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Compression technology is an efficient way to reserve useful and valuable data as well as remove redundant and inessential data
from datasets. With the development of RFID and GPS devices, more and more moving objects can be traced and their trajectories
can be recorded. However, the exponential increase in the amount of such trajectory data has caused a series of problems in
the storage, processing, and analysis of data. Therefore, moving object trajectory compression undoubtedly becomes one of the
hotspots in moving object data mining. To provide an overview, we survey and summarize the development and trend of moving
object compression and analyze typical moving object compression algorithms presented in recent years. In this paper, we firstly
summarize the strategies and implementation processes of classical moving object compression algorithms. Secondly, the related
definitions about moving objects and their trajectories are discussed. Thirdly, the validation criteria are introduced for evaluating
the performance and efficiency of compression algorithms. Finally, some application scenarios are also summarized to point out
the potential application in the future. It is hoped that this research will serve as the steppingstone for those interested in advancing
moving objects mining.

1. Introduction

In recent years, with the rapid development and extensive
use of GPS devices, RFID sensors, satellites, and wireless
communication technologies, it is possible to track various
kinds of moving objects all over the world and collect a
myriad of trajectory data with respect to the mobility of
various moving objects (such as people, vehicles, and ani-
mals) containing a great deal of knowledge. These data need
an urgent and effective analysis. A moving object spatial-
temporal trajectory is a sequence of position, attribute, and
time [1], which are three basic characteristics of geographic
phenomena and three basis data of GIS database [2]. Moving
objects move continuously while their locations can only
be updated at discrete times, leaving the location of a
moving object between two updates uncertain, for the limit
of acquisition, storage, and processing technologies [3]. The
simplest description of a trajectory is a finite sequence of
geolocations with timestamps.

As time goes on, it will lead to a series of difficulties
in storing, transmitting, and analyzing data, for the size of
trajectory data is sharply increasing and the scale of data is
growing huge and complex. First of all, the shear volumes
of data can quickly overwhelm available data storage, which
will make it difficult to store the data. For instance, if data
is collected at 2 second intervals, 1 GB of storage capacity
is required to store just over 800 objects for a single day.
Therefore, the storage of data will result in an enormous
cost. The cost of transmitting a large amount of trajectory
data, which may be expensive and problematic, is the second
major problem highlighting the need of compressing data.
According to [4], the cost of sending a volume of data over
remote networks can be prohibitively expensive, typically
ranging from $5 to $7 perMb. Thus, tracking a fleet of 800
vehicles for a single daywould incur a cost of $5,000 to $7,000,
or approximately $1,825,000 to $2,555,000 annually. Finally,
along with the increasing of the data scale, it is difficult for us
to extract the valuable and useful patterns.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 6587309, 13 pages
http://dx.doi.org/10.1155/2016/6587309



2 Mathematical Problems in Engineering

P1
P2

P3

P4

P6

P8

P9

P7
P5

S1

S2

S3

S4

X

Y

Figure 1: A schematic of the trajectory compression.

To address these issues, two categories of trajectory
compression strategies have been proposed, aiming to reduce
the size of a trajectory while not compromising much
precision in its new data representation [5]. One is the
offline compression, which reduces the size of trajectory after
the trajectory has been fully generated. The other is online
compression, compressing a trajectory instantly as an object
travels. On the one hand, it can reduce the memory space by
compressing, which will make the storage of data easier. On
the other hand, it can cut down the size of data, which will
be convenient for the transmission of data. What is more, it
can reserve the useful information in trajectories and remove
redundant data from trajectories, which have the potential to
make the thorough analysis of trajectory data easier.The data
compression is a method that reduces the size of data to cut
down the memory space and improve the efficiency of trans-
mission, storage, and processing without losing information
or reorganizes data to reduce the redundancy and memory
space according to certain algorithms. Data compression can
be classified into two categories, namely, lossless and lossy
compression. Moving object trajectory compression aims to
reduce the size and memory space of a trajectory on the
premise that the information contained in trajectory data
is reserved; that is to say, in order to cut down the size of
data, it removes redundant location points while ensuring
the accuracy of the trajectory [6]. Figure 1 is a schematic
diagram of a trajectory compression, where the original
trajectory is represented by black lines and the compressed
trajectory consists of red lines (namely, 𝑆

1
, 𝑆
2
, 𝑆
3
, and 𝑆

4
).

There are 9 points in the original trajectory, but only 5
points are retained to approximately represent the original
trajectory after compressing whose compression ratio is close
to 50%. Thus, it can be seen that trajectory compressions
play an important role in the storage and analysis of data.
But trajectory compression tends to cause a certain loss
of information, while compressing trajectories. Therefore,
various trajectory algorithms existing in literature balance the
tradeoff between accuracy and storage size.

The trajectory compression technology derives from the
topographic cartography and computer graphics. The most
native and simplest compressionmethod is uniform sampling
algorithmwhich simply takes every 𝑖th point in the trajectory
[7]. In 1961, Bellman put forward a new algorithm called

Bellman algorithm, which solves linear generalization prob-
lems by dynamic programming methods [8]. This method
will guarantee that the segments connecting the specific
number of points selected from the curve are closest to the
original curve, but the time overhead of it is giant which is
up to𝑂(𝑛3). One of the most classical trajectory compression
algorithms called Douglas-Peucker algorithm was presented
in 1973 by Douglas and Peucker [9]. In 2001, Keogh et al.
put forward the Opening Window algorithm to compress
trajectory data online. However, traditional error metrics
(such as perpendicular distance) are not suitable for moving
object trajectories, whose spatial characteristics and temporal
characteristics need to be simultaneously considered, due
to their internal features. In 2004, Meratnia and Rolf put
forward a top-down speed-based algorithm and a top-down
time-ratio algorithm [3]. The former improves the existing
compression techniques by exploiting the spatiotemporal
information hiding in the time series, while the latter is a
transformation of DP algorithm which took a full consid-
eration of spatiotemporal characteristics by replacing spatial
error with SED. In 2006, Potamias et al. put forward STTrace
algorithm estimating the safe zone of successor point by
location, velocity, and direction. Meanwhile, it is suitable for
smallmemory devices [10]. Gudmundsson et al. developed an
implementation of the Douglas-Peucker path-simplification
algorithm in 2009, which works efficiently even in the case
where the polygonal path given as input is allowed to self-
intersect [11]. In 2009, Schmid et al. proposed that trajectories
stored in the form of trajectory points can be instead of
semantic information of road networks [12]. Since then,many
researchers have been doing a great deal of studies about
the semantic information of road networks [13–18]. With the
increasing of the data, traditional compression algorithms
are quite limited for online trajectory data. Therefore, online
trajectory compression becomes one of the hot topics [19–
21]. For example, Opening Window Time-Ratio algorithm
was put forward by Meratnia, which is an extension to
Opening Window using SED instead of spatial error, to take
temporal features into account [2]. And Trajcevski et al. put
forward another online algorithm called Dead Reckoning
algorithm, which estimates the successor point through
the current point and its velocity [22]. Out of traditional
position preserved trajectory compression algorithms, many
scholars have focused on different perspectives. For example,
Birnbaum et al. proposed a trajectory simplicity algorithm
based on subtrajectories and their similarity [23]. Long et al.
proposed a polynomial-time algorithm for optimal direction-
preserving simplification, which supports a border appli-
cation range than position-preserving simplification [24].
Nibali and He proposed an effective compression system
for trajectory data called Trajic, which can fill the gap of
good compression ratio and small error margin [25]. Similar
to STTrace, Muckell et al. put forward the Spatial QUalIty
SimplificationHeuristicmethod [26]. In 2012, Chen et al. pro-
posed aMultiresolution PolygonalApproximation algorithm,
which compressed trajectories by a joint optimization on
both the LSSD and the ISSD criteria [27]. In 2014, Muckell et
al. proposed a new algorithm, SQUISH-E, which compresses
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Table 1: Summary of trajectory compression algorithms (𝑛 is the size of trajectories).

Algorithm Computational
complexity Batch or online Error criteria

Uniform sampling algorithm 𝑂(𝑛) Batch/online Target compression
ratio (𝜆)

Bellman algorithm 𝑂(𝑛
3) Batch Target compression

ratio (𝜆)
Douglas-Peucker algorithm 𝑂(𝑛 log 𝑛) Batch Spatial distance (𝜀)
Opening Window algorithm 𝑂(𝑛

2
) Online Spatial distance (𝜀)

Top-down time-ratio algorithm 𝑂(𝑛 log 𝑛) Batch SED distance (𝜀)
Top-down speed-based algorithm 𝑂(𝑛

2
) Batch/online Speed difference (𝑠

𝑑
)

Opening Window Time-Ratio algorithm 𝑂(𝑛 log 𝑛) Online SED distance (𝜀)

Dead Reckoning 𝑂(𝑛) Online SED distance (𝜀),
velocity (v)

Semantic trajectory compression 𝑂(𝑛
2
) Batch Spatial distance (𝜀)

Paralleled road-network-based trajectory
compression 𝑂(𝑛) Batch TSND, NSTD

Similarity based compression of GPS
trajectory data 𝑂(𝑛 log 𝑛) Batch Similarity (𝜇)

Spatial QUalIty Simplification Heuristic
algorithm 𝑂(log 𝑛) Batch/online SED distance (𝜀)

Spatial QUalIty Simplification
Heuristic-Extended algorithm 𝑂(log 𝑛) Batch/online SED distance (𝜀),

compression ratio (𝜆)

trajectories with provable guarantees on errors [28]. This
algorithm has the flexibility of tuning compression with
respect to compression ratio and error. Algorithms involved
in this paper are summarized in Table 1 from the complexity,
application scope, and error metric of them.

In literature [29], the traditional trajectory compression
algorithms were classified into the following 4 categories,
which are now unable to contain all of the compression
algorithms.

(1) Top-Down. The data series is recursively partitioned
until some halting condition is met. The popular top-down
compression methods include Douglas-Peucker algorithm,
top-down speed-based algorithm, and top-down time-ratio
algorithm.

(2) Bottom-Up. Starting from the finest possible representa-
tion, successive data points are merged until some halting
condition is met. The algorithm may not visit all data points
in sequence.

(3) Sliding Window. Starting from one to the end of the data
series, a window of fixed size is moved over the data points
and compression takes place only on the data points inside
the window. Spatial QUalIty Simplification Heuristic method
and SQUISH-E algorithm are the popular sliding window
methods.

(4) OpeningWindow. Starting from one to the end of the data
series, a compression takes place on the data points inside
the window whose size is decided by the number of points
to be processed. Its process will not end until some halting

condition is met. The window size is not constant while
compressing. The famous Opening Window methods are
Opening Window algorithm and Opening Window Time-
Ratio algorithm.

The organization of this paper is as follows: the basic ideal
of compression and typical algorithms of compression are
introduced and discussed in Section 1.The related definitions
about moving objects and their trajectories are summarized
in Section 2. The survey of moving object compression
algorithms is given in Section 3. Some validation criteria of
compression performance are discussed in Section 4 to reveal
their benefit for moving object compression. In Section 5,
some public trajectory datasets are described. Some typical
application scenarios are listed to show the application of
moving object compression in Section 6. In Section 7, some
disadvantages and future works are summarized.

2. Related Definitions about Moving Objects
and Their Trajectories

2.1. Trajectory Data. A spatial-temporal trajectory of a mov-
ing object is defined as a sequence of position, attribute, and
time in literature [1]. It is necessary for a formal description
of a trajectory and its correlation attributes to describe the
methods in this paper. A trajectory formally defined in
literature [30] is also suitable in this paper. Giving TD as
Trajectory Database denotes trajectory sets, and TD = {TR

1
,

TR
2
, . . . ,TR

𝑛
}. A trajectory (TR) is a chronological sequence

consisting of multidimensional locations, which is denoted
by TR

𝑖
= {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
} (1 ≤ 𝑖 ≤ 𝑛). 𝑃

𝑗
(1 ≤ 𝑗 ≤ 𝑚),

a sampling point in TR
𝑖
, is represented as ⟨Location

𝑗
, 𝑇
𝑗
⟩,
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which means that the position of the moving object is
Location

𝑗
at time𝑇

𝑗
. Location

𝑗
is amultidimensional location

point. A trajectory 𝑃
𝑐
1

, 𝑃
𝑐
2

, . . . , 𝑃
𝑐
𝑖

(1 ≤ 𝑐
1
< 𝑐
2
< ⋅ ⋅ ⋅ ≤

𝑚) represents a trajectory segment or subtrajectory of a
trajectory TR

𝑖
, denoted as TS (Trajectory Segment), TS

𝑖
=

{𝐿
𝑖
1

, 𝐿
𝑖
2

, . . . , 𝐿
𝑖num

}.
In this section, we classify the derivation of trajectories

into 4 major categories, briefly introducing a few application
scenarios in each category [31].

