo Napoli. 2014a. “A contribution to the discovery of multidimensional patterns
in healthcare trajectories.” Journal of Intelligent Information Systems 42 (2): 283–305.

Egho, Elias, Chedy Räıssi, Nicolas Jay, and Amedeo Napoli. 2014b. “Mining Heterogeneous
Multidimensional Sequential Patterns.” In ECAI 2014 - 21st European Conference on
Artificial Intelligence, 279–284.

Ferré, Sébastien. 2007. “The Efficient Computation of Complete and Concise Substring
Scales with Suffix Trees.” In Formal Concept Analysis SE - 7, Vol. 4390 of Lecture Notes in
Computer Science edited by Sergei O. Kuznetsov and Stefan Schmidt. 98–113. Springer.

Fetter, R. B., Y. Shin, J. L. Freeman, R. F. Averill, and J. D. Thompson. 1980. “Case mix
definition by diagnosis-related groups..” Med Care 18 (2): 1–53.

Ganter, Bernhard, and Sergei O. Kuznetsov. 2001. “Pattern Structures and Their Projec-
tions.” In Conceptual Structures: Broadening the Base, Vol. 2120 of Lecture Notes in
Computer Science edited by Harry S. Delugach and Gerd Stumme. 129–142. Springer
Berlin Heidelberg.

Ganter, Bernhard, and Rudolf Wille. 1999. Formal Concept Analysis: Mathematical Foun-
dations. 1st ed. Springer.

Han, Jiawei, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal, and Meichun
Hsu. 2000. “FreeSpan: frequent pattern-projected sequential pattern mining.” In Proc. of
the 6th ACM SIGKDD Int’l Conf. on Knowledge discovery and data mining, 355–359.

Klimushkin, Mikhail, Sergei A. Obiedkov, and Camille Roth. 2010. “Approaches to the Se-
lection of Relevant Concepts in the Case of Noisy Data.” In Proc. of the 8th International
Conference on Formal Concept Analysis, ICFCA’10. 255–266. Springer.

Kuznetsov, Sergei O. 1999. “Learning of Simple Conceptual Graphs from Positive and Neg-
ative Examples.” In Principles of Data Mining and Knowledge Discovery SE - 47, Vol.
1704 of Lecture Notes in Computer Science edited by Jan M. Żytkow and Jan Rauch.
384–391. Springer Berlin Heidelberg.

Kuznetsov, Sergei O. 2007. “On stability of a formal concept.” Annals of Mathematics and
Artificial Intelligence 49 (1-4): 101–115.

Masseglia, Florent, Fabienne Cathala, and Pascal Poncelet. 1998. “The PSP Approach for
Mining Sequential Patterns.” In PKDD, 176–184.

Merwe, Dean Van Der, Sergei Obiedkov, and Derrick Kourie. 2004. “AddIntent: A new
incremental algorithm for constructing concept lattices.” In Concept Lattices, Vol. 2961
edited by Gerhard Goos, Juris Hartmanis, Jan Leeuwen, and Peter Eklund. 372–385.
Springer.

Mooney, Carl H., and John F. Roddick. 2013. “Sequential pattern mining – approaches and
algorithms.” ACM Computing Surveys 45 (2): 1–39.

Pei, Jian, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal,
and Meichun Hsu. 2001a. “PrefixSpan: Mining Sequential Patterns by Prefix-Projected
Growth.” In ICDE, 215–224.

Pei, Jian, Jiawei Han, B. Mortazavi-Asl, H. Pinto, Qiming Chen, U. Dayal, and Mei-Chun
Hsu. 2001b. “PrefixSpan Mining Sequential Patterns Efficiently by Prefix Projected Pat-
tern Growth.” In 17th International Conference on Data Engineering, 215–226.

Pinto, Helen, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar Dayal. 2001.
“Multi-Dimensional Sequential Pattern Mining.” In CIKM, 81–88.

Plantevit, Marc, Anne Laurent, Dominique Laurent, Maguelonne Teisseire, and Yeow Wei
Choong. 2010. “Mining multidimensional and multilevel sequential patterns.” ACM
Transactions on Knowledge Discovery from Data 4 (1): 1–37.

Räıssi, Chedy, Toon Calders, and Pascal Poncelet. 2008. “Mining conjunctive sequential
patterns.” Data Min. Knowl. Discov. 17 (1): 77–93.

Roth, Camille, Sergei Obiedkov, and Derrick G Kourie. 2008. “On succinct representation

21

August 25, 2015 International Journal of General Systems ijgs-postCLA2013-seq-pattern-structures

of knowledge community taxonomies with formal concept analysis A Formal Concept
Analysis Approach in Applied Epistemology.” International Journal of Foundations of
Computer Science 19 (02): 383–404.

Salvemini, Eliana, Fabio Fumarola, Donato Malerba, and Jiawei Han. 2011. “FAST se-
quence mining based on sparse id-lists.” In Proceedings of the 19th international con-
ference on Foundations of intelligent systems, ISMIS’11. 316–325. Berlin, Heidelberg:
Springer-Verlag.

Srikant, Ramakrishnan, and Rakesh Agrawal. 1996. “Mining Sequential Patterns: General-
izations and Performance Improvements.” In Proceedings of the 5th International Con-
ference on Extending Database Technology: Advances in Database Technology, EDBT ’96.
3–17. London, UK, UK: Springer-Verlag.

Tsumoto, Shusaku, Haruko Iwata, Shoji Hirano, and Yuko Tsumoto. 2014. “Similarity-
based behavior and process mining of medical practices.” Future Generation Computer
Systems 33 (0): 21–31.

Yan, Xifeng, Jiawei Han, and Ramin Afshar. 2003. “CloSpan: Mining Closed Sequential
Patterns in Large Databases.” In Proc. of SIAM Int’l Conf. Data Mining (SDM’03),
166–177.

Yang, Zhenglu, Masaru Kitsuregawa, and Yitong Wang. 2006. “PAID: Mining Sequential
Patterns by Passed Item Deduction in Large Databases.” In IDEAS, 113–120.

Yu, Chung-Ching, and Yen-Liang Chen. 2005. “Mining Sequential Patterns from Multidi-
mensional Sequence Data.” IEEE Trans. Knowl. Data Eng. 17 (1): 136–140.

Zaki, Mohammed J. 2001. “SPADE: An Efficient Algorithm for Mining Frequent Se-
quences.” Mach. Learn. 42 (1-2): 31–60.

22

