405 research outputs found

    SNIF TOOL - Sniffing for Patterns in Continuous Streams

    Get PDF
    Recent technological advances in sensor networks and mobile devices give rise to new challenges in processing of live streams. In particular, time-series sequence matching, namely, the similarity matching of live streams against a set of predefined pattern sequence queries, is an important technology for a broad range of domains that include monitoring the spread of hazardous waste and administering network traffic. In this thesis, I use the time critical application of monitoring of fire growth in an intelligent building as my motivating example. Various measures and algorithms have been established in the current literature for similarity of static time-series data. Matching continuous data poses the following new challenges: 1) fluctuations in stream characteristics, 2) real-time requirements of the application, 3) limited system resources, and, 4) noisy data. Thus the matching techniques proposed for static time-series are mostly not applicable for live stream matching. In this thesis, I propose a new generic framework, henceforth referred to as the n-Snippet Indices Framework (in short, SNIF), for discovering the similarity between a live stream and pattern sequences. The framework is composed of two key phases: (1.) Off-line preprocessing phase: where the pattern sequences are processed offline and stored into an approximate 2-level index structure; and (2.) On-line live stream matching phase: streaming time-series (or the live stream) is on-the-fly matched against the indexed pattern sequences. I introduce the concept of n-Snippets for numeric data as the unit for matching. The insight is to match small snippets of the live stream against prefixes of the patterns and maintain them in succession. Longer the pattern prefixes identified to be similar to the live stream, better the confirmation of the match. Thus, the live stream matching is performed in two levels of matching: bag matching for matching snippets and order checking for maintaining the lengths of the match. I propose four variations of matching algorithms that allow the user the capability to choose between the two conflicting characteristics of result accuracy versus response time. The effectiveness of SNIF to detect patterns has been thoroughly tested through extensive experimental evaluations using the continuous query engine CAPE as platform. The evaluations made use of real datasets from multiple domains, including fire monitoring, chlorine monitoring and sensor networks. Moreover, SNIF is demonstrated to be tolerant to noisy datasets

    Fast Online Similarity Search for Uncertain Time Series

    Get PDF
    To achieve fast retrieval of online data, it is needed for the retrieval algorithm to increase throughput while reducing latency. Based on the traditional online processing algorithm for time series data, we propose a spatial index structure that can be updated and searched quickly in a real-time environment. At the same time, we introduce an adaptive segmentation method to divide the space corresponding to nodes. Unlike traditional retrieval algorithms, for uncertain time series, the distance threshold used for screening will dynamically change due to noise during the search process. Extensive experiments are conducted to compare the accuracy of the query results and the timeliness of the algorithm. The results show that the index structure proposed in this paper has better efficiency while maintaining a similar true positive ratio

    De Novo Assembly of Nucleotide Sequences in a Compressed Feature Space

    Get PDF
    Sequencing technologies allow for an in-depth analysis of biological species but the size of the generated datasets introduce a number of analytical challenges. Recently, we demonstrated the application of numerical sequence representations and data transformations for the alignment of short reads to a reference genome. Here, we expand out approach for de novo assembly of short reads. Our results demonstrate that highly compressed data can encapsulate the signal suffi- ciently to accurately assemble reads to big contigs or complete genomes

    A Review of Subsequence Time Series Clustering

    Get PDF
    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies

    Efficient and effective query processing of complex human motion sequences

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore