
1CIT. Journal of Computing and Information Technology, Vol. 28, No. 1, March 2020, 1–17
doi: 10.20532/cit.2020.1004574

Ruizhe Ma1, Diwei Zheng2 and Li Yan2

1Georgia State University, Atlanta, USA
2Nanjing University of Aeronautics and Astronautics, Nanjing, China

Fast Online Similarity Search for
Uncertain Time Series

To achieve fast retrieval of online data, it is need-
ed for the retrieval algorithm to increase through-
put while reducing latency. Based on the traditional
online processing algorithm for time series data, we
propose a spatial index structure that can be updated
and searched quickly in a real-time environment. At
the same time, we introduce an adaptive segmentation
method to divide the space corresponding to nodes.
Unlike traditional retrieval algorithms, for uncertain
time series, the distance threshold used for screen-
ing will dynamically change due to noise during the
search process. Extensive experiments are conducted
to compare the accuracy of the query results and the
timeliness of the algorithm. The results show that the
index structure proposed in this paper has better effi-
ciency while maintaining a similar true positive ratio.

ACM CCS (2012) Classification: Mathematics of
computing → Probability and statistics → Statistical
paradigms → Time series analysis
Information systems → Information retrieval → Re-
trieval models and ranking → Similarity measures

Keywords: time series, uncertainty, online similarity
search, index

1. Introduction

With the improvement of computing power and
the development of data mining technology,
time series is of growing importance in many
new streaming applications, such as GIS detec-
tion [6], stock market [16] and medical moni-
tor [28]. Thanks to the advances in large-scale
storage and computing power, there have been
a lot of efforts in exploiting large time series da-
tabases [16, 29, 33, 36]. Due to the factors such
as physical equipment, calculation of distance
metrics, and inherent noise of the sample, the

streaming data always carry uncertainty. Gener-
ally, uncertainty leads to drawing erroneous con-
clusions. In order to keep results from great bias,
the uncertainty information must be taken into
consideration. For example, each timestamp is
modeled as a random variable that associates a
probability density function [13]. Most of cur-
rent work, however, only concentrates on exact
queries [5, 8, 23, 25, 26, 27, 33, 34] although
uncertain queries rather than exact queries are
greatly required. Especially, uncertainty is uni-
versal in emerging applications that deal with
streaming series, object identification [4] and
environmental applications [29]. Diverse uncer-
tain objects have been extensively investigat-
ed. But, to the best of our knowledge, the first
effort that proposes a framework for similarity
matching of uncertain time series is presented in
[13], where the uncertain time series is named
cloaked time series and the fundamental query
predicates are discussed. Furthermore, in [1], the
notion of an uncertain time series is formalized,
two novel kinds of probabilistic range queries
are introduced, and a primitive approximate rep-
resentation of uncertain time series is proposed.
Generally, there are three types of spatial queries
over time series.

 ● Range query: Given a target point Q and
a threshold ε, find all points X such that
Dist(Q, X) ≤ ε.

 ● Nearest neighbor query: Given a que-
ry point Q, find all points X such that
Dist(Q, X) is the minimum. Furthermore,
the k-nearest neighbor query asks for the k
closest points to a given point.

2 3R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

2.2. Sequence Matching Using Index

In [15], the FRM is used to extract the features
of the subsequence, where the subsequence
matching algorithm is proposed based on those
features. The algorithm consists of the index
building and subsequent matching. In the index
building, the FRM divides time series into slid-
ing windows of size w and stores feature points
in a spatial access method, R*-tree. The struc-
ture of R*-tree is shown in Figure 1, which is
mainly used to organize the MBR. In the sub-
sequence matching, the FRM transforms the
feature points into the f-dimensional points by
using a feature extraction algorithm during the
matching process. In [35], an improvement of
the known DFT-based indexing technique is
proposed, in which the first few large Fourier
coefficients are used in the distance compu-
tation. The work in [32] measures the subse-
quence similarity by Time Warping (TW) based
on those coefficients. After mapping the ob-
jects into the k-d points, a spatial access meth-
od, KD-tree, is used to organize them. Further-
more, a bounding technique is designed in [30]
to prune the unnecessary computation as much
as possible. To achieve Dynamic Time Warping
(DTW), a novel algorithm SPRING is present-
ed to select all matched subsequences. For the
interval problem, the extensive index scheme is
established based on the R-tree in [20]. For dis-
crete data, the search algorithm PROUD is ap-
plied in [2] to a streaming uncertain time series.
And the Haar wavelet decomposition is used to
construct an error-tree to retrieve the distance
measurement efficiently.

2. Related Work

2.1. Discrete Fourier Transform

There are two main techniques for the decom-
position of sequences. The first proposed tech-
nique is DFT, which is followed by the Haar
decomposition [27]. Most of the research on
feature extraction of the time series is based on
both. In this paper, we use DFT to extract the
feature of the expectation. The earliest work to
build an index with an eigenvalue sequence is
to construct the index structure based on the co-
efficients extracted by the DFT [31]. Its import-
ant contribution is to reduce the sequence di-
mension, which needs to be calculated by using
the theorem that the value of the distance metric
in the frequency domain space is equal to the
distance of the original space. Because the DFT
can find the most frequent eigenvalue in fre-
quency space, only a few coefficients should be
kept to approximate the original value. Here the
dimensions of these eigenvalues are generally
much smaller than the original dimension. This
method can greatly reduce the amount of calcu-
lation in the metric. Meanwhile, the property of
the triangle inequality of the distance measure-
ment allows us to use optimization methods to
search for candidates in the feature space as in
the original space. In summary, we can combine
the DFT, spatial index structure and uncertainty
metrics to query for the candidates.

Table 1. Main symbols used in this paper.

Symbols Description

X The sequence consists of the primitive data

�X The sequence consists of the features extracted by DFT

X [i: j] A sequence representing the value of the timestamp from i to j

X [i] The i-th timestamp value

μi = E(Xi) The expected value of the i-th timestamp variable

Ti The i-th timestamp real variable

Xi = Ti + δi The i-th timestamp output variable

 ● Subsequence query: Given a query se-
quence Q, find all subsequences that sat-
isfy Dist(Q[i: j], X [m:n]) ≤ ε. For example,
DTW (Dynamic Time Warping) calculates
the similarities between sequences of dif-
ferent lengths based on dynamic program-
ming.

Limited by the high dimension of the sequence,
most current work just focuses on the uncertain
offline data [7, 11, 17, 18, 19]. No efficient in-
dex has been proposed so far to support online
query processing for uncertain time series. The
computational complexity of distance metric
is proportional to the sequence length. So, a
sequence that is too long in the candidate set
screening process will seriously affect the que-
ry speed.
To deal with time series with index technique,
many efforts have tried to build a spatial index
structure for querying the sequence data. In
[21], a set of points is picked into a minimum
bounding rectangle (MBR) and a spatial index
R-tree is used to query the target MBRs. Gener-
ally, R-tree is mainly used to solve the problem
of querying non-zero objects which are treated
as a rectangle (namely MBR) for processing.
To improve the efficiency of retrieval, in [31],
the sequence is mapped into the frequency do-
main by using the Discrete Fourier Transform
(DFT), and the first few large coefficients are
kept in the R-tree. Unlike [31], the algorithm
FastMap [25] tends to build the KD-tree by us-
ing time wrapping measurements. As shown in
Figure 2, the KD-tree (k-dimensional) is a data
structure that divides the k-dimensional data
space. It is mainly used for the search of key
data in multi-dimensional space (such as range
search and nearest neighbor search). Collabo-
rating with the time wrapping measurements, it
can work well for the similarity matching over
subsequence. At the same time, R*-Tree [24]
further expands the type of problem as well as
the deciding factors of MBR partitioning based
on R-tree. Compared with KD-tree, the MBR
in R-Tree is more flexible because the MBRs in
R-tree can overlap with each other. Yet, KD-tree
tidily splits space without a redundant or un-
covered place on the same layer. The experi-
ment confirms that, in terms of the efficiency of
retrieval, R*-Tree outperforms KD-tree while
in terms of the efficiency of update, KD-tree is
superior to R*-Tree. To utilize the advantages

of both, we propose an index KDR-tree by com-
bining the structure of KD-tree with the retriev-
al algorithm of R-tree. Specifically, we put for-
ward a search algorithm based on the R-tree's
query process, and adapt the split threshold of
KDR-tree to limit the number of the split oper-
ations.
In this paper, we concentrate on the subsequence
query and present a novel and efficient indexing
technique over the online sequence. The work
surrounds the subsequence query about uncer-
tain time series, i.e., finding the candidates sat-
isfying P(Dist(Q, X) ≤ ε) ≥ τ. In the matching
of similar sequence, the traditional index is de-
signed for the exactly matched sequence. Based
on these indexes, the queries always generate
imprecise distance measurement rather than the
exact answer. When uncertain information is
taken into consideration, the measurement for
the probabilistic threshold can calculate the dif-
ference of the likelihood of each answer. The
measurement DUST accommodates the uncer-
tainty and generalizes the notion of measure-
ment. We use Euclidean and DUST as distance
metrics in KDR-tree.
Our contributions in this paper are summarized
as follows.
1. We combine the characteristics of R-tree

and KD-tree to build an index structure
KDR-tree for online data.

2. We propose an adaptive segmentation al-
gorithm to calculate the maximum number
of accommodating points for the spatial
split.

3. We have experimentally confirmed the
superiority of KDR-tree in terms of per-
formance and efficiency. KDR-tree can re-
duce the loss rate without the cost of the
true positive rate.

The rest of this paper is organized as follows.
The main symbols are listed in Table 1. In Sec-
tion 2, we give a brief description of related
work for uncertain time series. Section 3 pres-
ents the method to index online for the uncertain
time series. We present how to quickly build an
index of real-time data by combining the char-
acteristics of KD-tree and R-tree in Section 4.
The experiments are presented in Section 5. We
finally conclude the paper in Section 6.

2 3R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

2.2. Sequence Matching Using Index

In [15], the FRM is used to extract the features
of the subsequence, where the subsequence
matching algorithm is proposed based on those
features. The algorithm consists of the index
building and subsequent matching. In the index
building, the FRM divides time series into slid-
ing windows of size w and stores feature points
in a spatial access method, R*-tree. The struc-
ture of R*-tree is shown in Figure 1, which is
mainly used to organize the MBR. In the sub-
sequence matching, the FRM transforms the
feature points into the f-dimensional points by
using a feature extraction algorithm during the
matching process. In [35], an improvement of
the known DFT-based indexing technique is
proposed, in which the first few large Fourier
coefficients are used in the distance compu-
tation. The work in [32] measures the subse-
quence similarity by Time Warping (TW) based
on those coefficients. After mapping the ob-
jects into the k-d points, a spatial access meth-
od, KD-tree, is used to organize them. Further-
more, a bounding technique is designed in [30]
to prune the unnecessary computation as much
as possible. To achieve Dynamic Time Warping
(DTW), a novel algorithm SPRING is present-
ed to select all matched subsequences. For the
interval problem, the extensive index scheme is
established based on the R-tree in [20]. For dis-
crete data, the search algorithm PROUD is ap-
plied in [2] to a streaming uncertain time series.
And the Haar wavelet decomposition is used to
construct an error-tree to retrieve the distance
measurement efficiently.

2. Related Work

2.1. Discrete Fourier Transform

There are two main techniques for the decom-
position of sequences. The first proposed tech-
nique is DFT, which is followed by the Haar
decomposition [27]. Most of the research on
feature extraction of the time series is based on
both. In this paper, we use DFT to extract the
feature of the expectation. The earliest work to
build an index with an eigenvalue sequence is
to construct the index structure based on the co-
efficients extracted by the DFT [31]. Its import-
ant contribution is to reduce the sequence di-
mension, which needs to be calculated by using
the theorem that the value of the distance metric
in the frequency domain space is equal to the
distance of the original space. Because the DFT
can find the most frequent eigenvalue in fre-
quency space, only a few coefficients should be
kept to approximate the original value. Here the
dimensions of these eigenvalues are generally
much smaller than the original dimension. This
method can greatly reduce the amount of calcu-
lation in the metric. Meanwhile, the property of
the triangle inequality of the distance measure-
ment allows us to use optimization methods to
search for candidates in the feature space as in
the original space. In summary, we can combine
the DFT, spatial index structure and uncertainty
metrics to query for the candidates.

Table 1. Main symbols used in this paper.

Symbols Description

X The sequence consists of the primitive data

�X The sequence consists of the features extracted by DFT

X [i: j] A sequence representing the value of the timestamp from i to j

X [i] The i-th timestamp value

μi = E(Xi) The expected value of the i-th timestamp variable

Ti The i-th timestamp real variable

Xi = Ti + δi The i-th timestamp output variable

 ● Subsequence query: Given a query se-
quence Q, find all subsequences that sat-
isfy Dist(Q[i: j], X [m:n]) ≤ ε. For example,
DTW (Dynamic Time Warping) calculates
the similarities between sequences of dif-
ferent lengths based on dynamic program-
ming.

