
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2008-02-11

SNIF TOOL - Sniffing for Patterns in Continuous
Streams
ABHISHEK MUKHERJI
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
MUKHERJI, ABHISHEK, "SNIF TOOL - Sniffing for Patterns in Continuous Streams" (2008). Masters Theses (All Theses, All Years).
161.
https://digitalcommons.wpi.edu/etd-theses/161

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213001234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/161?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

SNIF TOOL - Sniffing for Patterns in Continuous Streams

by

Abhishek Mukherji

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

February 2008

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor David C. Brown, Reader

Professor Michael A. Gennert, Head of Department

ABSTRACT

Recent technological advances in sensor networks and mobile devices give rise

to new challenges in processing of live streams. In particular, time-series sequence

matching, namely, the similarity matching of live streams against a set of predefined

pattern sequence queries, is an important technology for a broad range of domains

that include monitoring the spread of hazardous waste and administering network

traffic. In this thesis, I use the time critical application of monitoring of fire growth in

an intelligent building as my motivating example. Various measures and algorithms

have been established in the current literature for similarity of static time-series

data. Matching continuous data poses the following new challenges: 1) fluctuations

in stream characteristics, 2) real-time requirements of the application, 3) limited

system resources, and, 4) noisy data. Thus the matching techniques proposed for

static time-series are mostly not applicable for live stream matching.

In this thesis, I propose a new generic framework, henceforth referred to as

the n-Snippet Indices Framework (in short, SNIF), for discovering the similarity

between a live stream and pattern sequences. The framework is composed of two

key phases: (1.) Off-line preprocessing phase: where the pattern sequences are

processed offline and stored into an approximate 2-level index structure; and (2.)

On-line live stream matching phase: streaming time-series (or the live stream) is

on-the-fly matched against the indexed pattern sequences. I introduce the concept

of n-Snippets for numeric data as the unit for matching. The insight is to match

small snippets of the live stream against prefixes of the patterns and maintain them

in succession. Longer the pattern prefixes identified to be similar to the live stream,

better the confirmation of the match. Thus, the live stream matching is performed

in two levels of matching: bag matching for matching snippets and order checking

for maintaining the lengths of the match. I propose four variations of matching

algorithms that allow the user the capability to choose between the two conflicting

characteristics of result accuracy versus response time.

The effectiveness of SNIF to detect patterns has been thoroughly tested through

extensive experimental evaluations using the continuous query engine CAPE as plat-

form. The evaluations made use of real datasets from multiple domains, including

fire monitoring, chlorine monitoring and sensor networks. Moreover, SNIF is demon-

strated to be tolerant to noisy datasets.

2

ACKNOWLEDGEMENTS

Firstly, it is not possible to give enough thanks to my thesis advisor, Professor

Elke A. Rundensteiner, for her guidance and support. She has truly represented a

guide and stimulus towards the best that I could produce. Her expertise in Database

Mangement Systems has helped me to improve my research skills and to prepare for

future challenges.

My special appreciation goes to my thesis reader, Professor David C. Brown, for

his encouragement and numerous fruitful discussions. He has been very generous in

giving his time and careful attention to my research work. His prompt suggestions

and constructive criticism were very useful.

I would also like to show my appreciation for Professor John P. Woycheese of

the Fire Protection Engineering Department at Worcester Polytechnic Institute. He

helped me understand the fire test dataset and provided great support as the domain

expert. I would also like to acknowledge the advice and guidance of Professor Murali

Mani and Professor Micha Hofri. I appreciate the members of the Database Systems

Research Group (DSRG) of WPI for their companionship and unending support.

I am grateful to the Computer Science Department at Worcester Polytechnic

Institute for providing us students with excellent infrastructure and a challenging

environment. But for the infrastructural help, our research efforts would rarely bring

about accomplishments. I express my gratitude towards the head of our department,

Professor Michael A. Gennert, for his encouragement. I thank Professor Craig E.

Wills and the Graduate Committee for supporting me as a teaching asistant in the

department.

This acknowledgement will be incomplete without the mention of my family

members. I express my thanks to my wife, Archana, without whose unfailing love

this work would certainly have faltered. She was sometimes, totally unexpectedly, so

refreshingly helpful and inspiring in her own ways. I am indebted to my wonderful

parents - Amitava and Rita, to my two elder brothers - Arindam and Anirban and

to my two sisters-in-law - Joyeeta and Sushma. They have always inspired me and

provided practical as well as emotional support. I owe them a lot for the successful

completion of my thesis work.