(1) Mobility of People. Real-world movements of people are
recorded in the formof spatial-temporal trajectories passively
and actively. Such records can be translated into a great
amount of spatial-temporal trajectories that can be used in
human behavior analysis and inferring social ties.

Active Recording. Travelers actively log their travel routes for
the purpose of memorizing a journey and sharing experience
with friends. In Flickr, a series of geotagged photos can
formulate a spatial-temporal trajectory as each photo has a
location tag and a time stamp corresponding to where and
when the photo was taken. Likewise, the “check-ins” of a user
in a location-based social network can be also regarded as a
spatial-temporal trajectory, when sorted chronologically.

Passive Recording. A user carrying a mobile phone uninten-
tionally generates many spatial-temporal trajectories repre-
sented by a sequence of cell tower IDs with corresponding
transition times. In addition, transaction records of a credit
card also indicate the spatial-temporal trajectory of the
cardholder, as each transaction contains a time stamp and
a merchant ID denoting the location where the transaction
occurred.

(2) Mobility of Transportation Vehicles. A great number of
vehicles (such as taxis, buses, vessels, and aircrafts) have
been equipped with a GPS device. For instance, many taxis
have been equipped with a GPS sensor, which enables them
to report a time-stamped location with a certain frequency.
Such reports formulate a large amount of spatial-temporal
trajectories that can be used for resource allocation, traffic
analysis, and improving transportation networks.

(3) Mobility of Animals. Biologists are collecting the moving
trajectories of animals like tigers and birds, for the purpose
of studying animals’ migratory traces, behavior, and living
situations.

(4) Mobility of Natural Phenomena. Meteorologists, envi-
ronmentalists, climatologists, and oceanographers are busy
collecting the trajectories of natural phenomena, such as
hurricanes, tornados, and ocean currents. These trajectories
capture the change of the environment and climate, helping
scientists deal with natural disasters and protect the natural
environment we live in.

2.2. Road Network. A road network is defined as a directed
graph 𝐺 = (𝑉, 𝐸), where 𝑉 is a finite vertex set in which
every vertex denotes a location point, and 𝐸 is a finite edge

Figure 2: A schematic of road network.

set in which every edge denotes a segment connecting 2
vertexes. A road network can also be regard as a constrained
2-dimensional space, often referred to as 1.5-dimensional
space. The road network contains 29 vertexes (𝑉) and 36
edges (𝐸) in Figure 2.

In 2-dimensional space, a point (𝑝) is a two-tuple in
the form of (𝑥, 𝑦) and a polyline (pl) is a set of points.
The distance (𝑑) of the points (𝑝) in the polyline (pl) is
the distance along the polyline (pl) from its starting point
to point 𝑝. The definitions of road network point, distance,
polyline, segment, and measurement in road network space
are described as follow.

(1) Road Network Point. The point 𝑝 in road network space
can be denoted in the form of 𝑝 = (𝑒, 𝑑), where 𝑒 is the point
in a road and 𝑑 is the measurement of 𝑝 along the road.

(2) Road Network Distance. The distance (𝑑) between 2
random points (𝑝

1
and 𝑝

2
) in road network space is the

shortest path length along the road from 𝑝
1
to 𝑝
2
.

(3) Road Network Polyline. The road network polyline is
denoted as pl = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
), where 𝑛 > 1. The length of

polyline is the summation of the distance between 2 adjacent
vertexes.

(4) RoadNetwork Segment.The roadnetwork segment in road
network space is a road network polyline which owns and
only owns 2 vertexes.

(5) Edge of Road Network. The edge (𝑒) in road network is the
path between 2 adjacent intersections.

(6) A TrajectoryModel Based on RoadNetwork.The trajectory
model based on road network is a new representation of
moving object trajectories, which matches GPS points with
road network to more accurately describe the spatial motion
information of moving objects by their motion laws in
road network. Meanwhile, the model introduces a nonlinear
interpolation function among sampling points to preferably
describe variable motions. The trajectory model based on
road network separates the locations from time stamps. In
other words, a trajectory is represented by a spatial path
and a temporal sequence. The spatial path of a trajectory
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Figure 3: A trajectory in road network.

in a road network is a sequence of consecutive edges. As
shown in Figure 3, a trajectory sequentially passes edges
𝑒
15
, 𝑒
16
, 𝑒
13
, 𝑒
6
, and 𝑒

3
. Consequently, it can be represented

by a spatial path in the format of ⟨𝑒
15
, 𝑒
16
, 𝑒
13
, 𝑒
6
, 𝑒
3
⟩. Note

that a trajectory can start from or end at any point of an
edge, not necessarily an endpoint. The temporal information
of a trajectory is captured by a two-tuple (𝑑

𝑖
, 𝑡
𝑖
), where 𝑑

𝑖

represents the road network distance the object has traveled
at the time stamp 𝑡

𝑖
from the start of the trajectory and 𝑡

𝑖

represents the time the object has traveled at the location 𝑑
𝑖

from the start of the trajectory.

2.3. Perpendicular Distance and Synchronized Euclidean Dis-
tance. The perpendicular distance of point 𝑝 is the shortest

distance between the current point and the segment con-
necting the first and last points of the trajectory, while
Synchronized Euclidean Distance of point 𝑝 is the distance
between the currently real point and the synchronized point
acquired by interpolating between the precursor point and
the successor point of the current point. In Figure 4, the
perpendicular distance of point 𝑝

𝑖+1
is denoted as 𝑑

⊥
and the

Synchronized Euclidean Distance of point 𝑝
𝑖+1

is denoted as
SED.

As shown in Figure 4, 𝑝
𝑖+1

is the current sampling point,
𝑝
𝑖
𝑝
𝑖+2

is the segment connecting the first and last points of the
trajectory, 𝑝󸀠

𝑖+1
is the synchronized point of 𝑝

𝑖+1
in segment

𝑝
𝑖
𝑝
𝑖+2

, and the coordinate of 𝑝󸀠
𝑖+1

is calculated by

𝑡
󸀠

𝑖+1
= 𝑡
𝑖+1
,

𝑥
󸀠

𝑖+1
= 𝑥
𝑖+1

+
𝑡
𝑖+1

− 𝑡
𝑖

𝑡
𝑖+2

− 𝑡
𝑖

(𝑥
𝑖+2

− 𝑥
𝑖
) ,

𝑦
󸀠

𝑖+1
= 𝑦
𝑖+1

+
𝑡
𝑖+1

− 𝑡
𝑖

𝑡
𝑖+2

− 𝑡
𝑖

(𝑦
𝑖+2

− 𝑦
𝑖
) .

(1)

The perpendicular distance and Synchronized Euclidean
Distance between 𝑝

𝑖+1
and 𝑝

𝑖
𝑝
𝑖+2

are calculated by formula
(2), according to formula (1):

𝑑
⊥
=

󵄨󵄨󵄨󵄨𝑥𝑖 ∗ 𝑦𝑖+2 + 𝑥𝑖+2 ∗ 𝑦𝑖+1 + 𝑥𝑖+1 ∗ 𝑦𝑖 − 𝑥𝑖+2 ∗ 𝑦𝑖 − 𝑥𝑖+1 ∗ 𝑦𝑖+2 − 𝑥𝑖 ∗ 𝑦𝑖+1
󵄨󵄨󵄨󵄨

4 ∗ √(𝑥
𝑖
− 𝑥
𝑖+2
)
2

+ (𝑦
𝑖
− 𝑦
𝑖+2
)
2

,

SED = √(𝑥
𝑖
− 𝑥
󸀠

𝑖+2
)
2

+ (𝑦
𝑖
− 𝑦
󸀠

𝑖+2
)
2

.

(2)

2.4. Trajectory Similarity. The trajectory similarity is calcu-
lated by measuring the similarity between two trajectories
or subtrajectories utilizing Euclidean distance, PCA Plus
Euclidean distance, Hausdorff distance, Fréchet distance, and
so on. In this section, we introduce 4 classical trajectory
similarity measurements.

2.4.1. Euclidean Distance. Let 𝐿
𝑖
and 𝐿

𝑗
be 𝑝-dimensional

trajectory segmentswith length of 𝑛.Their Euclidean distance
denoted as𝐷

𝐸
is given in

𝐷
𝐸
(𝐿
𝑖
, 𝐿
𝑗
) =

1

𝑛

𝑛

∑

𝑘−1

√

𝑝

∑

𝑚−1

(𝑎
𝑚

𝑘
− 𝑏
𝑚

𝑘
)
2

. (3)

2.4.2. PCA Plus Euclidean Distance. When computing PCA
(Principal Components Analysis) Plus Euclidean distance,
trajectory is firstly represented as a 1D signal by concatenating
the 𝑥 and the 𝑦 projections.Then, location signal is converted
into the first few PCA coefficients.The trajectory similarity is

the Euclidean distance computed with the PCA coefficients,
as shown in

𝐷PCA
𝐸

(𝐿
𝑖
, 𝐿
𝑗
) = √

𝐾

∑

𝑘−1

(𝑎
𝑐

𝑘
− 𝑏
𝑐

𝑘
)
2

. (4)

Here, 𝑎𝑐
𝑘
and 𝑏𝑐
𝑘
are, respectively, the 𝑘th PCA coefficient

in two-dimensional space trajectory segments 𝐿
𝑖
and 𝐿

𝑗
,

whose length is 𝑛, and𝐾 ≪ 2𝑛.

2.4.3.HausdorffDistance. Given 2 trajectory segments𝐿
𝑖
and

𝐿
𝑗
, their Hausdorff distance denoted as𝐷

𝐻
(𝐿
𝑖
, 𝐿
𝑗
) is given in

𝐷
𝐻
(𝐿
𝑖
, 𝐿
𝑗
) = max (ℎ (𝐿

𝑖
, 𝐿
𝑗
) , ℎ (𝐿

𝑗
, 𝐿
𝑖
)) ,

where ℎ (𝐿
𝑖
, 𝐿
𝑗
) = max
𝑎∈𝐿
𝑖

(min
𝑏∈𝐿
𝑗

(dist (𝑎, 𝑏))) .
(5)

In the formula, ℎ(𝐿
𝑖
, 𝐿
𝑗
) is the direct Hausdorff distance

of 𝐿
𝑖
and 𝐿

𝑗
, and dist(𝑎, 𝑏) is the Euclidean distance between

sampling points 𝑎 and 𝑏 in 𝐿
𝑖
and 𝐿

𝑗
, respectively.
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Figure 4: A schematic of perpendicular distance and Synchronized
Euclidean Distance.

2.4.4. Discrete Fréchet Distance. Discrete Fréchet distance
fully considers the location and sequential relationship of the
point in trajectories while measuring their similarity. It scans
the points on two trajectories and calculates its Euclidean
distance point by point. The maximum Euclidean distance is
the Discrete Fréchet distance between two trajectories. The
calculating formula is shown as

𝐷
𝐹
(𝐿
𝑖
, 𝐿
𝑗
)

= min {‖𝐶‖ , 𝐶 is the coupling between 𝐿
𝑖
and 𝐿

𝑗
} ,

where ‖𝐶‖ =
𝐾max
𝑘−1

dist (𝑎𝑘
𝑖
, 𝑏
𝑘

𝑖
) .

(6)

Here, 𝐿
𝑖
and 𝐿

𝑗
are the trajectory segments whose lengths

are 𝑚 and 𝑛, respectively. Consider 𝐾 = min(𝑚, 𝑛). 𝑎𝑘
𝑖

and 𝑏𝑘
𝑗
are the 𝑘th points on trajectory segments 𝐿

𝑖
and 𝐿

𝑗
,

respectively. dist(𝑎𝑘
𝑖
, 𝑏
𝑘

𝑗
) is the Euclidean distance between 𝑎𝑘

𝑖

and 𝑏𝑘
𝑗
.

2.4.5. Others. In addition to the 4 trajectory similarity mea-
sures discussed above, Vlachos et al. put forward longest
common subsequence which is different from distance calcu-
lation and is used to obtain the longest common subsequence
existing in two trajectory sequences [32]. Chen et al. proposed
Dynamic Time Warping method which is a well-known
technique to find an optimal alignment between two given
(time-dependent) sequences under certain restrictions [33].
Lee et al. put forward a comprehensive distance function
which is composed of three components: the angle distance,
the parallel distance, and the perpendicular distance [1]. The
method overcomes the limitations of the trajectory similarity
measure by the length of trajectory segments. It can more
comprehensively measure the similarity between trajectory
segments. Yuan et al. extract trajectory structure and propose
a structure similarity measurement for comparing trajecto-
ries in microlevel [34].

2.5. Compressive Sensing. Compressive sensing (CS) is an
efficient signal processing technique to acquire and recon-
struct a signal by finding solutions to underdetermined
linear systems. It is also known as compressed sensing,

compressive sampling, or sparse sampling. CS is with the
principle that, through optimization, the sparsity of a signal
can be exploited to recovery from far fewer samples than
required by the Shannon-Nyquist sampling theorem. There
are two conditions under which recovery is possible. The
first one is sparsity which requires the signal to be sparse in
somedomain.The second one is incoherencewhich is applied
through the isometric property which is sufficient for sparse
signals [35].

In this section, we will discuss CS given in literature [16]
briefly. Given a vector 𝑥 ∈ R𝑛, the representation 𝜃 ∈ R𝑛

can be computed on a basis 𝜓 ∈ R𝑛×𝑛 by solving the linear
equation 𝑥 = 𝜓𝜃 which is said to be compressible if 𝜃 has
a large number of elements with small magnitude. If there
is a basis on which a given vector 𝑥 has a compressible
representation, then 𝑥 is also compressible. Compressive
sensing considers the problem of recovering an unknown
compressible vector 𝑥 from its projections. LetΦ be an𝑚×𝑛

projection matrix with𝑚 < 𝑛. Consider the equation

𝑦 = Φ𝑥 + 𝑧, (7)

where 𝑧 ∈ R𝑛 is a noise vector whose norm is bounded by
𝜖. Compressive sensing aims to reconstruct 𝑥 from 𝑦 and Φ
given the knowledge that 𝑥 is compressible on the basis 𝜓.
Compressive sensing shows that under certain conditions it is
possible to recover 𝑥 by solving the following ℓ

1
optimization

problem:

min
𝜃̂∈R𝑛

󵄩󵄩󵄩󵄩󵄩
𝜃̂
󵄩󵄩󵄩󵄩󵄩1

subject to 󵄩󵄩󵄩󵄩󵄩
𝑦 − Φ𝜓𝜃̂

󵄩󵄩󵄩󵄩󵄩2
≤ 𝜖.

(8)

Given 𝜃̂, 𝑥 can be estimated from 𝑥̂ = 𝜓𝜃̂.
In the context of trajectory compression, 𝑥 is the tra-

jectory measured by a Mobile Sensor Networks node. The
dimension of 𝑥 is large. The MSN node computes 𝑦 = Φ𝑥

and transmits 𝑦 to the server. The server can compute an
estimated trajectory 𝑥̂ by using 𝑦, Φ, and 𝜓 to solve the
aforementioned ℓ

1
optimization problem as shown in (8).

Note that the compression is lossy with 1 −𝑚/𝑛 representing
both space savings and reduction in wireless transmission
requirement.

3. Trajectory Compression Algorithms

In this section, we comprehensively analyze moving object
trajectory compression algorithms which have been one of
the research hotspots in the moving object data mining
field. Existing trajectory compression algorithms include 2
categories: single trajectory compression (STC) and multiple
trajectory compression (MTC). The former compresses each
trajectory individually ignoring the commonalities among
trajectories, and the latter compresses several trajectories or
subtrajectories at the same time by the commonalities among
trajectories (such as similarity).There are some different clas-
sification strategies about compression algorithms, but they
are not unable to contain all of the compression algorithms as
the rapid development of compression technology.Therefore,
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in this paper, we present a new classification strategy to divide
trajectory compression algorithms into 5 categories on the
basis of compression theories.

3.1. Distance Based Trajectory Compression. Distance (such
as perpendicular distance and Synchronized Euclidean Dis-
tance) information is one of the most classic and common
compression metrics in trajectory compression algorithms.
Many researchers have devoted their talent to compress tra-
jectories by deciding whether the sampling point is reserved
based on distance, since 1973. The earliest distance based tra-
jectory compression algorithm is Douglas-Peucker algorithm
proposed by Douglas and Peucker [9], which recursively
selects the point whose perpendicular distance is greater than
given threshold until all points reserved meet the condition.
Keogh et al. put forward Opening Window algorithm that
online compresses trajectory data based on perpendicular
distance. A transformation of Douglas-Peucker algorithm
called top-down time-ratio algorithm, which takes a full
consideration of spatial-temporal characteristics by replacing
perpendicular distance with SED, is proposed by Meratnia
and Rolf [3]. Then, an extension to Opening Window called
Opening Window Time-Ratio algorithm using SED instead
of perpendicular distance to take temporal features into
account is proposed by Wu and Cao [2]. Gudmundsson
et al. developed an implementation of the Douglas-Peucker
algorithm which works efficiently even in the case where the
polygonal path given as input is allowed to self-intersect [11].

Perpendicular distance based trajectory compression is
simple and efficient, but it just considers the spatial features
and ignores the temporal features of trajectories. Synchro-
nized Euclidean Distance based trajectory compression not
only is simple and efficient but also has a better compression
effect than perpendicular distance based trajectory compres-
sion for it takes the spatial-temporal features of trajectories
into account. Distance based trajectory compression provides
an effective way to compress trajectory data and a satisfac-
tory compression result, which has been applied to many
fields, such as animal migration, hurricane prediction, and
aerospace field. But there are some obvious shortcomings
in processing limited trajectories, such as the trajectory
of human activities in urban and taxi motion track and
keeping the internal features in trajectories for distance based
trajectory compression pays more attention to keeping the
holistic geometrical characteristics of trajectories.

3.2. Velocity Based Trajectory Compression. Velocity is one
of the most basic features of moving objects and it can
reflect the motion features of moving objects as well as
the internal features in trajectories. The researches on com-
pressing trajectory data based on velocity are not perfect
by now. A famous velocity based trajectory compression is
top-down speed-based algorithm proposed by Meratnia and
Rolf [3] improving the existing compression techniques by
exploiting the spatiotemporal information hiding in the time
series which can be made by analyzing the derived speeds
subsequent to the trajectory. A large difference between the
travel speeds of two subsequent segments is a criterion that

can be applied to retain the data point in the middle. An
online algorithm called Dead Reckoning algorithm proposed
by Trajcevski et al. [22] compresses trajectory by estimat-
ing the successor point through the current point and its
velocity. A polynomial-time algorithm for optimal direction-
preserving trajectory simplification, which supports broader
application range than position-preserving simplification,
proposed by Long et al. [24] can be also regarded as a
velocity based trajectory compression. This method uses the
maximum angular difference between the direction of the
movement during each time period in original trajectory and
the direction of the movement during the same time period
in a simplification of original trajectory.