Limited by the high dimension of the sequence,
most current work just focuses on the uncertain
offline data [7, 11, 17, 18, 19]. No efficient in-
dex has been proposed so far to support online
query processing for uncertain time series. The
computational complexity of distance metric
is proportional to the sequence length. So, a
sequence that is too long in the candidate set
screening process will seriously affect the que-
ry speed.
To deal with time series with index technique,
many efforts have tried to build a spatial index
structure for querying the sequence data. In
[21], a set of points is picked into a minimum
bounding rectangle (MBR) and a spatial index
R-tree is used to query the target MBRs. Gener-
ally, R-tree is mainly used to solve the problem
of querying non-zero objects which are treated
as a rectangle (namely MBR) for processing.
To improve the efficiency of retrieval, in [31],
the sequence is mapped into the frequency do-
main by using the Discrete Fourier Transform
(DFT), and the first few large coefficients are
kept in the R-tree. Unlike [31], the algorithm
FastMap [25] tends to build the KD-tree by us-
ing time wrapping measurements. As shown in
Figure 2, the KD-tree (k-dimensional) is a data
structure that divides the k-dimensional data
space. It is mainly used for the search of key
data in multi-dimensional space (such as range
search and nearest neighbor search). Collabo-
rating with the time wrapping measurements, it
can work well for the similarity matching over
subsequence. At the same time, R*-Tree [24]
further expands the type of problem as well as
the deciding factors of MBR partitioning based
on R-tree. Compared with KD-tree, the MBR
in R-Tree is more flexible because the MBRs in
R-tree can overlap with each other. Yet, KD-tree
tidily splits space without a redundant or un-
covered place on the same layer. The experi-
ment confirms that, in terms of the efficiency of
retrieval, R*-Tree outperforms KD-tree while
in terms of the efficiency of update, KD-tree is
superior to R*-Tree. To utilize the advantages

of both, we propose an index KDR-tree by com-
bining the structure of KD-tree with the retriev-
al algorithm of R-tree. Specifically, we put for-
ward a search algorithm based on the R-tree's
query process, and adapt the split threshold of
KDR-tree to limit the number of the split oper-
ations.
In this paper, we concentrate on the subsequence
query and present a novel and efficient indexing
technique over the online sequence. The work
surrounds the subsequence query about uncer-
tain time series, i.e., finding the candidates sat-
isfying P(Dist(Q, X) ≤ ε) ≥ τ. In the matching
of similar sequence, the traditional index is de-
signed for the exactly matched sequence. Based
on these indexes, the queries always generate
imprecise distance measurement rather than the
exact answer. When uncertain information is
taken into consideration, the measurement for
the probabilistic threshold can calculate the dif-
ference of the likelihood of each answer. The
measurement DUST accommodates the uncer-
tainty and generalizes the notion of measure-
ment. We use Euclidean and DUST as distance
metrics in KDR-tree.
Our contributions in this paper are summarized
as follows.
1. We combine the characteristics of R-tree

and KD-tree to build an index structure
KDR-tree for online data.

2. We propose an adaptive segmentation al-
gorithm to calculate the maximum number
of accommodating points for the spatial
split.

3. We have experimentally confirmed the
superiority of KDR-tree in terms of per-
formance and efficiency. KDR-tree can re-
duce the loss rate without the cost of the
true positive rate.

The rest of this paper is organized as follows.
The main symbols are listed in Table 1. In Sec-
tion 2, we give a brief description of related
work for uncertain time series. Section 3 pres-
ents the method to index online for the uncertain
time series. We present how to quickly build an
index of real-time data by combining the char-
acteristics of KD-tree and R-tree in Section 4.
The experiments are presented in Section 5. We
finally conclude the paper in Section 6.

4 5R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

distribution of noise δ. Hence each timestamp
is a random variable and corresponds to a mean
and to a variance. As shown in Figure 3, the dis-
tribution of a timestamp will be (μi, σi) where μi
is a mean and σi is a variance.

Figure 3. The distribution of one timestamp.

We define X as a reference series with uncer-
tainty and Y as one of the subsequences with the
uncertainty stored in the database. Both series
consist of the random variables in each time se-
ries. Specifically, X[i] = Tx[i] + δx[i] and [i] =
Ty[1] + δy[i]. After pretreatment with the DFT,

we get �X and �Y series that are composed of
features extracted from the X and Y and satisfy
the following equation.

�[] �[]() [] []()
2 2

1 1

M N

i i
X i Y i X i Y i

= =
=− −∑ ∑ (1)

Here M is the dimension of the feature space
and N is the length of the original sequence.
The FRM gets the sub-trails after mapping the
series with an allowable length into a feature
space. Based on those features, the spatial index
is constructed in real time. Since the sub-trails
are included in the MBR, there will be no false
dismissal. However, the cost function with re-
spects to the MBR margin, which is one of the
factors to decide how to split the MBR, is always
time-expensive. Thus, we propose a method
that can avoid this condition. We put forward
the KDR-tree to index the DFT coefficients
based on the local linear assumption. We split
the feature space along the dimension without
crossing any points to construct the KDR-tree.
While the R*-tree is used in [15] to insert the
offline data into the new MBR in advance, the
KDR-tree is constructed dynamically for the
online data. Meanwhile, the max number K of
points included in the MBR is determined by a
number of factors and is adaptive to control the

volume of the feature space. We define the K
determination equation as follows.

()

(, ,)
1.5

1 ()
last

variance density
last area

K T area variance density
K

exp sign area area ⋅

=

=
+ − −

(2)

Here Klast represents the parent's or the child's
number of current K and arealast represents the
parent's or the child's number of area. If the
split operation takes place, Klast is the parent's
K and the arealast is the parent's K. On the other
hand, if the index removes the last point of a
subspace and combination happens, Klast is the
child's K and the arealast is the child's area. As
for the root node, we need to manually set an
initial value for K. The density is obtained by
dividing the number of points surrounded in
space by the volume of space. As we can see,
the new K value is obtained by multiplying the
K value of its parent/child node by a constant.
The constant is calculated based on the logistic
function. Its changing image is shown in Figure
4 It is shown that the K value of the new space
is increased or decreased by half at most.

Figure 4. Adaptive K function.

Given the incoming point sets US(T) =
(S12, Len(S1), ..., SMi, Len(SMi)

) at time T, we should
update the KDR-tree over US(T). We add a new
boundary to split the MBR when the number of
points in the MBR is bigger than K. The split op-
eration only affects the subspace that intersects
the MBR formed by the newly arrived point set.
Meanwhile, we need to update the K value of
the new sub MBRs in real time. The KDR-tree
divides the existing MBR instead of creating an

Figure 1. R*-tree.

Figure 2. KD-tree.

2.3. Uncertain Similarity Measurement

The PROUD presented in [2] is a probabilistic
approach to processing similarity queries over
uncertain streams. Although this approach is
flexible to control the trade-off between false
positives and false negatives, it cannot be quan-
tified. The approach is only suitable for the
specified uncertain time series, where each
timestamp has the same variance. Moreover,
the filter function is limited to the Euclidean
distance. When the measurement is changed
into another distance, such as the TW, the fil-
ter function must change as well. A theoretical
framework is applied in [3] to generalize the
notion of similarity between uncertain time
series. Furthermore, a novel distance measure
DUST is proposed, which takes uncertainty
into consideration. While the PROUD can only

measure the sequences with the same noise
variance and the metric is still not quantifiable,
the DUST goes one step further on the basis of
PROUD. The algorithm can process diverse un-
certainties. Variance of the noise of each time-
stamp can be a different type. However, it is too
time-expensive to be feasible for streaming data
applications. As for the DTW, it aims to find the
optimal alignment with a minimum distance by
typically using a dynamic programming tech-
nique. To adapt the DTW to the real-time and
streaming data, the SPRING algorithm is pro-
posed in [40] to dramatically improve the naive
method. Unnecessary computation is pruned in
[30] by using a bounding technique, which can
accelerate the process by at least three times,
compared to the SPRING.

3. Proposed Method

To construct the index over the streaming un-
certain series, we use the subsequence distance
measurement. Here we present the concrete
question definition as follows:

3.1. Problem Definition

Suppose that the user specifies a target time se-
ries Q of length Len(Q, T) at time T. Let the
probability threshold and the tolerance of the
difference of the distance be ϵ and ε, respective-
ly. Here, T is the time when the user wants to
get access to the history series.
Assume that we have a collection of Num(T)
sequences of real time series S1, S2, ..., SNum(T),
each one of a potentially different length. We
aim to efficiently get all qualified candi-
dates Si (1 ≤ i ≤ Num(T)), along with the
specified offset k, such that the subsequence
Si [k :k + Len(Q, T) - 1] matches the query se-
quence: P(Dist(Si [k :k + Len(Q, T) - 1], Q) ≤
ε) ≥ τ.

3.2. Proposed Approach

For uncertain time series data, different mod-
els have been proposed. This paper mainly uses
the models based on probability statistics. This
means that the data at each moment is com-
posed of the distribution of real data T and the

4 5R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

distribution of noise δ. Hence each timestamp
is a random variable and corresponds to a mean
and to a variance. As shown in Figure 3, the dis-
tribution of a timestamp will be (μi, σi) where μi
is a mean and σi is a variance.

Figure 3. The distribution of one timestamp.

We define X as a reference series with uncer-
tainty and Y as one of the subsequences with the
uncertainty stored in the database. Both series
consist of the random variables in each time se-
ries. Specifically, X[i] = Tx[i] + δx[i] and [i] =
Ty[1] + δy[i]. After pretreatment with the DFT,

we get �X and �Y series that are composed of
features extracted from the X and Y and satisfy
the following equation.

�[] �[]() [] []()
2 2

1 1

M N

i i
X i Y i X i Y i

= =
=− −∑ ∑ (1)

Here M is the dimension of the feature space
and N is the length of the original sequence.
The FRM gets the sub-trails after mapping the
series with an allowable length into a feature
space. Based on those features, the spatial index
is constructed in real time. Since the sub-trails
are included in the MBR, there will be no false
dismissal. However, the cost function with re-
spects to the MBR margin, which is one of the
factors to decide how to split the MBR, is always
time-expensive. Thus, we propose a method
that can avoid this condition. We put forward
the KDR-tree to index the DFT coefficients
based on the local linear assumption. We split
the feature space along the dimension without
crossing any points to construct the KDR-tree.
While the R*-tree is used in [15] to insert the
offline data into the new MBR in advance, the
KDR-tree is constructed dynamically for the
online data. Meanwhile, the max number K of
points included in the MBR is determined by a
number of factors and is adaptive to control the

volume of the feature space. We define the K
determination equation as follows.

()

(, ,)
1.5

1 ()
last

variance density
last area

K T area variance density
K

exp sign area area ⋅

=

=
+ − −

(2)

Here Klast represents the parent's or the child's
number of current K and arealast represents the
parent's or the child's number of area. If the
split operation takes place, Klast is the parent's
K and the arealast is the parent's K. On the other
hand, if the index removes the last point of a
subspace and combination happens, Klast is the
child's K and the arealast is the child's area. As
for the root node, we need to manually set an
initial value for K. The density is obtained by
dividing the number of points surrounded in
space by the volume of space. As we can see,
the new K value is obtained by multiplying the
K value of its parent/child node by a constant.
The constant is calculated based on the logistic
function. Its changing image is shown in Figure
4 It is shown that the K value of the new space
is increased or decreased by half at most.

Figure 4. Adaptive K function.

Given the incoming point sets US(T) =
(S12, Len(S1), ..., SMi, Len(SMi)

) at time T, we should
update the KDR-tree over US(T). We add a new
boundary to split the MBR when the number of
points in the MBR is bigger than K. The split op-
eration only affects the subspace that intersects
the MBR formed by the newly arrived point set.
Meanwhile, we need to update the K value of
the new sub MBRs in real time. The KDR-tree
divides the existing MBR instead of creating an

Figure 1. R*-tree.

Figure 2. KD-tree.

2.3. Uncertain Similarity Measurement

The PROUD presented in [2] is a probabilistic
approach to processing similarity queries over
uncertain streams. Although this approach is
flexible to control the trade-off between false
positives and false negatives, it cannot be quan-
tified. The approach is only suitable for the
specified uncertain time series, where each
timestamp has the same variance. Moreover,
the filter function is limited to the Euclidean
distance. When the measurement is changed
into another distance, such as the TW, the fil-
ter function must change as well. A theoretical
framework is applied in [3] to generalize the
notion of similarity between uncertain time
series. Furthermore, a novel distance measure
DUST is proposed, which takes uncertainty
into consideration. While the PROUD can only

measure the sequences with the same noise
variance and the metric is still not quantifiable,
the DUST goes one step further on the basis of
PROUD. The algorithm can process diverse un-
certainties. Variance of the noise of each time-
stamp can be a different type. However, it is too
time-expensive to be feasible for streaming data
applications. As for the DTW, it aims to find the
optimal alignment with a minimum distance by
typically using a dynamic programming tech-
nique. To adapt the DTW to the real-time and
streaming data, the SPRING algorithm is pro-
posed in [40] to dramatically improve the naive
method. Unnecessary computation is pruned in
[30] by using a bounding technique, which can
accelerate the process by at least three times,
compared to the SPRING.

3. Proposed Method

To construct the index over the streaming un-
certain series, we use the subsequence distance
measurement. Here we present the concrete
question definition as follows:

3.1. Problem Definition

Suppose that the user specifies a target time se-
ries Q of length Len(Q, T) at time T. Let the
probability threshold and the tolerance of the
difference of the distance be ϵ and ε, respective-
ly. Here, T is the time when the user wants to
get access to the history series.
Assume that we have a collection of Num(T)
sequences of real time series S1, S2, ..., SNum(T),
each one of a potentially different length. We
aim to efficiently get all qualified candi-
dates Si (1 ≤ i ≤ Num(T)), along with the
specified offset k, such that the subsequence
Si [k :k + Len(Q, T) - 1] matches the query se-
quence: P(Dist(Si [k :k + Len(Q, T) - 1], Q) ≤
ε) ≥ τ.

3.2. Proposed Approach

For uncertain time series data, different mod-
els have been proposed. This paper mainly uses
the models based on probability statistics. This
means that the data at each moment is com-
posed of the distribution of real data T and the

6 7R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

In summary, the non-leaf node is used to find
candidates satisfying P(Dist(Si [k :k + Len(Q, T)
- 1], Q) ≤ ε) ≥ τ and the leaf node returns to the
target points. The search spends a lot of time
on these nodes to check the distance measure-
ment rather than update the index structure in
real time.

4. Index Construction

In the previous section, we discussed the
sketched approach to dealing with the updating
points. We used an inserting operation similar
to the KD-trees operation, to avoid excessive
MBR updates. In this section, we present how to
construct the spatial index. First, we select the
DFT as our feature extraction method used by
the subsequence. Second, we discuss the search
and the algorithm when the new points arrive.

4.1. Feature Extraction

We choose the DFT for three reasons.
1. It is commonly used for dimension reduc-

tion.
2. It provides a good and intuitive example to

make the presentation clearer.
3. It keeps the distance measurement the

same as the real distance, except for the
white noise.

Furthermore, the feature extraction is important
for us to reduce the length of the series result-
ing in higher efficiency when we treat the time
as one dimension. Meanwhile, it is useful when
the distance measurement over an uncertain
time series is complicated. After the updating
set arrives, we check if the space needs to be
divided according to K.

4.2. Search

The search operation is used to select the qual-
ified candidates when the user gives a query
series at a specific time. At this point, we must
choose one distance measure with uncertainty
taken into consideration. Although the PROUD
approach formalizes a selection standard by
using a normalized function, it cannot be used
directly to compare the distance in the form of

numeric. Hence, in this paper, we use a variant
numeric approach based on the PROUD as fol-
lows.

 ● The user query Q is mapped into the
sub-trails in the same manner. The
KDR-tree works for the specific area,
which satisfies P(Dist(Si [k :k + Len(Q, T)
- 1], Q) ≤ ε) ≥ τ.

 ● We use the variant distance measurement
based on the PROUD to collect the candi-
dates from the top down.

 ● We combine the results of the collections
of the leaf points according to the iden-
tified id in the MBR over each uncertain
time series.

In this paper, we focus on the uncertain time
series. This means that our search process will
take more time due to the addition of uncer-
tain information. Correspondingly, the distance
measurement is based on uncertain objects
rather than on the crisp ones. For the continu-
ous model, the value consists of real value and
noise. Both of them are regarded as variables
linked with an unknown probability density
function. Although the distribution over a single
random variable is unknown, the Central Limit
Theorem indicates that the group of variables
can be simulated by the Gauss Distribution.
We use the KDR-tree to perform the search ac-
tions on uncertain time series and it is differ-
ent from the process of screening for crisp time
series. Although both are based on Euclidean
distance, the screening radius in the KDR-tree
changes dynamically during the algorithm ex-
ecution.
According to [41], the varying threshold (i.e.,
screening radius) can be represented by the av-
erage of the random variable (i.e., E(xi)). Since
the measurement is based on the probability
theory, it must utilize the characteristics of the
expected value as the computational element of
the Euclidean distance. Here, we directly pres-
ent the result in [41]. The filter function can be
reorganized as the following equation:

()
22

1

4
2

N
q

i i
i

b b ac
aµ µ

=

− + −
− ≤∑ (3)

We define a = 1, b = r-limit2 ()()224 qσ σ+ ,

MBR to store the new points. Compared with
the R*-tree, it saves the split and inserts time
because it doesn't enumerate all sub MBRs to
determine the best inserted MBR and calcu-
late the area of sub MBRs. Thus, the index can
quickly respond to the coming data. Because of
this fast response to real-time data, the index
structure has high throughput. Figure 5 shows
the content of the MBR we use. The leaf MBRs
of the KDR-tree store the set of points in the
subspace while the non-leaf MBR only saves
the information about the split boundary of the
parent space. The point set of the subspace is
highly repetitive, hence there is no need to store
the points in the non-leaf MBR. Moreover, the
subspace size can be obtained along the path
from the top down.

Figure 5. Data structure of MBR.

The KDR-tree uses the split algorithm, which
is similar to the KD-tree, but the point is only
included in the leaf nodes and no point passes
through the split boundary. The biggest differ-
ence is that this is applied to uncertain time se-
ries. As for the maximum number of points, it is
allowed to be adaptively changed according to
the density and area as well as variance.
We give a simple example of KDR-tree in 2-di-
mensional space. Figure 3 shows a possible
case of spatial division. Each of the subspaces
has the maximum number of points equal to 1.

We define K as the formula (3) because the den-
sity distribution of the index is always uneven
which is not beneficial for the search efficiency.
For example, a small area containing as many
points as a large area is easier to cause unnec-
essary depth exploration during the search.
Hence, we define the density value as the ratio
of a point set to the area and we consider it to be
one of the standards for splitting the space. The
higher the density, the easier it is to be divid-
ed. Meanwhile, given a search range, it is more
possible to eliminate unnecessary space look-
ups for space with a large area. Otherwise, if
the area itself is small, the same search radius is
likely to cover the entire space and this makes
the enumeration unavoidable. Finally, due to
the larger variance, the denser the point set is
within the point cluster, the more obvious is the
separation between the points. It means that the
space with a large variance should be easier to
segment. Hence, we make K inversely propor-
tional to the variance along the split dimension.

Figure 6. Example of mapping the series into feature
space.

6 7R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

In summary, the non-leaf node is used to find
candidates satisfying P(Dist(Si [k :k + Len(Q, T)
- 1], Q) ≤ ε) ≥ τ and the leaf node returns to the
target points. The search spends a lot of time
on these nodes to check the distance measure-
ment rather than update the index structure in
real time.

4. Index Construction

In the previous section, we discussed the
sketched approach to dealing with the updating
points. We used an inserting operation similar
to the KD-trees operation, to avoid excessive
MBR updates. In this section, we present how to
construct the spatial index. First, we select the
DFT as our feature extraction method used by
the subsequence. Second, we discuss the search
and the algorithm when the new points arrive.

4.1. Feature Extraction

We choose the DFT for three reasons.
1. It is commonly used for dimension reduc-

tion.
2. It provides a good and intuitive example to

make the presentation clearer.
3. It keeps the distance measurement the

same as the real distance, except for the
white noise.

Furthermore, the feature extraction is important
for us to reduce the length of the series result-
ing in higher efficiency when we treat the time
as one dimension. Meanwhile, it is useful when
the distance measurement over an uncertain
time series is complicated. After the updating
set arrives, we check if the space needs to be
divided according to K.

4.2. Search

The search operation is used to select the qual-
ified candidates when the user gives a query
series at a specific time. At this point, we must
choose one distance measure with uncertainty
taken into consideration. Although the PROUD
approach formalizes a selection standard by
using a normalized function, it cannot be used
directly to compare the distance in the form of

numeric. Hence, in this paper, we use a variant
numeric approach based on the PROUD as fol-
lows.

 ● The user query Q is mapped into the
sub-trails in the same manner. The
KDR-tree works for the specific area,
which satisfies P(Dist(Si [k :k + Len(Q, T)
- 1], Q) ≤ ε) ≥ τ.

 ● We use the variant distance measurement
based on the PROUD to collect the candi-
dates from the top down.

 ● We combine the results of the collections
of the leaf points according to the iden-
tified id in the MBR over each uncertain
time series.

In this paper, we focus on the uncertain time
series. This means that our search process will
take more time due to the addition of uncer-
tain information. Correspondingly, the distance
measurement is based on uncertain objects
rather than on the crisp ones. For the continu-
ous model, the value consists of real value and
noise. Both of them are regarded as variables
linked with an unknown probability density
function. Although the distribution over a single
random variable is unknown, the Central Limit
Theorem indicates that the group of variables
can be simulated by the Gauss Distribution.
We use the KDR-tree to perform the search ac-
tions on uncertain time series and it is differ-
ent from the process of screening for crisp time
series. Although both are based on Euclidean
distance, the screening radius in the KDR-tree
changes dynamically during the algorithm ex-
ecution.
According to [41], the varying threshold (i.e.,
screening radius) can be represented by the av-
erage of the random variable (i.e., E(xi)). Since
the measurement is based on the probability
theory, it must utilize the characteristics of the
expected value as the computational element of
the Euclidean distance. Here, we directly pres-
ent the result in [41]. The filter function can be
reorganized as the following equation:

()
22

1

4
2

N
q

i i
i

b b ac
aµ µ

=

− + −
− ≤∑ (3)

We define a = 1, b = r-limit2 ()()224 qσ σ+ ,

MBR to store the new points. Compared with
the R*-tree, it saves the split and inserts time
because it doesn't enumerate all sub MBRs to
determine the best inserted MBR and calcu-
late the area of sub MBRs. Thus, the index can
quickly respond to the coming data. Because of
this fast response to real-time data, the index
structure has high throughput. Figure 5 shows
the content of the MBR we use. The leaf MBRs
of the KDR-tree store the set of points in the
subspace while the non-leaf MBR only saves
the information about the split boundary of the
parent space. The point set of the subspace is
highly repetitive, hence there is no need to store
the points in the non-leaf MBR. Moreover, the
subspace size can be obtained along the path
from the top down.

Figure 5. Data structure of MBR.

The KDR-tree uses the split algorithm, which
is similar to the KD-tree, but the point is only
included in the leaf nodes and no point passes
through the split boundary. The biggest differ-
ence is that this is applied to uncertain time se-
ries. As for the maximum number of points, it is
allowed to be adaptively changed according to
the density and area as well as variance.
We give a simple example of KDR-tree in 2-di-
mensional space. Figure 3 shows a possible
case of spatial division. Each of the subspaces
has the maximum number of points equal to 1.

We define K as the formula (3) because the den-
sity distribution of the index is always uneven
which is not beneficial for the search efficiency.
For example, a small area containing as many
points as a large area is easier to cause unnec-
essary depth exploration during the search.
Hence, we define the density value as the ratio
of a point set to the area and we consider it to be
one of the standards for splitting the space. The
higher the density, the easier it is to be divid-
ed. Meanwhile, given a search range, it is more
possible to eliminate unnecessary space look-
ups for space with a large area. Otherwise, if
the area itself is small, the same search radius is
likely to cover the entire space and this makes
the enumeration unavoidable. Finally, due to
the larger variance, the denser the point set is
within the point cluster, the more obvious is the
separation between the points. It means that the
space with a large variance should be easier to
segment. Hence, we make K inversely propor-
tional to the variance along the split dimension.

Figure 6. Example of mapping the series into feature
space.

8 9R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

the feature space, it is a bit cumbersome, main-
ly in checking all feature space intersecting the
MBR formed by the set of points to be added.
In summary, the update of the data includes the
following steps.

 ● When the data to be updated arrives, we
save it directly in the database.

 ● We calculate the MBR of these point sets
and then find the feature space that inter-
sects with the space in the KDR-tree.

 ● Based on the found MBRs, we determine if
to divide the corresponding space by com-
paring the number of points and the value
of K in each subspace after adding the cor-
responding point set.

For determining the split dimension, we use
the variance as the criterion for screening the
optimal dimension because the larger the vari-
ance, the more obvious the point set distribu-
tion. Not only do we need to consider variance,
but also the size of the subspace. Intuitively, we
know that, for the same search radius, if a cir-
cle corresponding to the radius covers a dens-
er set of points and fewer nodes, there will be
more points that may need to be enumerated. It
means that a set of points with low density can
help reduce unnecessary further node explora-
tion. Conversely, a subspace with dense points
is likely to cause unnecessary traversal due to
insufficient filtering. Hence, we need to use the
size of the space and the spatial density as a cor-
relation factor. In short, we set three quantita-
tive values, namely variance, density and area,
as criteria for the division.

Most of the time is usually spent in searching
and enumerating the space to be divided. Hence,
compared to the R-tree, there is more time-cost
for the KDR to determine if it needs to be split
than to perform the splitting operation.

Above all, we have the following algorithm to
update the KDR-tree. TryToSplit algorithm (Al-
gorithm 2) is applied to determine whether the
node needs spliting or not. And ADD (Algo-
rithm 3) is an interface used to insert the new
points.

Algorithm 1. Search.

Input: root R of KDR-tree, Q query feature, σ query
variance, ε distance threshold, τ probability threshold
Output: candidates
1. initialize:
2. 1- 2 (2 1)r limit erf τ−← −
3.

4. minThd = getThreshold(r-limit, R.Dim, R.σmax, σ, ε)

5. maxThd = getThreshold(r-limit, R.Dim, R.σmin, σ, ε)
6.
7. if maxDist(R.MBR, Q) ≤ minThd then
8. GetCoveredLeaves

push
⇒ candidates

9. end if
10. if minDist(R.MBR, Q) > maxThd then
11. return
12. end if
13. if R is leaf node then
14. for i = 1, ..., R.pointsNum do
15. thd = getThreshold(r-limit, R.σ[i], σ, ε)
16. if Dist(R.points[i], Q) ≤ thd then
17. R.points[i]

push
⇒ candidates

18. end if
19. end for
20. return
21. end if
22. if (R.points[R.splitDim] - R.splitVal)2 ≤ maxThd then
23. Search(R.left, Q, σ, ε, τ)
24. Search(R.right, Q, σ, ε, τ)
25. end if

Algorithm 2. TryToSplit.

Input: root R of KDR-tree
1. initialize: curNode = R
2. if Count(R.points) > R.K then
3. for all dimensions do
4. calculate the variance of two subspace
5. if the sum of two variances is the largest one then
6. else we choose this dimension to split
7. end if
8. end for
9. calculate the area, density of two subspaces
10. choose the median value as the split value along
 the choosen dimension
11. Update R.left.K and R.right.K according to
 T(area, variance, density)
12. end if

c = -ε2 + N(σ2 + (σq)2). Here, μi is the expec-
tation of the i-th timestamp of the sequence
whose variance is σ in the database; μi

q is the
expectation of the i-th timestamp of the query
sequence whose variance is σ

q; N is the dimen-
sion of the feature space. The symbol r-limit is
the threshold that satisfies the target probability
value under a normal distribution, which is de-
fined as follows:

1- 2 (2 1)r limit erf τ−= − (4)

Here, erf -1(x) represents the inverse of the er-
ror function; τ is the user-defined probability
threshold; r is the user-defined distance thresh-
old. According to the algorithm proposed in
[41], the threshold dynamically changes with
respect to the square of variance.

() ()()
()

2

22 2 2

22

()

-

-

r

r

VarThd

r limit len r

r limit

σ

σ σ

σ σ

=

= − + + −

− +

 (5)

The symbol len in this paper can be considered
equivalent to the dimension of the feature space
since (1) the request sequence with a large
length can be split into multiple short sequences
and mapped to low dimensional space and (2)
under the real-time environment, the proportion
of short-sequence data is relatively large due to
factors such as speed, throughput, and trans-
mission limitations.
Furthermore, this threshold has monotonic
nature respect to σ when r-limit is positive,
otherwise it is uncertain. Therefore, for the
sake of simplicity, we suppose r-limit > 0 or

2 2
2

2 2
-

- -
r limit r

r limit r limit len
σ >

− ⋅
 to make sure the

threshold is monotonic decrease reference to
the σ2. As we can see, the radius of the sieve
inspection is the dynamic distance with respect
to the variance. This property certainly increas-
es the time of calculating the distance measure-
ment. However, after the DFT-based feature
extraction and the KDR-tree processes, it effec-
tively reduces unnecessary point set checks and
time-consuming updates. In [41], it is proposed
to apply a one-dimensional variance interval as

an MBR to construct an R-tree. Similarly, we
store the set of points in the sub-feature space
to the MBR, store the interval value of the vari-
ance into the feature space, and use the two
filter mechanisms in [41] in the search. Since
the arrival of data in the process of building a
KDR-tree is random, the structure of the final
tree will be uncertain.
The metrics for uncertain data are expanded
in [3]. For more complex types of uncertainty,
they propose the DUST metric, which is primar-
ily measured based on the definitions below.

[] []()
1

(,) ,
N

i
DUST X Y dust X i Y i

=
= ∑ (6)

Probability information is mainly integrated
into the dust.

()() ()(,) log log (0)dust x y x yφ φ= − − + (7)

In the paper, we use the DUST distance met-
ric based on the error function, which is nor-
mally distributed. In the case that the noise
data is Gaussian Distribution, the distance of
DUST is only proportional to the absolute val-
ue of the difference. The DUST is essentially
based on Euclidean distance and the DFT does
not change the Euclidean distance between the
original points. Hence, we can directly calcu-
late the metric in the new feature space.

[] []()2

1
2(,)

2 (2)

N

i
X i Y i

DUST X Y
σ σ

=
−

=
+

∑
 (8)

After obtaining the candidate set, we use a
post-processing method to get the last submit-
ted candidate set. The Search algorithm (Algo-
rithm 1) implements the steps described above.

4.3. Update

The update processing includes the addition of
data sets and the partitioning of feature space.
For the addition of data sets, the time complex-
ity is constant since it is highly efficient to up-
date the feature subspace. For the division of

8 9R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

the feature space, it is a bit cumbersome, main-
ly in checking all feature space intersecting the
MBR formed by the set of points to be added.
In summary, the update of the data includes the
following steps.

 ● When the data to be updated arrives, we
save it directly in the database.

 ● We calculate the MBR of these point sets
and then find the feature space that inter-
sects with the space in the KDR-tree.

 ● Based on the found MBRs, we determine if
to divide the corresponding space by com-
paring the number of points and the value
of K in each subspace after adding the cor-
responding point set.

For determining the split dimension, we use
the variance as the criterion for screening the
optimal dimension because the larger the vari-
ance, the more obvious the point set distribu-
tion. Not only do we need to consider variance,
but also the size of the subspace. Intuitively, we
know that, for the same search radius, if a cir-
cle corresponding to the radius covers a dens-
er set of points and fewer nodes, there will be
more points that may need to be enumerated. It
means that a set of points with low density can
help reduce unnecessary further node explora-
tion. Conversely, a subspace with dense points
is likely to cause unnecessary traversal due to
insufficient filtering. Hence, we need to use the
size of the space and the spatial density as a cor-
relation factor. In short, we set three quantita-
tive values, namely variance, density and area,
as criteria for the division.

Most of the time is usually spent in searching
and enumerating the space to be divided. Hence,
compared to the R-tree, there is more time-cost
for the KDR to determine if it needs to be split
than to perform the splitting operation.

Above all, we have the following algorithm to
update the KDR-tree. TryToSplit algorithm (Al-
gorithm 2) is applied to determine whether the
node needs spliting or not. And ADD (Algo-
rithm 3) is an interface used to insert the new
points.

Algorithm 1. Search.

Input: root R of KDR-tree, Q query feature, σ query
variance, ε distance threshold, τ probability threshold
Output: candidates
1. initialize:
2. 1- 2 (2 1)r limit erf τ−← −
3.

4. minThd = getThreshold(r-limit, R.Dim, R.σmax, σ, ε)

5. maxThd = getThreshold(r-limit, R.Dim, R.σmin, σ, ε)
6.
7. if maxDist(R.MBR, Q) ≤ minThd then
8. GetCoveredLeaves

push
⇒ candidates

9. end if
10. if minDist(R.MBR, Q) > maxThd then
11. return
12. end if
13. if R is leaf node then
14. for i = 1, ..., R.pointsNum do
15. thd = getThreshold(r-limit, R.σ[i], σ, ε)
16. if Dist(R.points[i], Q) ≤ thd then
17. R.points[i]

push
⇒ candidates

18. end if
19. end for
20. return
21. end if
22. if (R.points[R.splitDim] - R.splitVal)2 ≤ maxThd then
23. Search(R.left, Q, σ, ε, τ)
24. Search(R.right, Q, σ, ε, τ)
25. end if

Algorithm 2. TryToSplit.

Input: root R of KDR-tree
1. initialize: curNode = R
2. if Count(R.points) > R.K then
3. for all dimensions do
4. calculate the variance of two subspace
5. if the sum of two variances is the largest one then
6. else we choose this dimension to split
7. end if
8. end for
9. calculate the area, density of two subspaces
10. choose the median value as the split value along
 the choosen dimension
11. Update R.left.K and R.right.K according to
 T(area, variance, density)
12. end if

c = -ε2 + N(σ2 + (σq)2). Here, μi is the expec-
tation of the i-th timestamp of the sequence
whose variance is σ in the database; μi

q is the
expectation of the i-th timestamp of the query
sequence whose variance is σ

q; N is the dimen-
sion of the feature space. The symbol r-limit is
the threshold that satisfies the target probability
value under a normal distribution, which is de-
fined as follows:

1- 2 (2 1)r limit erf τ−= − (4)

Here, erf -1(x) represents the inverse of the er-
ror function; τ is the user-defined probability
threshold; r is the user-defined distance thresh-
old. According to the algorithm proposed in
[41], the threshold dynamically changes with
respect to the square of variance.

() ()()
()

2

22 2 2

22

()

-

-

r

r

VarThd

r limit len r

r limit

σ

σ σ

σ σ

=

= − + + −

− +

 (5)

The symbol len in this paper can be considered
equivalent to the dimension of the feature space
since (1) the request sequence with a large
length can be split into multiple short sequences
and mapped to low dimensional space and (2)
under the real-time environment, the proportion
of short-sequence data is relatively large due to
factors such as speed, throughput, and trans-
mission limitations.
Furthermore, this threshold has monotonic
nature respect to σ when r-limit is positive,
otherwise it is uncertain. Therefore, for the
sake of simplicity, we suppose r-limit > 0 or

2 2
2

2 2
-

- -
r limit r

r limit r limit len
σ >

− ⋅
 to make sure the

threshold is monotonic decrease reference to
the σ2. As we can see, the radius of the sieve
inspection is the dynamic distance with respect
to the variance. This property certainly increas-
es the time of calculating the distance measure-
ment. However, after the DFT-based feature
extraction and the KDR-tree processes, it effec-
tively reduces unnecessary point set checks and
time-consuming updates. In [41], it is proposed
to apply a one-dimensional variance interval as

an MBR to construct an R-tree. Similarly, we
store the set of points in the sub-feature space
to the MBR, store the interval value of the vari-
ance into the feature space, and use the two
filter mechanisms in [41] in the search. Since
the arrival of data in the process of building a
KDR-tree is random, the structure of the final
tree will be uncertain.
The metrics for uncertain data are expanded
in [3]. For more complex types of uncertainty,
they propose the DUST metric, which is primar-
ily measured based on the definitions below.

[] []()
1

(,) ,
N

i
DUST X Y dust X i Y i

=
= ∑ (6)

Probability information is mainly integrated
into the dust.

()() ()(,) log log (0)dust x y x yφ φ= − − + (7)

In the paper, we use the DUST distance met-
ric based on the error function, which is nor-
mally distributed. In the case that the noise
data is Gaussian Distribution, the distance of
DUST is only proportional to the absolute val-
ue of the difference. The DUST is essentially
based on Euclidean distance and the DFT does
not change the Euclidean distance between the
original points. Hence, we can directly calcu-
late the metric in the new feature space.

[] []()2

1
2(,)

2 (2)

N

i
X i Y i

DUST X Y
σ σ

=
−

=
+

∑
 (8)

After obtaining the candidate set, we use a
post-processing method to get the last submit-
ted candidate set. The Search algorithm (Algo-
rithm 1) implements the steps described above.

4.3. Update

The update processing includes the addition of
data sets and the partitioning of feature space.
For the addition of data sets, the time complex-
ity is constant since it is highly efficient to up-
date the feature subspace. For the division of

10 11R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

the corresponding search algorithm to find the
candidate set.
All experiments were repeated 20 times. Each
experiment (randomly) generated 10 batches
of random data under the corresponding test
parameters to simulate real-time data. We av-
eraged all test results as the final elapsed time.
Here, an experiment was carried out under dif-
ferent numbers of processed objects to test the
efficiency of different indexes. The final result
is presented in Figure 7.

Figure 7. Efficiency comparison over the num.

It is shown in Figure 7 that, as expected, three
index structures have their own advantages.
Due to the flexibility of the MBR, the R-tree
needs to update the MBR from the bottom
up when the inserting operation takes place.
Hence, it is time expensive to insert the com-
ing data. On the contrary, due to the flexibility
of the MBR, we can quickly locate the MBR,
where the target is located when the R-tree is
used for retrieval. Therefore, the R-tree is the
most efficient in terms of retrieval, but it is the
least efficient when updating. The KDR-tree
query efficiency is between the KD-tree update
and query efficiency. The structure of KDR-tree
is similar to the KD-tree, and the space is divid-
ed into subspaces that do not overlap with each
other. Therefore, there is no need to update a
large number of MBRs when inserting data. Un-
like the KD-tree, the KDR-tree needs to divide
the space according to a series of rules. The
division decision is based on the density, the
area and the variance along the split dimension.
Therefore, the division of KDR-tree increases
the time of update, but a reasonable division can

make the retrieval efficiency almost unchanged
or even improveed. Due to the split decision,
the depth of the KDR-tree does not increase lin-
early with the data points. Most importantly, the
KDR-tree can handle uncertainty time series.
Concerning the effect of noise variance on que-
ry performance, performance of the index varies
slightly under different noises. The experimen-
tal data is based on the random data generated
under fixed τ and ε. Each corresponding noise
variance has 10 sets of random data for test-
ing. Similarly, we took the average of 10 sets
of results as the final result. The experimental
results are shown in Figure 8.