Velocity based trajectory compression not only is simple
and efficient but also can keep the internal features in
trajectories; however, it is not popular, for the existing velocity
based trajectory compression methods only take speed into
account which may lead to greater errors and break the
holistic geometrical characteristics of trajectories. In the
future study, we hope that researchers will pay their attention
to compressing trajectory data by various features of velocity
(such as velocity direction and accelerated velocity) except for
the magnitude of velocity.

3.3. Semantic Trajectory Compression. Semantic information
in road network has more practical significance in repre-
senting moving object trajectories that are collected from
limited moving objects. Semantic trajectory compression
stores trajectories in the form of semantic information in
road network instead of trajectory points, compresses spa-
tial information in trajectory data by spatial compression
methods, and compresses temporal information in trajectory
data by temporal compression techniques, until some halting
condition is met. The new and novel representation for tra-
jectories that replaces trajectory data by the form of semantic
information in road network was proposed by Schmid et
al. [12] in 2009. Many researchers have paid their attention
to semantic trajectory compression since then. Semantic
trajectory compression was applied to humanmotion dataset
in urban area by Richter et al. [13] which identifies the
relevant reference points along the trajectory, determines
all possible descriptions of how movement continues from
here, and exploits motion feature description of reference
points to compress trajectory data. Song et al. [14] proposed
a new framework, namely, paralleled road-network-based
trajectory compression, to effectively compress trajectory
data under road network constraints. Different from existing
works, PRESS proposed a novel representation for trajecto-
ries to separate the spatial representation of a trajectory from
the temporal representation and proposes a Hybrid Spatial
Compression (HSC) algorithm and error Bounded Temporal
Compression (BTC) algorithm to compress the spatial and
temporal information of trajectories, respectively.

Semantic trajectory compression is only suitable for
limited moving objects, such as movement in road network,
urban movement, and orbital trajectory, which will get a
more realistic significance result in compressing trajectories
of limited moving objects.
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3.4. Similarity Based Trajectory Compression. Similarity
based trajectory compression splits original trajectories into
subtrajectories and then clusters subtrajectories with high
similarity into the same group and clusters subtrajectories
with low similarity into the different groups. And then it
unifies spatial information of trajectory data in the same
group by a certain strategy which will keep a set of spatial
information and all temporal information in every group,
until some halting condition is met. A famous similarity
based compression is similarity based compression of GPS
trajectory data proposed by Birnbaum et al. [23] which splits
trajectories into subtrajectories according to the similarities
among them. For each collection of similar subtrajectories,
this technique stores only one subtrajectory’s spatial data.
Each subtrajectory is then expressed as a mapping between
itself and a previous subtrajectory.

Similarity based trajectory compression has great advan-
tages in retaining the commonalities among trajectories. It is
suitable for trajectory set and may be not suitable for a single
trajectory for the error may be large.

3.5. Priority Queue Based Trajectory Compression. Priority
queue based trajectory compression selects the best subset
of trajectory points and permanently removes redundant
and inessential trajectory points from original trajectory by
utilizing local optimization strategies, until some halting
condition ismet.The Spatial QUalIty SimplificationHeuristic
(SQUISH)method based on the priority queue data structure
proposed byMuckell et al. [26] prioritizes themost important
points in a trajectory stream. It uses local optimization to
select the best subset of points and permanently removes
redundant or insignificant points from the original GPS
trajectory. Three years later, Muckell et al. [28] presented a
new version of SQUISH, called SQUISH-E (Spatial QUalIty
Simplification Heuristic-Extended) which has the flexibility
of tuning compression with respect to compression ratio and
error.

Priority queue based trajectory compression is not only
an online trajectory compression algorithm but also a tra-
jectory compression algorithm that requires presetting the
memory buffer. Hence, it can be well applied to real-time
applications and small memory devices. It is suitable for all
kinds of trajectories, but the compression effect andmatching
effect may be a little worse than the other compression
methods.

3.6. Others. Considering that if the movement pattern and
internal features are neglected, applications, such as trajec-
tory clustering, outlier detection, and activity discovery may
be not so accurate as we expected.Therefore, we expect that a
new algorithm called structure features based trajectory com-
pression which compresses trajectories based on movement
pattern and structure features in trajectories, such as moving
direction of objects, internal fluctuation in trajectories, and
trajectory velocity or acceleration, will attract more attention
of researchers, for instance, a polynomial-time algorithm
for optimal direction-preserving simplification proposed by
Long et al., which supports border application range than

position-preserving simplification [24]. At present, most of
the portable equipment used for data collection is inexpen-
sive, power saving, and of lower computational capability,
while the data processing procedure is often performed in
supercomputers which have a higher computational capa-
bility. In order to effectively reduce the transport cost, we
expect that compressive sensing based trajectory compres-
sion, which reduces the data scale in the process of acquiring
data by combining compressive sensing with trajectory fea-
tures, will attract more attention of researchers, for instance,
Rana et al. present an adaptive algorithm for compressive
approximation of trajectory in 2011, which performs trajec-
tory compression, so as to maximize the information about
the trajectory subject to limited bandwidth [36]. Four years
later, another compression method called adaptive trajectory
(lossy) compression algorithm based on compressive sensing
has been proposed by Rana et al., which has two innovative
elements [16]. First, they propose a method to compute
a deterministic projection matrix from a learnt dictionary.
Second, they propose a method for the mobile nodes to
adaptively predict the number of projections needed based
on the speed of the mobile nodes.

4. Validation Criteria of
Compression Performance

Compression result validation is very important for com-
pression algorithms and it can measure the level of success
and correctness reached by the algorithms. There are many
solutions to validate the result, mainly including Analysis,
Experience, Evaluation, and Example. The Analysis solution
includes rigorous derivation and proof or carefully designed
experiment with statistically significant results. Experience
solution is applied in real-world scenarios or projects and
the evidence of approach’s correctness (usefulness or effec-
tiveness) can be obtained from the process of execution.
Evaluation uses a set of examples to illustrate the pro-
posed approach, with a nonsystemic analysis of gathered
information from the execution of examples. Example uses
only one or several small-scale examples to illustrate the
proposed approach, without any evaluation or comparison of
the execution result. In this section, wemainly discuss 2 kinds
of compression validation solutions. The first compression
validation solution is performancemetrics which are used for
comparing the efficiency and performance of trajectory com-
pression algorithms. And the other compression validation
solution is accuracy metrics which are used for comparing
the accuracy and information loss of trajectory compression
algorithms. This section, respectively, denotes the original
trajectory as OT whose length is 𝑚 and the compressed
trajectory as RT whose length is 𝑛, in order to facilitate the
validation of trajectory compression.