Figure 8. Error and miss ratio over σq.

In the result, the KD-tree and KDR-tree curves
coincide because the KDR-tree retrieval step in
the experiment is very similar to THE KD-tree.
The difference is that the KDR-tree needs to tra-
verse the leaf nodes so that the error rate may be
less than or equal to the error rate of KD-tree.
Moreover, the fast screening algorithm pro-
posed in [16] can be used for the KDR-tree. It
is shown that the error ratio and the missing ra-
tio of the R-tree are biased towards 0.5. In the
R-tree, the eigenvalues are organized into MBR
forms. Unlike the KD-tree and the KDR-tree,
the R-tree uses these MBRs instead of the points
for retrieval. Therefore, the R-tree measurement
result is smaller, causing the error value to be
larger than the KD-tree and KDR-tree. On the
contrary, the loss rate is relatively small.

Algorithm 3. Add.

Input: root R of KDR-tree, point to be added
1. initialize: curNode = R
2. while true do
3. if curNode is leaf node then
4. insert the node into curNode
5. TryToSplit(curNode)
6. return
7. end if
8. if point [curNode.splitDim] < curNode.splitVal then
9. curNode = curNode.left
10. else
11. curNode = curNode.right
12. end if
13. end while

5. Experiments

In this section, we conduct experiments with
random and real data, respectively. To deter-
mine if the adaptive K value improves efficien-
cy of the index, we need to compare the search
algorithm with the KR-tree. At the same time,
to compare the influence of different distance
metrics on the retrieval results, we compare the
search algorithm based on the PROUD and the
DUST distance metrics. In general, the DUST
has a higher accuracy and a lower false detec-
tion rate since it makes full use of the uncertain
sequence. By the experiments with different
search algorithms we compare the efficiency of
these algorithms. To facilitate comparison, we
give two quantitative indicators in Table 2.

Table 2. Quantitative indicators.

Candidates

True False

Real
Sequence

True TP FN

False FP TN

TPError Ratio TP FP=
+

TPMiss Ratio TP FN=
+

Our experiments were implemented in Python
3.7 and run on the PC with 2.4 GHz CPU and
4GB RAM.

5.1. Synthetic data

Time series data contain the noise distribution
and the real distribution. We hereby set these
two types of distributions to generate synthet-
ic data. In the experiments, it is assumed that
the noise distribution of data is a standard nor-
mal distribution and the true distribution is a
uniform distribution. So, the expected value
of each data is the expected value of the real
data distribution. We further assume that the
expected value is a uniform distribution with
respect to time and the variance is a uniform
distribution with respect to the sequence. This
means that the different timestamps in the same
sequence have the same variance but different
mean values while different sequences have dif-
ferent variances. Once a new sequence data is
generated, we first insert it into the index struc-
ture and then query the candidate set. Since the
experiments use different index structures, the
dimensions of each index structure are slightly
different. Specifically, after feature extraction
using the DFT, two feature values of the subse-
quences are generated.
The KDR-tree and the KD-tree require the fea-
ture's dimension to handle point sets, and we
hence map subsequences to 4-dimensional
points. On the contrary, the R-tree can work di-
rectly in the 2-dimensional space. To deal with
real-time data, we focus on the construction of
index and query. The KD-tree takes each point
as a node and each node includes a dividing line.
This means that, as the set of points increases,
the space becomes more fragmented. At the
same time, the depth of the tree will increase
accordingly. Although the R-tree is more flex-
ible than the KD-tree, the space of the R-tree
can be more time-consuming because random
MBR can overlap with each other. The R-tree
is an index for the data of non-zero size and the
update operation on the MBR is too time con-
suming to meet real-time performance. To ob-
serve the efficiency of different index updates
and retrievals, we experiment with an update
and an index operations. We add the synthetic
data to different index structures and then use

10 11R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

the corresponding search algorithm to find the
candidate set.
All experiments were repeated 20 times. Each
experiment (randomly) generated 10 batches
of random data under the corresponding test
parameters to simulate real-time data. We av-
eraged all test results as the final elapsed time.
Here, an experiment was carried out under dif-
ferent numbers of processed objects to test the
efficiency of different indexes. The final result
is presented in Figure 7.

Figure 7. Efficiency comparison over the num.

It is shown in Figure 7 that, as expected, three
index structures have their own advantages.
Due to the flexibility of the MBR, the R-tree
needs to update the MBR from the bottom
up when the inserting operation takes place.
Hence, it is time expensive to insert the com-
ing data. On the contrary, due to the flexibility
of the MBR, we can quickly locate the MBR,
where the target is located when the R-tree is
used for retrieval. Therefore, the R-tree is the
most efficient in terms of retrieval, but it is the
least efficient when updating. The KDR-tree
query efficiency is between the KD-tree update
and query efficiency. The structure of KDR-tree
is similar to the KD-tree, and the space is divid-
ed into subspaces that do not overlap with each
other. Therefore, there is no need to update a
large number of MBRs when inserting data. Un-
like the KD-tree, the KDR-tree needs to divide
the space according to a series of rules. The
division decision is based on the density, the
area and the variance along the split dimension.
Therefore, the division of KDR-tree increases
the time of update, but a reasonable division can

make the retrieval efficiency almost unchanged
or even improveed. Due to the split decision,
the depth of the KDR-tree does not increase lin-
early with the data points. Most importantly, the
KDR-tree can handle uncertainty time series.
Concerning the effect of noise variance on que-
ry performance, performance of the index varies
slightly under different noises. The experimen-
tal data is based on the random data generated
under fixed τ and ε. Each corresponding noise
variance has 10 sets of random data for test-
ing. Similarly, we took the average of 10 sets
of results as the final result. The experimental
results are shown in Figure 8.

Figure 8. Error and miss ratio over σq.

In the result, the KD-tree and KDR-tree curves
coincide because the KDR-tree retrieval step in
the experiment is very similar to THE KD-tree.
The difference is that the KDR-tree needs to tra-
verse the leaf nodes so that the error rate may be
less than or equal to the error rate of KD-tree.
Moreover, the fast screening algorithm pro-
posed in [16] can be used for the KDR-tree. It
is shown that the error ratio and the missing ra-
tio of the R-tree are biased towards 0.5. In the
R-tree, the eigenvalues are organized into MBR
forms. Unlike the KD-tree and the KDR-tree,
the R-tree uses these MBRs instead of the points
for retrieval. Therefore, the R-tree measurement
result is smaller, causing the error value to be
larger than the KD-tree and KDR-tree. On the
contrary, the loss rate is relatively small.

Algorithm 3. Add.

Input: root R of KDR-tree, point to be added
1. initialize: curNode = R
2. while true do
3. if curNode is leaf node then
4. insert the node into curNode
5. TryToSplit(curNode)
6. return
7. end if
8. if point [curNode.splitDim] < curNode.splitVal then
9. curNode = curNode.left
10. else
11. curNode = curNode.right
12. end if
13. end while

5. Experiments

In this section, we conduct experiments with
random and real data, respectively. To deter-
mine if the adaptive K value improves efficien-
cy of the index, we need to compare the search
algorithm with the KR-tree. At the same time,
to compare the influence of different distance
metrics on the retrieval results, we compare the
search algorithm based on the PROUD and the
DUST distance metrics. In general, the DUST
has a higher accuracy and a lower false detec-
tion rate since it makes full use of the uncertain
sequence. By the experiments with different
search algorithms we compare the efficiency of
these algorithms. To facilitate comparison, we
give two quantitative indicators in Table 2.

Table 2. Quantitative indicators.

Candidates

True False

Real
Sequence

True TP FN

False FP TN

TPError Ratio TP FP=
+

TPMiss Ratio TP FN=
+

Our experiments were implemented in Python
3.7 and run on the PC with 2.4 GHz CPU and
4GB RAM.

5.1. Synthetic data

Time series data contain the noise distribution
and the real distribution. We hereby set these
two types of distributions to generate synthet-
ic data. In the experiments, it is assumed that
the noise distribution of data is a standard nor-
mal distribution and the true distribution is a
uniform distribution. So, the expected value
of each data is the expected value of the real
data distribution. We further assume that the
expected value is a uniform distribution with
respect to time and the variance is a uniform
distribution with respect to the sequence. This
means that the different timestamps in the same
sequence have the same variance but different
mean values while different sequences have dif-
ferent variances. Once a new sequence data is
generated, we first insert it into the index struc-
ture and then query the candidate set. Since the
experiments use different index structures, the
dimensions of each index structure are slightly
different. Specifically, after feature extraction
using the DFT, two feature values of the subse-
quences are generated.
The KDR-tree and the KD-tree require the fea-
ture's dimension to handle point sets, and we
hence map subsequences to 4-dimensional
points. On the contrary, the R-tree can work di-
rectly in the 2-dimensional space. To deal with
real-time data, we focus on the construction of
index and query. The KD-tree takes each point
as a node and each node includes a dividing line.
This means that, as the set of points increases,
the space becomes more fragmented. At the
same time, the depth of the tree will increase
accordingly. Although the R-tree is more flex-
ible than the KD-tree, the space of the R-tree
can be more time-consuming because random
MBR can overlap with each other. The R-tree
is an index for the data of non-zero size and the
update operation on the MBR is too time con-
suming to meet real-time performance. To ob-
serve the efficiency of different index updates
and retrievals, we experiment with an update
and an index operations. We add the synthetic
data to different index structures and then use

12 13R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

are mainly due to the fact that the point-based
index construction and the MBR-based index
construction query methods are very different.
The MBR-based query underestimates the ac-
tual value of the distance metric, but the query
based on the point set is closer to the true value.
Hence, the result shows that the error rate of the
R-tree is higher. Meanwhile, the KDR-tree has
a lower loss rate than the KD-tree. This means
that the overall performance of the KDR-tree is
better than that of the KD-tree.
To fix the parameter ε, we compare the per-
formance of different indexes on τ. The ex-
perimental results are shown in Figure 10. As
[17] pointed out, the PROUD-based screening
works only in a small interval of ε. This means
that the choice of ε becomes very important.
This is why we chose ε as 16. As τ continues
to increase, the error rate remains the same or
decreases. On the other hand, the miss ratio re-
mains the same or increases. It is shown that τ
has far less impact on the results than ε. This
is because τ's influence in the filter function is
small, and the distance that is ultimately used
for filtering is linear about ε. As shown in Fig-
ure 10, the index structure changes very sta-
bly. As expected, the error rate increases as τ
increases. The reason why the R-tree does not
meet our expectations is the fact that the R-tree
underestimates the metrics.

5.2. Real Data

Archive files contain daily average tempera-
tures of 157 U.S. and 167 international cities.
Source data for these files are from the Global
Summary of the Day (GSOD) database archived
by the National Climatic Data Center (NCDC).
The daily average temperatures posted on this
site are computed from 24 hourly temperature
readings in the Global Summary of the Day
(GSOD) data. The data fields in each file are
month, day, year, daily average temperature (F)
and data containing ''-99'' no-data flag is not
available. Since the pre-processed point set af-
ter the DFT is of the same dimension, we do not
need to care about the length of the sequence.
There are more than 300 cities in the original
file and about 5,000 data points in each city that
are not empty.
Unlike the synthetic data, we read a random
number of non-null data from a file at the same
time interval. In the experiments, we read the
data for 300 cities every 30 ms within 2 minutes.
If reading a file is finished early in 2 minutes,
we do nothing. Since the fluctuations of dimen-
sions and values of the real data are larger than
those of random data, the distance threshold is
increased correspondingly. We still examine the
impact of the distance threshold ε first. Then we
test the impact of τ. The results are shown in
Figure 11 and Figure 12, respectively.

Figure 10. Error and miss ratio over τ.

(a) PROUD (b) DUST

Next, we need to test the impact of the distance
threshold ε on the performance. Random data
is generated based on the same behavior as the
above experiment. Similarly, τ and σ are fixed
during the experiment. Each ε corresponds with
the average of the 10 experiments. Each exper-
iment was carried out in the following context.
1. Data Collection. Suppose the database

collects data per 30 seconds. Experiments
randomize the number of each sequence
in 30 seconds. Finally, we return the true
value of the data to be updated, the noise
value, the expected value and the variance
of the observed sequence, through the sim-
ulated sensor.

2. DFT Preprocess. After collecting the data,
we use the DFT to extract features. The
experiments in this paper use 2-dimen-
sional features. Moreover, the feature val-
ue is complexity. Hence the KD-tree and
KDR-tree are constructed in 4-dimension
space. The R-tree is built in 2-dimension
space.