4.1. Performance Metrics

4.1.1. Compression Ratio. Compression ratio (R) is an impor-
tant index to measure the advantages and disadvantages of
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Figure 5: A schematic of spatial error.

trajectory compression performance, which is defined as
in

R = (1 −
𝑛

𝑚
) ∗ 100%. (9)

Compression ratio is the most common compression
index which can accurately reflect the change of the size
of trajectory data. But R is influenced by the original
signal data sampling rate and quantization accuracy and so
on; it is difficult to make an objective measurement. For
instance, a compression ratio of 70% indicates that 30% of the
original points remained in the compressed representation
of the trajectory; namely, if there are 100 points in original
trajectory, only 30 points will be reserved in the compressed
representation of the trajectory after compressing.

4.1.2. Compression Time. Compression time (𝑇) is an impor-
tant index tomeasure the efficiency of trajectory compression
performance, which reflects the total time required by the
compression. For example, a compression time of 24 indicates
that the total time of compressing original trajectory is 24ms.

4.2. Accuracy Metrics

4.2.1. Spatial Error. Given an original trajectory OT and its
compressed representation RT, the spatial error (SplE) of RT
with respect to a point 𝑝

𝑖
in OT is defined as the distance

between 𝑝
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑡
𝑖
) and its estimation 𝑝

󸀠

𝑖
(𝑥
󸀠

𝑖
, 𝑦
󸀠

𝑖
, 𝑡
󸀠

𝑖
). If RT

contains 𝑝
𝑖
, then 𝑝󸀠

𝑖
is 𝑝
𝑖
(e.g., 𝑝󸀠

1
= 𝑝
1
, 𝑝󸀠
4
= 𝑝
4
, 𝑝󸀠
6
= 𝑝
6
,

and 𝑝󸀠
8
= 𝑝
8
in Figure 5 where there is a trajectory containing

𝑝
1
, 𝑝
2
, . . . , 𝑝

8
). Otherwise, 𝑝󸀠

𝑖
is defined as the closest point to

𝑝
𝑖
along the line between precursor point and successor point

of 𝑝
𝑖
in trajectory RT.The precursor point of 𝑝

2
is 𝑝
1
and the

successor point of 𝑝
2
is 𝑝
4
. Therefore, the spatial error of RT

with respect to 𝑝
2
is the perpendicular distance from 𝑝

2
to

line 𝑝
1
𝑝
4
.

4.2.2. SED Error. Temporal characteristics of trajectory data
are not considered in spatial error, so Synchronized Euclidean
Distance (SED) is introduced to overcome this limitation.
SED is also the distance between 𝑝
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The estimation point of 𝑝
2
is 𝑝󸀠
2
. Therefore, the SED error of

RT with respect to 𝑝
2
is the distance between 𝑝

2
and 𝑝󸀠

2
.

4.2.3. Heading Error. Heading error (HE) is the angular
deflection betweenmoving direction from the actual location
point 𝑝

𝑖−1
(𝑥
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, 𝑡
𝑖−1
) to 𝑝
𝑖
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tory andmoving direction from the estimation location point
𝑝
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) to 𝑝󸀠

𝑖
(𝑥
󸀠

𝑖
, 𝑦
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𝑖
, 𝑡
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𝑖
) along compressed trajec-

tory. The estimation 𝑝
󸀠

𝑖
owning the same time coordinate

with 𝑝
𝑖
is obtained by linear interpolation method. As shown

in Figure 7, we specify clockwise direction is positive value
and anticlockwise direction is negative value, to facilitate the
calculation.

4.2.4. Speed Error. Speed error (SpdE) is an importantmetric
for various kinds of transit applications. For instance, velocity
measurement system gets overspeed hotspots by velocity
information [37], as well as acceleration and deceleration data
help to identify all kinds of irregular driving behaviors, which
will help police to find vehicle’s illegal activities [38]. The
computing method of speed error is similar to heading error.
It calculates the difference value between actual velocity and
estimated velocity instead of calculating angular deflection.

4.2.5. Information Loss Degree. Information Loss Degree
(ILD) that can comprehensively analyze the accuracy and
error of trajectory compression results is a comprehensive
index to measure the advantages and disadvantages of trajec-
tory compression effectiveness. Information Loss Degree can
be calculated by the SED distance, Dynamic Time Warping
distance, and Speed Corner between original trajectory and
compressed trajectory.

Information Loss Degree based on SED (ILDSED) is the
mean value of maximum SED distance error (SEDEmax(OT,
RT)), average SED distance error (SEDEavg(OT,RT)), and
minimum SED distance error (SEDEmin(OT,RT)) between
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original trajectory OT and compressed trajectory RT, which
can be calculated as

ILDSED (OT,RT) =
SEDEmax (OT,RT) + SEDEavg (OT,RT) + SEDEmin (OT,RT)

3
. (10)

Information Loss Degree based on DTW (ILDdtw) is
measured by the time warping distance between original

trajectory OT and compressed trajectory RT, which can be
calculated as

ILDdtw (OT,RT) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

0 𝑚 = 𝑛 = 0

∞ 𝑚 = 0 ‖ 𝑛 = 0

SEDE (op
1
, rp
1
) +min

{{{{{

{{{{{

{

ILDdtw (Rest (OT) ,Rest (RT))

ILDdtw (Rest (OT) ,RT)

ILDdtw (OT,Rest (RT))

others.

(11)

Here, SEDE(op
1
, rp
1
) is the SED error between point

op
1
and rp

1
, which, respectively, are the first point of OT

and RT. Rest(OT) and Rest(RT) are the remaining trajectory
after removing the first sampling point. ILDdtw calculates the
Information Loss Degree by DTW error.

Information Loss Degree based on Speed Corner (ILD-
corner) is measured by the original and compressed Speed
Corner of moving objects which can be calculated as

ILDcorner (OT,RT)

=

∑
min(𝑚,𝑛)
1

((
󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖
− 𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨
) / (

󵄨󵄨󵄨󵄨𝜃𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨
))

𝑚 + 𝑛
.

(12)

5. Public Trajectory Datasets

There are quite a few real trajectory datasets that are publicly
available. In this section, a detailed description of real
trajectory datasets is given from their sources, characteristics,
sampling rate, and so on.