3. Index Update. After the point set of the
feature space is obtained, the index struc-
ture is updated by using the insert opera-
tion of the corresponding index. The in-
serting may cause the node to be split.

4. Search. We randomly generate the subse-
quence to be queried (the subsequence is

shorter to ensure that the distance metric
of the 2-dimensional eigenvalue is close
enough to the true value). After extracting
the features of the subsequence, we use the
updated index structure to retrieve the set
of points that match the objective function
P(Dist(Si[k :k + Len(Q, T) - 1], Q) ≤ ε) ≥ τ.

5. Calculation of Statistics. Based on the
real data sequence, we calculate the num-
ber of subsequences that satisfy the objec-
tive function. Based on the candidate set
obtained from the index structure, we fil-
ter the correct candidate set and the wrong
candidate set. Eventually, we calculate the
error ratio and the loss ratio.

Following the experimental step, we set up dif-
ferent ε for the experiments. Experimental re-
sults containing test results under the DUST and
PROUD distance metrics are shown in Figure
9. Note that the error rates of KDR-tree and KD-
tree overlap here. With the increasing thresh-
old, the error rates of KD-tree and KDR-tree in-
crease while the loss rate of all index structures
decreases rapidly. On the contrary, the error rate
of R-tree drops slightly. It is also shown that the
R-tree gives a lot of candidate sets, but there are
a lot of erroneous data in the candidate set. Both
the KDR-tree and KD-tree give a small num-
ber of candidate sets, where the correct candi-
date takes a large proportion. These differences

Figure 9. Error and miss ratio over ε.

(a) PROUD (b) DUST

12 13R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

are mainly due to the fact that the point-based
index construction and the MBR-based index
construction query methods are very different.
The MBR-based query underestimates the ac-
tual value of the distance metric, but the query
based on the point set is closer to the true value.
Hence, the result shows that the error rate of the
R-tree is higher. Meanwhile, the KDR-tree has
a lower loss rate than the KD-tree. This means
that the overall performance of the KDR-tree is
better than that of the KD-tree.
To fix the parameter ε, we compare the per-
formance of different indexes on τ. The ex-
perimental results are shown in Figure 10. As
[17] pointed out, the PROUD-based screening
works only in a small interval of ε. This means
that the choice of ε becomes very important.
This is why we chose ε as 16. As τ continues
to increase, the error rate remains the same or
decreases. On the other hand, the miss ratio re-
mains the same or increases. It is shown that τ
has far less impact on the results than ε. This
is because τ's influence in the filter function is
small, and the distance that is ultimately used
for filtering is linear about ε. As shown in Fig-
ure 10, the index structure changes very sta-
bly. As expected, the error rate increases as τ
increases. The reason why the R-tree does not
meet our expectations is the fact that the R-tree
underestimates the metrics.

5.2. Real Data

Archive files contain daily average tempera-
tures of 157 U.S. and 167 international cities.
Source data for these files are from the Global
Summary of the Day (GSOD) database archived
by the National Climatic Data Center (NCDC).
The daily average temperatures posted on this
site are computed from 24 hourly temperature
readings in the Global Summary of the Day
(GSOD) data. The data fields in each file are
month, day, year, daily average temperature (F)
and data containing ''-99'' no-data flag is not
available. Since the pre-processed point set af-
ter the DFT is of the same dimension, we do not
need to care about the length of the sequence.
There are more than 300 cities in the original
file and about 5,000 data points in each city that
are not empty.
Unlike the synthetic data, we read a random
number of non-null data from a file at the same
time interval. In the experiments, we read the
data for 300 cities every 30 ms within 2 minutes.
If reading a file is finished early in 2 minutes,
we do nothing. Since the fluctuations of dimen-
sions and values of the real data are larger than
those of random data, the distance threshold is
increased correspondingly. We still examine the
impact of the distance threshold ε first. Then we
test the impact of τ. The results are shown in
Figure 11 and Figure 12, respectively.

Figure 10. Error and miss ratio over τ.

(a) PROUD (b) DUST

Next, we need to test the impact of the distance
threshold ε on the performance. Random data
is generated based on the same behavior as the
above experiment. Similarly, τ and σ are fixed
during the experiment. Each ε corresponds with
the average of the 10 experiments. Each exper-
iment was carried out in the following context.
1. Data Collection. Suppose the database

collects data per 30 seconds. Experiments
randomize the number of each sequence
in 30 seconds. Finally, we return the true
value of the data to be updated, the noise
value, the expected value and the variance
of the observed sequence, through the sim-
ulated sensor.

2. DFT Preprocess. After collecting the data,
we use the DFT to extract features. The
experiments in this paper use 2-dimen-
sional features. Moreover, the feature val-
ue is complexity. Hence the KD-tree and
KDR-tree are constructed in 4-dimension
space. The R-tree is built in 2-dimension
space.

3. Index Update. After the point set of the
feature space is obtained, the index struc-
ture is updated by using the insert opera-
tion of the corresponding index. The in-
serting may cause the node to be split.

4. Search. We randomly generate the subse-
quence to be queried (the subsequence is

shorter to ensure that the distance metric
of the 2-dimensional eigenvalue is close
enough to the true value). After extracting
the features of the subsequence, we use the
updated index structure to retrieve the set
of points that match the objective function
P(Dist(Si[k :k + Len(Q, T) - 1], Q) ≤ ε) ≥ τ.

5. Calculation of Statistics. Based on the
real data sequence, we calculate the num-
ber of subsequences that satisfy the objec-
tive function. Based on the candidate set
obtained from the index structure, we fil-
ter the correct candidate set and the wrong
candidate set. Eventually, we calculate the
error ratio and the loss ratio.

Following the experimental step, we set up dif-
ferent ε for the experiments. Experimental re-
sults containing test results under the DUST and
PROUD distance metrics are shown in Figure
9. Note that the error rates of KDR-tree and KD-
tree overlap here. With the increasing thresh-
old, the error rates of KD-tree and KDR-tree in-
crease while the loss rate of all index structures
decreases rapidly. On the contrary, the error rate
of R-tree drops slightly. It is also shown that the
R-tree gives a lot of candidate sets, but there are
a lot of erroneous data in the candidate set. Both
the KDR-tree and KD-tree give a small num-
ber of candidate sets, where the correct candi-
date takes a large proportion. These differences

Figure 9. Error and miss ratio over ε.

(a) PROUD (b) DUST

14 15R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

6. Conclusion

In this paper, we use the DFT to map the se-
quence into the feature space and then construct
the index structure in the control space for com-
parison. Since the DFT guarantees invariance
of the metric, the index can obtain the metric
directly, based on the eigenvalues obtained by
the query. The experimental results show that
the R-tree is not suitable for dealing with on-
line data. Although the R-tree retrieval is faster,
the update operations required by the R-tree are
too complex. On the contrary, although the up-
date of the KD-tree is not complicated, the loss
rate is relatively high. This is because the data
points of the KD-tree are used as the point of
separation of the nodes and spaces of the book
at the same time, and the retrieval directly using
the KD-tree cannot guarantee that all the correct
candidate sets are selected. Therefore, we sep-
arate the storage of the segmentation line and
the spatial information, and combine the R-tree
segmentation strategy with the filter optimiza-
tion algorithm [41] while ensuring performance
and efficiency.

References

[1] J. Assfalg et al., ''Probabilistic Similarity Search
for Uncertain Time Series'', in Proc. of the Inter-
national Conference on Scientific and Statistical
Database Management, 2009, pp. 435‒443.
https://doi.org/10.1007/978-3-642-02279-1_31

[2] M.-Y. Yeh et al., ''PROUD: A Probabilistic Ap-
proach to Processing Similarity Queries over
Uncertain Data Streams'', in Proc. of the 12th In-
ternational Conference on Extending Database
Technology, 2009, pp. 684‒695.
http://dx.doi.org/10.1145/1516360.1516439

[3] S. R. Sarangi and K. Murthy, '''DUST: A Gener-
alized Notion of Similarity Between Uncertain
Time Series'', in Proc. of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery
and Data Mining, 2010, pp. 383‒392.
http://dx.doi.org/10.1145/1835804.1835854

[4] S. Hasegawa and T. Itoh, ''Optimal Online Al-
gorithms for the Multi-Objective Time Series
Search Problem'', Theoretical Computer Science,
vol. 718, pp. 58‒66, 2018.
http://dx.doi.org/10.1016/j.tcs.2017.01.008

[5] G. E. A. P. A. Batista et al., ''A Complexity-In-
variant Distance Measure for Time Series'', in

Proc. of the SIAM International Conference on
Data Mining, 2011, pp. 699‒710.
http://dx.doi.org/10.1137/1.9781611972818.60

[6] C. C. Kuo et al., ''Time Series Index for GIS Par-
tial Discharge Detection'' in Proc. of the Asia-Pa-
cific International Conference on Lightning,
2011, pp. 364‒367.
http://dx.doi.org/10.1109/APL.2011.6110143

[7] K. L. Liao et al., ''Wavelet Decomposition Algo-
rithm for Uncertain Data Streams'', in Proc. of the
International Conference on Computer Science &
Education, 2011, pp. 965‒970.
http://dx.doi.org/10.1109/ICCSE.2011.6028796

[8] D. Oliver et al., ''Geo-Referenced Time-Series
Summarization Using k-Full Trees: A Summary
of Results'', in Proc. of the 2012 IEEE Interna-
tional Conference on Data Mining Workshops,
2012, pp. 797‒804.
http://dx.doi.org/10.1109/ICDMW.2012.64

[9] M. Orang and N. Shiri, ''A Probabilistic Approach
to Correlation Queries in Uncertain Time Series
Data'' in Proc. of the 2012 ACM International
Conference on Information and Knowledge Man-
agement, 2012, pp. 2229‒2233.
http://dx.doi.org/10.1145/2396761.2398607

[10] J.-W. Roh et al., ''Efficient Bitmap-Based Index-
ing of Time-Based Interval Sequences'', Informa-
tion Sciences, vol. 194, pp. 38‒56, 2012.
http://dx.doi.org/10.1016/j.ins.2011.08.013

[11] Y. Zuo et al., ''Similarity Matching over Uncer-
tain Time Series'', in Proc. of the International
Conference on Computational Intelligence & Se-
curity, 2012, pp. 1357‒1361.
http://dx.doi.org/10.1109/CIS.2011.302

[12] M. Orang and N. Shiri, ''An Experimental Evalu-
ation of Similarity Measures for Uncertain Time
Series'', in Proc. of the 18th International Con-
ference on Database Engineering & Applications
Symposium, pp. 261‒264, 2014.
http://dx.doi.org/10.1145/2628194.2628207

[13] X. Lian et al., ''Pattern Matching Over Cloaked
Time Series'', in Proc. of the IEEE 24th Interna-
tional Conference on Data Engineering, 2008,
pp. 1462‒1464.
http://dx.doi.org/10.1109/ICDE.2008.4497590

[14] M. S. Gil et al., ''Fast Index Construction for Dis-
tortion-Free Subsequence Matching in Time-Se-
ries Databases'' in Proc. of the International Con-
ference on Big Data and Smart Computing, 2015,
pp. 130‒135.
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072822

[15] C. Faloutsos et al., ''Fast Subsequence Matching
in Time-Series Databases'' in Proc. of the 1994
ACM SIGMOD International Conference on
Management of Data, 1994, pp. 419‒429.
https://doi.org/10.1145/191839.191925

The result is similar to the case of the synthetic
data. The loss rates of these three index struc-
tures are all rapidly reduced. The reason why
the error rate of R-tree rapidly decreased is that
the R-tree does not introduce the wrong candi-
date set at the same time when the candidate
sets are introduced. It is shown in Figure 9 that
the loss rate of the KDR-tree is still superior. In
the case of using the DUST distance metric, the
loss rate of the R-tree becomes unstable.

Finally, it is shown in Figure 12 that τ has a
smaller impact on the results than ε does. The
reason is that, as the length of the sequence in-
creases, the proportion of ε in the filter func-
tion takes up more and more. Therefore, per-
formance of the index structure on τ seems to
be stable. R-tree has a high error rate and a
high loss rate due to excessive data acquisition.
Once again, it is confirmed that the overall per-
formance of the KDR-tree is better.

Figure 12. Error and miss ratio over τ.

(a) PROUD (b) DUST

Figure 11. Error and miss ratio over ε.

(a) PROUD (b) DUST

https://doi.org/10.1007/978-3-642-02279-1_31
http://dx.doi.org/10.1145/1516360.1516439
http://dx.doi.org/10.1145/1835804.1835854
http://dx.doi.org/10.1016/j.tcs.2017.01.008
http://dx.doi.org/10.1137/1.9781611972818.60
http://dx.doi.org/10.1109/APL.2011.6110143
http://dx.doi.org/10.1109/ICCSE.2011.6028796
http://dx.doi.org/10.1109/ICDMW.2012.64
http://dx.doi.org/10.1145/2396761.2398607
http://dx.doi.org/10.1016/j.ins.2011.08.013
http://dx.doi.org/10.1109/CIS.2011.302
http://dx.doi.org/10.1145/2628194.2628207
http://dx.doi.org/10.1109/ICDE.2008.4497590
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072822
https://doi.org/10.1145/191839.191925

14 15R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

6. Conclusion

In this paper, we use the DFT to map the se-
quence into the feature space and then construct
the index structure in the control space for com-
parison. Since the DFT guarantees invariance
of the metric, the index can obtain the metric
directly, based on the eigenvalues obtained by
the query. The experimental results show that
the R-tree is not suitable for dealing with on-
line data. Although the R-tree retrieval is faster,
the update operations required by the R-tree are
too complex. On the contrary, although the up-
date of the KD-tree is not complicated, the loss
rate is relatively high. This is because the data
points of the KD-tree are used as the point of
separation of the nodes and spaces of the book
at the same time, and the retrieval directly using
the KD-tree cannot guarantee that all the correct
candidate sets are selected. Therefore, we sep-
arate the storage of the segmentation line and
the spatial information, and combine the R-tree
segmentation strategy with the filter optimiza-
tion algorithm [41] while ensuring performance
and efficiency.

References

[1] J. Assfalg et al., ''Probabilistic Similarity Search
for Uncertain Time Series'', in Proc. of the Inter-
national Conference on Scientific and Statistical
Database Management, 2009, pp. 435‒443.
https://doi.org/10.1007/978-3-642-02279-1_31

[2] M.-Y. Yeh et al., ''PROUD: A Probabilistic Ap-
proach to Processing Similarity Queries over
Uncertain Data Streams'', in Proc. of the 12th In-
ternational Conference on Extending Database
Technology, 2009, pp. 684‒695.
http://dx.doi.org/10.1145/1516360.1516439

[3] S. R. Sarangi and K. Murthy, '''DUST: A Gener-
alized Notion of Similarity Between Uncertain
Time Series'', in Proc. of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery
and Data Mining, 2010, pp. 383‒392.
http://dx.doi.org/10.1145/1835804.1835854

[4] S. Hasegawa and T. Itoh, ''Optimal Online Al-
gorithms for the Multi-Objective Time Series
Search Problem'', Theoretical Computer Science,
vol. 718, pp. 58‒66, 2018.
http://dx.doi.org/10.1016/j.tcs.2017.01.008

[5] G. E. A. P. A. Batista et al., ''A Complexity-In-
variant Distance Measure for Time Series'', in

Proc. of the SIAM International Conference on
Data Mining, 2011, pp. 699‒710.
http://dx.doi.org/10.1137/1.9781611972818.60

[6] C. C. Kuo et al., ''Time Series Index for GIS Par-
tial Discharge Detection'' in Proc. of the Asia-Pa-
cific International Conference on Lightning,
2011, pp. 364‒367.
http://dx.doi.org/10.1109/APL.2011.6110143

[7] K. L. Liao et al., ''Wavelet Decomposition Algo-
rithm for Uncertain Data Streams'', in Proc. of the
International Conference on Computer Science &
Education, 2011, pp. 965‒970.
http://dx.doi.org/10.1109/ICCSE.2011.6028796

[8] D. Oliver et al., ''Geo-Referenced Time-Series
Summarization Using k-Full Trees: A Summary
of Results'', in Proc. of the 2012 IEEE Interna-
tional Conference on Data Mining Workshops,
2012, pp. 797‒804.
http://dx.doi.org/10.1109/ICDMW.2012.64

[9] M. Orang and N. Shiri, ''A Probabilistic Approach
to Correlation Queries in Uncertain Time Series
Data'' in Proc. of the 2012 ACM International
Conference on Information and Knowledge Man-
agement, 2012, pp. 2229‒2233.
http://dx.doi.org/10.1145/2396761.2398607

[10] J.-W. Roh et al., ''Efficient Bitmap-Based Index-
ing of Time-Based Interval Sequences'', Informa-
tion Sciences, vol. 194, pp. 38‒56, 2012.
http://dx.doi.org/10.1016/j.ins.2011.08.013

[11] Y. Zuo et al., ''Similarity Matching over Uncer-
tain Time Series'', in Proc. of the International
Conference on Computational Intelligence & Se-
curity, 2012, pp. 1357‒1361.
http://dx.doi.org/10.1109/CIS.2011.302

[12] M. Orang and N. Shiri, ''An Experimental Evalu-
ation of Similarity Measures for Uncertain Time
Series'', in Proc. of the 18th International Con-
ference on Database Engineering & Applications
Symposium, pp. 261‒264, 2014.
http://dx.doi.org/10.1145/2628194.2628207

[13] X. Lian et al., ''Pattern Matching Over Cloaked
Time Series'', in Proc. of the IEEE 24th Interna-
tional Conference on Data Engineering, 2008,
pp. 1462‒1464.
http://dx.doi.org/10.1109/ICDE.2008.4497590

[14] M. S. Gil et al., ''Fast Index Construction for Dis-
tortion-Free Subsequence Matching in Time-Se-
ries Databases'' in Proc. of the International Con-
ference on Big Data and Smart Computing, 2015,
pp. 130‒135.
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072822

[15] C. Faloutsos et al., ''Fast Subsequence Matching
in Time-Series Databases'' in Proc. of the 1994
ACM SIGMOD International Conference on
Management of Data, 1994, pp. 419‒429.
https://doi.org/10.1145/191839.191925

The result is similar to the case of the synthetic
data. The loss rates of these three index struc-
tures are all rapidly reduced. The reason why
the error rate of R-tree rapidly decreased is that
the R-tree does not introduce the wrong candi-
date set at the same time when the candidate
sets are introduced. It is shown in Figure 9 that
the loss rate of the KDR-tree is still superior. In
the case of using the DUST distance metric, the
loss rate of the R-tree becomes unstable.

Finally, it is shown in Figure 12 that τ has a
smaller impact on the results than ε does. The
reason is that, as the length of the sequence in-
creases, the proportion of ε in the filter func-
tion takes up more and more. Therefore, per-
formance of the index structure on τ seems to
be stable. R-tree has a high error rate and a
high loss rate due to excessive data acquisition.
Once again, it is confirmed that the overall per-
formance of the KDR-tree is better.

Figure 12. Error and miss ratio over τ.

(a) PROUD (b) DUST

Figure 11. Error and miss ratio over ε.

(a) PROUD (b) DUST

https://doi.org/10.1007/978-3-642-02279-1_31
http://dx.doi.org/10.1145/1516360.1516439
http://dx.doi.org/10.1145/1835804.1835854
http://dx.doi.org/10.1016/j.tcs.2017.01.008
http://dx.doi.org/10.1137/1.9781611972818.60
http://dx.doi.org/10.1109/APL.2011.6110143
http://dx.doi.org/10.1109/ICCSE.2011.6028796
http://dx.doi.org/10.1109/ICDMW.2012.64
http://dx.doi.org/10.1145/2396761.2398607
http://dx.doi.org/10.1016/j.ins.2011.08.013
http://dx.doi.org/10.1109/CIS.2011.302
http://dx.doi.org/10.1145/2628194.2628207
http://dx.doi.org/10.1109/ICDE.2008.4497590
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072822
https://doi.org/10.1145/191839.191925

16 17R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

[38] R. Ma et al., ''A Data-Driven Analysis of Inter-
planetary Coronal Mass Ejecta and Magnetic Flux
Ropes'', in Proc. of the 2016 IEEE International
Conference on Big Data, 2016, pp. 3177‒3186.
http://dx.doi.org/10.1109/BigData.2016.7840973

[39] R. Ma et al., ''Coronal Mass Ejection Data Clus-
tering and Visualization of Decision Trees'', The
Astrophysical Journal Supplement Series, vol.
236, no. 1, p. 4, 2018.
http://dx.doi.org/10.3847/1538-4365/aab76f

[40] Y. Sakurai et al., ''Stream Monitoring under the
Time Warping Distance'', in Proc. of the IEEE In-
ternational Conference on Data Engineering, pp.
1046‒1055, 2007.
http://dx.doi.org/10.1.1.417.2458

[41] D. W. Zheng et al., ''Spatial Index for Uncertain
Time Series'', Journal of Computing and Infor-
mation Technology, vol. 26, no. 3, pp. 191‒207,
2018.
http://dx.doi.org/10.20532/cit.2018.1004248

Received: December 2018
Revised: February 2020

Accepted: April 2020

Contact addresses:
Ruizhe Ma

Georgia State University
Atlanta

USA
e-mail: cstnuaa@163.com

Diwei Zheng
Nanjing University of Aeronautics and Astronautics

Nanjing
China

e-mail: zheng@163.com

Li Yan*
Nanjing University of Aeronautics and Astronautics

Nanjing
China

e-mail: yanli@nuaa.edu.cn
*Corresponding author

Ruizhe Ma received her PhD degree from the Department of Computer
Science at the Georgia State University, USA. Her research interests in-
clude time series analysis, Big Data processing and data mining.

Diwei zheng received his Master degree from the College of Computer
Science and Technology at the Nanjing University of Aeronautics and
Astronautics, China. His research interests include time series analysis
and uncertain data management.

Li Yan is a full professor at the College of Computer Science and Tech-
nology at the Nanjing University of Aeronautics and Astronautics, Chi-
na. Her current research interests include uncertain data and knowledge
engineering.

[16] U. Agarwal and A. S. Sabitha, ''Time Series Fore-
casting of Stock Market Index'', in Proc. of the
India International Conference on Information
Processing, 2016, pp. 1‒6.
http://dx.doi.org/10.1109/IICIP.2016.7975381

[17] M. Orang and N. Shiri, ''Improving Performance
of Similarity Measures for Uncertain Time Se-
ries Using Preprocess Techniques'', in Proc. of
the 27th International Conference on Scientific
and Statistical Database Management, 2015, pp.
1‒12.
http://dx.doi.org/10.1145/2791347.2791385

[18] M. Orang and N. Shiri, ''Correlation Analysis
Techniques for Uncertain Time Series'' Knowl-
edge and Information Systems, vol. 50, no. 1, pp.
79‒116, 2017.
http://dx.doi.org/10.1007/s10115-016-0939-7

[19] B. Goswami et al., ''Abrupt Transitions in Time
Series With Uncertainties'', Nature Communica-
tions, vol. 9, no. 1, p. 48, 2018.
http://dx.doi.org/10.1038/s41467-017-02456-6

[20] R. Cheng et al., ''Efficient Indexing Methods for
Probabilistic Threshold Queries Over Uncertain
Data'' in Proc. of the International Conference on
Very Large Data Bases, pp. 876‒887, 2004.
http://dx.doi.org/10.1016/B978-012088469-8.50077-2

[21] A. Guttman, ''R-Trees: A Dynamic Index Struc-
ture for Spatial Searching'', in Proc. of the 1984
ACM SIGMOD International Conference on
Management of Data, pp. 47‒57, 1984.
http://dx.doi.org/10.1145/602259.602266

[22] N. Roussopoulos and D. Leifker, ''Direct Spa-
tial Search on Pictorial Databases Using Packed
R-Trees'', SIGMOD Record, vol. 14, no. 4, pp.
17‒31, 1985.
http://dx.doi.org/10.1145/971699.318900

[23] U. Deppisch, ''S-Tree: A Dynamic Balanced Sig-
nature Index for Office Retrieval'', in Proc. of the
9th Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval , 1986, pp. 77‒87.
http://dx.doi.org/10.1145/253168.253189

[24] N. Beckmann et al., ''The R*-Tree: An Efficient
and Robust Access Method for Points and Rect-
angles'', in Proc. of the 1990 ACM SIGMOD In-
ternational Conference on Management of Data,
1990, pp. 322‒331.
http://dx.doi.org/10.1145/93597.98741

[25] B. K. Yi and C. Faloutsos, ''Fast Time Sequence
Indexing for Arbitrary Lp Norms'', in Proc. of
the 26th International Conference on Very Large
Data Bases, 2000, pp. 385‒394.
http://dx.doi.org/10.1184/r1/6605618

[26] S. Berchtold et al., ''The x-Tree: An Index Struc-
ture for High-Dimensional Data'', in Proc. of the
22nd International Conference on Very Large
Data Bases, 1996, pp. 28‒39.