5.1. GeoLife Trajectory Dataset. A GPS trajectory dataset
from Microsoft Research GeoLife project was collected by
182 users in a period of over 5 years from April 2007 to
August 2012. A GPS trajectory of this dataset is represented
by a sequence of time-stamped points, each of which contains
the information of latitude, longitude, and altitude. This
dataset whose size is 1.55GB contains 17,621 trajectories with
a total distance of 1,292,951 kilometers and a total duration
of 50,176 hours. These trajectories were recorded by different
GPS loggers and GPS-phones and have a variety of sampling
rates. 91.5 percent of the trajectories are logged in a dense
representation, for example, every 1∼5 seconds or every 5∼10
meters per point.

5.2. T-Drive Taxi Trajectories. A sample of trajectories from
Microsoft Research T-Drive project was generated by over
30,000 taxicabs in a period of 6 months from March 2009 to
August 2009. The total distance traveled by the taxis is more
than 800 million kilometers and the total number of GPS
points is nearly 1.5 billion. The size of the dataset is 756Mb
and the average sampling interval and average distance
between two consecutive points are around 3.1 minutes and
300 meters, respectively.

5.3. GPS Trajectory with Transportation Labels. This is a
portion of GPS trajectory dataset collected in (Microsoft
Research Asia) GeoLife project. Each trajectory has a set of
transportation mode labels, such as driving, taking a bus,
riding a bike, and walking.There is a label file associated with
each folder storing the trajectories of a user. A GPS trajectory
of this dataset is represented by a sequence of time-stamped
points, each of which contains the information of latitude,
longitude, height, speed, heading direction, and so forth.
These trajectories were recorded by different GPS loggers or
GPS-phones and have a variety of sampling rates. 95 percent
of the trajectories are logged in a dense representation,
for example, every 2∼5 seconds or every 5∼10 meters per
point, while a few of them do not have such a high density
being constrained by the devices. The size of the dataset is
560Mb.

5.4. Check-in Data from Location-Based Social Networks.
The dataset from a LBSN in China whose size is 10.68Mb
consists of 2,756,710 check-in data generated by 10,049 users
excluding the timestamp and relationships between users.
Each check-in includes the information of ID, latitude,
longitude, and timestamp.
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5.5. Hurricane Trajectories. This dataset is provided by the
National Hurricane Service (NHS) containing 1,740 trajec-
tories of Atlantic Hurricanes from 1851 to 2012. NHS also
provides annotations of typical hurricane tracks for each
month throughout the annual hurricane season that spans
from June to November. The data were collected every 6
hours.

5.6. Movebank Animal Tracking Data. Movebank is a free,
online database of animal tracking data helping animal
tracking researchers to manage, share, protect, analyze, and
archive their data. Movebank is an international project
with over 11,000 users, including people from research and
conservation groups around the world. A lot of datasets are
collected in this database, such as Continental black-tailed
godwits (data from Senner et al., 2015) whose size is 5.161Mb
[39], andNavigation experiments in lesser black-backed gulls
(data fromWikelski et al., 2015) whose size is 29.09Mb [40].

6. Application Scenarios of
Trajectory Compression

(1) The unrestricted movement of moving objects is a typical
application scenario of trajectory compression, such as a bird
flying in the sky, a fish swimming in the sea, and a horse
running on the grassland.Distance based trajectory compres-
sion and velocity based trajectory compression have a high
efficiency in this application scenario and a good application
prospect in many fields, such as studying animals’ migratory
traces, behavior, and living situations, as well as animal
migration research and hurricanes, tornados, and ocean
currents prediction. For instance, animal tracking data helps
biologists understand how individuals and populations move
within local areas, migrate across oceans and continents, and
evolve through millennia. This information is being used to
address environmental challenges such as climate and land
use change, biodiversity loss, invasive species, and the spread
of infectious diseases. However, the data that need to be
analyzed always have a large scale which will make them
difficult to be analyzed and find the useful information in the
data, so it is necessary to compress the data by removing the
redundant data and only keeping the valuable data.

(2)The restrictedmovement of moving objects is another
very important application scenario of trajectory compres-
sion, such as themotion track of taxis in urban area. Semantic
trajectory compression can effectively and efficiently com-
press the trajectory data in this application scenario with
respect to transport analysis, smart city plan, and smart
transportation management. For instance, vast amounts of
trajectory data can be collected by vehicle positioning equip-
ment and other devices, which can be used to help police to
find dangerous driving, predict the stream of people in major
festivals in important places of a city, and trace escaping route
of criminals. But the large scale of the data will lead to the
difficulty of finding dangerous driving, predict the stream of
people in major festivals in important places of a city, and
trace escaping route of criminals for police, so the data are in

urgent need of compression which can remove the redundant
data and only reserve the valuable data in the dataset.

(3) Priority queue based trajectory compression is widely
applied to small memory devices and has a high efficiency
in this scenario. For instance, most of the portable mobile
devices have a small memory. If the data have to be analyzed
on portable mobile devices, it is easy to meet the breakdown
(out of memory) that will lead to the device not working.
Therefore, it is necessary for portable mobile devices with
a compress application that may compress the data by
removing the redundant data before analyzing them.

7. Conclusion and Future Work

Trajectory compression is an efficient way to reduce the
size of trajectory data and reserve the useful and valuable
information in large scale dataset, which is one of the impor-
tant components of data mining technology. In this paper,
the research status and new development of moving object
trajectory compression algorithms in recent years have been
surveyed and summarized. Firstly, the representative com-
pression algorithms proposed in recent years are analyzed
and summarized from algorithmic thinking, key technology,
and the advantages and disadvantages. Then, the existing
algorithms are classified into several categories according to
compression theories. Thirdly, some typical valid criteria of
compression result are summarized. Lastly, some application
scenarios are pointed out and discussed.

On the basis of summarizing and surveying on the mov-
ing object trajectory compression and its theories, methods,
and techniques, we also summarize the problems and the
challenges existing in moving object trajectory compression,
which mainly includes the following aspects: (1) Most of the
current trajectory compression algorithms pay more atten-
tion to the holistic outline geometrical characters of trajectory
and ignore the movement patterns and the internal features
in trajectories. (2) Most of the current trajectory compres-
sion algorithms cannot fully combine time dimension with
space dimensions, and they just regard time dimension as
the additional dimension of space dimension of trajectory
object. (3)The general applicability of trajectory compression
algorithm is low. (4) Few researchers have paid their attention
to compressing trajectories by compressive sensing which
reduces the data scale in the process of acquiring data.
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