[27] G. Kaiser, ''The Fast Haar Transform'', IEEE Po-
tentials, vol. 17, no. 2, pp. 34‒37, 1998.
http://dx.doi.org/10.1109/45.666645

[28] D. M. Woodbridge et al., ''Time Series Discord
Detection in Medical Data Using a Parallel Re-
lational Database'', in Proc. of the 2015 IEEE
International Conference on Bioinformatics and
Biomedicine, 2015, pp. 1420‒1426.
http://dx.doi.org/10.1109/BIBM.2015.7359885

[29] M. Allen et al., ''Real-Time In-Network Distribu-
tion System Monitoring to Improve Operational
Efficiency'', Journal AWWA, vol. 103, no. 7, pp.
63‒75, 2011.
https://doi.org/10.1002/j.1551-8833.2011.tb11495.x

[30] P. Zou et al., ''Fast Similarity Matching on Data
Stream with Noise'', in Proc. of the 2008 IEEE
24th International Conference on Data Engineer-
ing Workshop, 2008, pp. 194‒199.
http://dx.doi.org/10.1109/ICDE.1998.655778

[31] B. K. Yi et al., ''Efficient Retrieval of Similar
Time Sequences Under Time Warping'', in Proc.
of the 1998 International Conference on Data En-
gineering, 1998, pp. 201‒208.
http://dx.doi.org/10.1109/ICDE.1998.655778

[32] W. Yi-Leh et al., ''A Comparison of DFT- and
DWT-Based Similarity Search in Time-Series
Databases'', in Proc. of the 9th International Con-
ference on Information and Knowledge Manage-
ment, 2000, pp. 488‒495.
http://dx.doi.org/10.1145/354756.354857

[33] R. Agrawal et al., ''Efficient Similarity Search in
Sequence Databases'', in Proc. of the 1993 Foun-
dations of Data Organization and Algorithms, pp.
69‒84, 1993.
https://doi.org/10.1007/3-540-57301-1_5

[34] S. Y. Park et al., ''Efficient Searches for Similar
Subsequences of Different Lengths in Sequence
Databases'', in Proc. of the 2000 Internation-
al Conference on Data Engineering, 2000, pp.
23‒32.
http://dx.doi.org/10.1109/ICDE.2000.839384

[35] D. Rafiei and A. Mendelzon, ''Efficient Retrieval
of Similar Time Sequences Using DFT'', in Proc.
of the 1998 International Conference on Foun-
dations of Data Organizations and Algorithms,
249‒257, 1998.
https://arxiv.org/abs/cs/9809033

[36] R. Ma et al., ''Solar Flare Prediction Using Mul-
tivariate Time Series Decision Trees'', in Proc. of
the 2017 IEEE International Conference on Big
Data, 2017, pp. 2569‒2578.
http://dx.doi.org/10.1109/BigData.2017.8258216

[37] R. Ma and R. A. Angryk, ''Distance and Densi-
ty Clustering for Time Series Data'', in Proc. of
the 2017 IEEE International Conference on Data
Mining Workshops, 2017, pp. 25‒32.
http://dx.doi.org/10.1109/ICDMW.2017.11

http://dx.doi.org/10.1109/BigData.2016.7840973
http://dx.doi.org/10.3847/1538-4365/aab76f
http://dx.doi.org/10.1.1.417.2458
http://dx.doi.org/10.20532/cit.2018.1004248
http://dx.doi.org/10.1109/IICIP.2016.7975381
http://dx.doi.org/10.1145/2791347.2791385
http://dx.doi.org/10.1007/s10115-016-0939-7
http://dx.doi.org/10.1038/s41467-017-02456-6
http://dx.doi.org/10.1016/B978-012088469-8.50077-2
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/971699.318900
http://dx.doi.org/10.1145/253168.253189
http://dx.doi.org/10.1145/93597.98741
http://dx.doi.org/10.1184/r1/6605618
http://dx.doi.org/10.1109/45.666645
http://dx.doi.org/10.1109/BIBM.2015.7359885
https://doi.org/10.1002/j.1551-8833.2011.tb11495.x
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1145/354756.354857
https://doi.org/10.1007/3-540-57301-1_5
http://dx.doi.org/10.1109/ICDE.2000.839384
https://arxiv.org/abs/cs/9809033
http://dx.doi.org/10.1109/BigData.2017.8258216
http://dx.doi.org/10.1109/ICDMW.2017.11

16 17R. Ma, D. Zheng and L. Yan Fast Online Similarity Search for Uncertain Time Series

[38] R. Ma et al., ''A Data-Driven Analysis of Inter-
planetary Coronal Mass Ejecta and Magnetic Flux
Ropes'', in Proc. of the 2016 IEEE International
Conference on Big Data, 2016, pp. 3177‒3186.
http://dx.doi.org/10.1109/BigData.2016.7840973

[39] R. Ma et al., ''Coronal Mass Ejection Data Clus-
tering and Visualization of Decision Trees'', The
Astrophysical Journal Supplement Series, vol.
236, no. 1, p. 4, 2018.
http://dx.doi.org/10.3847/1538-4365/aab76f

[40] Y. Sakurai et al., ''Stream Monitoring under the
Time Warping Distance'', in Proc. of the IEEE In-
ternational Conference on Data Engineering, pp.
1046‒1055, 2007.
http://dx.doi.org/10.1.1.417.2458

[41] D. W. Zheng et al., ''Spatial Index for Uncertain
Time Series'', Journal of Computing and Infor-
mation Technology, vol. 26, no. 3, pp. 191‒207,
2018.
http://dx.doi.org/10.20532/cit.2018.1004248

Received: December 2018
Revised: February 2020

Accepted: April 2020

Contact addresses:
Ruizhe Ma

Georgia State University
Atlanta

USA
e-mail: cstnuaa@163.com

Diwei Zheng
Nanjing University of Aeronautics and Astronautics

Nanjing
China

e-mail: zheng@163.com

Li Yan*
Nanjing University of Aeronautics and Astronautics

Nanjing
China

e-mail: yanli@nuaa.edu.cn
*Corresponding author

Ruizhe Ma received her PhD degree from the Department of Computer
Science at the Georgia State University, USA. Her research interests in-
clude time series analysis, Big Data processing and data mining.

Diwei zheng received his Master degree from the College of Computer
Science and Technology at the Nanjing University of Aeronautics and
Astronautics, China. His research interests include time series analysis
and uncertain data management.

Li Yan is a full professor at the College of Computer Science and Tech-
nology at the Nanjing University of Aeronautics and Astronautics, Chi-
na. Her current research interests include uncertain data and knowledge
engineering.

[16] U. Agarwal and A. S. Sabitha, ''Time Series Fore-
casting of Stock Market Index'', in Proc. of the
India International Conference on Information
Processing, 2016, pp. 1‒6.
http://dx.doi.org/10.1109/IICIP.2016.7975381

[17] M. Orang and N. Shiri, ''Improving Performance
of Similarity Measures for Uncertain Time Se-
ries Using Preprocess Techniques'', in Proc. of
the 27th International Conference on Scientific
and Statistical Database Management, 2015, pp.
1‒12.
http://dx.doi.org/10.1145/2791347.2791385

[18] M. Orang and N. Shiri, ''Correlation Analysis
Techniques for Uncertain Time Series'' Knowl-
edge and Information Systems, vol. 50, no. 1, pp.
79‒116, 2017.
http://dx.doi.org/10.1007/s10115-016-0939-7

[19] B. Goswami et al., ''Abrupt Transitions in Time
Series With Uncertainties'', Nature Communica-
tions, vol. 9, no. 1, p. 48, 2018.
http://dx.doi.org/10.1038/s41467-017-02456-6

[20] R. Cheng et al., ''Efficient Indexing Methods for
Probabilistic Threshold Queries Over Uncertain
Data'' in Proc. of the International Conference on
Very Large Data Bases, pp. 876‒887, 2004.
http://dx.doi.org/10.1016/B978-012088469-8.50077-2

[21] A. Guttman, ''R-Trees: A Dynamic Index Struc-
ture for Spatial Searching'', in Proc. of the 1984
ACM SIGMOD International Conference on
Management of Data, pp. 47‒57, 1984.
http://dx.doi.org/10.1145/602259.602266

[22] N. Roussopoulos and D. Leifker, ''Direct Spa-
tial Search on Pictorial Databases Using Packed
R-Trees'', SIGMOD Record, vol. 14, no. 4, pp.
17‒31, 1985.
http://dx.doi.org/10.1145/971699.318900

[23] U. Deppisch, ''S-Tree: A Dynamic Balanced Sig-
nature Index for Office Retrieval'', in Proc. of the
9th Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval , 1986, pp. 77‒87.
http://dx.doi.org/10.1145/253168.253189

[24] N. Beckmann et al., ''The R*-Tree: An Efficient
and Robust Access Method for Points and Rect-
angles'', in Proc. of the 1990 ACM SIGMOD In-
ternational Conference on Management of Data,
1990, pp. 322‒331.
http://dx.doi.org/10.1145/93597.98741

[25] B. K. Yi and C. Faloutsos, ''Fast Time Sequence
Indexing for Arbitrary Lp Norms'', in Proc. of
the 26th International Conference on Very Large
Data Bases, 2000, pp. 385‒394.
http://dx.doi.org/10.1184/r1/6605618

[26] S. Berchtold et al., ''The x-Tree: An Index Struc-
ture for High-Dimensional Data'', in Proc. of the
22nd International Conference on Very Large
Data Bases, 1996, pp. 28‒39.

[27] G. Kaiser, ''The Fast Haar Transform'', IEEE Po-
tentials, vol. 17, no. 2, pp. 34‒37, 1998.
http://dx.doi.org/10.1109/45.666645

[28] D. M. Woodbridge et al., ''Time Series Discord
Detection in Medical Data Using a Parallel Re-
lational Database'', in Proc. of the 2015 IEEE
International Conference on Bioinformatics and
Biomedicine, 2015, pp. 1420‒1426.
http://dx.doi.org/10.1109/BIBM.2015.7359885

[29] M. Allen et al., ''Real-Time In-Network Distribu-
tion System Monitoring to Improve Operational
Efficiency'', Journal AWWA, vol. 103, no. 7, pp.
63‒75, 2011.
https://doi.org/10.1002/j.1551-8833.2011.tb11495.x

[30] P. Zou et al., ''Fast Similarity Matching on Data
Stream with Noise'', in Proc. of the 2008 IEEE
24th International Conference on Data Engineer-
ing Workshop, 2008, pp. 194‒199.
http://dx.doi.org/10.1109/ICDE.1998.655778

[31] B. K. Yi et al., ''Efficient Retrieval of Similar
Time Sequences Under Time Warping'', in Proc.
of the 1998 International Conference on Data En-
gineering, 1998, pp. 201‒208.
http://dx.doi.org/10.1109/ICDE.1998.655778

[32] W. Yi-Leh et al., ''A Comparison of DFT- and
DWT-Based Similarity Search in Time-Series
Databases'', in Proc. of the 9th International Con-
ference on Information and Knowledge Manage-
ment, 2000, pp. 488‒495.
http://dx.doi.org/10.1145/354756.354857

[33] R. Agrawal et al., ''Efficient Similarity Search in
Sequence Databases'', in Proc. of the 1993 Foun-
dations of Data Organization and Algorithms, pp.
69‒84, 1993.
https://doi.org/10.1007/3-540-57301-1_5

[34] S. Y. Park et al., ''Efficient Searches for Similar
Subsequences of Different Lengths in Sequence
Databases'', in Proc. of the 2000 Internation-
al Conference on Data Engineering, 2000, pp.
23‒32.
http://dx.doi.org/10.1109/ICDE.2000.839384

[35] D. Rafiei and A. Mendelzon, ''Efficient Retrieval
of Similar Time Sequences Using DFT'', in Proc.
of the 1998 International Conference on Foun-
dations of Data Organizations and Algorithms,
249‒257, 1998.
https://arxiv.org/abs/cs/9809033

[36] R. Ma et al., ''Solar Flare Prediction Using Mul-
tivariate Time Series Decision Trees'', in Proc. of
the 2017 IEEE International Conference on Big
Data, 2017, pp. 2569‒2578.
http://dx.doi.org/10.1109/BigData.2017.8258216

[37] R. Ma and R. A. Angryk, ''Distance and Densi-
ty Clustering for Time Series Data'', in Proc. of
the 2017 IEEE International Conference on Data
Mining Workshops, 2017, pp. 25‒32.
http://dx.doi.org/10.1109/ICDMW.2017.11

http://dx.doi.org/10.1109/BigData.2016.7840973
http://dx.doi.org/10.3847/1538-4365/aab76f
http://dx.doi.org/10.1.1.417.2458
http://dx.doi.org/10.20532/cit.2018.1004248
http://dx.doi.org/10.1109/IICIP.2016.7975381
http://dx.doi.org/10.1145/2791347.2791385
http://dx.doi.org/10.1007/s10115-016-0939-7
http://dx.doi.org/10.1038/s41467-017-02456-6
http://dx.doi.org/10.1016/B978-012088469-8.50077-2
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/971699.318900
http://dx.doi.org/10.1145/253168.253189
http://dx.doi.org/10.1145/93597.98741
http://dx.doi.org/10.1184/r1/6605618
http://dx.doi.org/10.1109/45.666645
http://dx.doi.org/10.1109/BIBM.2015.7359885
https://doi.org/10.1002/j.1551-8833.2011.tb11495.x
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1109/ICDE.1998.655778
http://dx.doi.org/10.1145/354756.354857
https://doi.org/10.1007/3-540-57301-1_5
http://dx.doi.org/10.1109/ICDE.2000.839384
https://arxiv.org/abs/cs/9809033
http://dx.doi.org/10.1109/BigData.2017.8258216
http://dx.doi.org/10.1109/ICDMW.2017.11

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