3

Contents

1 Introduction 9

1.1 Motivation: Importance of Matching Applications 9

1.2 Time-series versus Streaming data . 11

1.3 The State-of-the-Art . 12

1.4 Approach . 13

1.5 Outline of Thesis . 14

2 Related Work 15

2.1 Static Time-series Sequence Matching 15

2.2 Similarity Matching over Live Streams 18

2.3 Text Matching and Data Cleaning . 20

3 Preliminaries 23

3.1 Definitions . 23

3.2 Similarity of Sequences . 24

3.3 n-Snippet Extraction . 26

3.4 Snippet index and matching . 29

3.4.1 n versus m Ratio . 30

3.4.2 The 2-Level Indices . 30

4 Approach 33

4.1 Overview . 33

4.2 Preprocessing Phase . 34

4.3 Live Stream Matching Phase . 37

4.3.1 n-Snippet Index Lookup . 38

4.3.2 m-SnippetCollection Index Lookup 41

4

5 Experimental Evaluation 46

5.1 Experimental Setup . 46

5.1.1 Datasets . 46

5.1.2 Forming Pattern Sequences and Live Streams 48

5.1.3 Experimental Plan . 48

5.2 Performance Evaluation . 49

5.3 Robustness . 53

6 Conclusion and Future Work 56

6.1 Conclusion . 56

6.2 Future Work . 56

5

List of Figures

3.1 Forming n-Snippets from a sequence 27

3.2 n-Snippet Index . 31

3.3 m-SnippetCollection Index . 31

4.1 Building the Indices . 35

4.2 Avg Stdev Sorted Tree . 37

4.3 Performing a range query: a snippet probing the ASTree 39

4.4 Snapshot 1: Bag matching in progress 40

4.5 Snapshot 2: Bag matching in progress 41

4.6 Order Checking using Collection Index Lookup 42

5.1 Sample sequences from the EDaFS dataset 47

5.2 Sample sequences from the Motes dataset 1) Temperature 2) Humidity 47

5.3 Sample sequences from the Chlorine dataset 48

5.4 CPU costs for different SColThreshold and fixed SP Threshold: 1〉 To-

tal CPU costs 2〉 Average CPU costs per processing cycle. 50

5.5 CPU costs for different SP Threshold and fixed SColThreshold: 1〉 To-

tal CPU costs 2〉 Average CPU costs per processing cycle. 50

5.6 Count of Match Nodes (νs) maintained through the runs of the four

algorithms . 51

5.7 CPU costs for different pattern sizes 1〉 Total CPU costs 2〉 Average

CPU costs per processing cycle. 51

5.8 CPU costs for different SColThreshold and fixed SP Threshold: 1〉 To-

tal CPU costs 2〉 Average CPU costs per processing cycle. 52

5.9 EDaFS dataset- Average scores of different live sequences with in-

creasing noise. 53

6

5.10 Motes dataset- Average scores of different live sequences with increas-

ing noise. a) n = 5 and m = 10 and b) n = 1 and m = 10 54

5.11 Chlorine dataset- Average scores of different live sequences with in-

creasing noise. a) n = 5 and m = 10 and b) n = 5 and m = 3 55

7

List of Tables

3.1 List of notation used . 23

3.2 Definition of Terms . 26

4.1 Parameters used in the Match Framework 34

5.1 Parameters varied during Experiments on Live Stream Matching . . . 49

8

Chapter 1

Introduction

1.1 Motivation: Importance of Matching Appli-

cations

The recent technological advances in sensor networks and mobile devices have given

way to new research challenges related to the efficient processing of data streams

that they generated. Streaming time-series similarity matching is one such emerging

active research challenges [GW02, GYW02, WSZ04, KPM07, HLMJ07].

Matching of streaming time-series sequences to a set of patterns stored in a

database (we call them pattern sequences) is applicable to a broad range of appli-

cations. Temperature/humidity/CO readings from sensors installed in a building,

stock prices, vital statistics of a patient and network traffic data all form suitable ex-

amples of streaming time-series. The core technology for matching could be used as

solution to critical problems such as environmental monitoring of hazardous waste

and poisonous attack clouds as well as more mundane purposes such as network

traffic monitoring and click stream in web tracking.

Several such applications exist that require on the fly matching of live streams

against pattern sequences. One such critical application that in part motivated this

thesis work is monitoring of fire and prediction of its propagation. Fire propagation

and containment of hazardous chemical spills and contamination are examples of

modern disasters requiring crisis management support. The situation may arise

from naturally occurring phenomenon (e.g., lightning ignition of a Wild land/Urban

Intermix fire) or from induced threats (e.g., arson or terrorist attacks).

As part of this thesis work we addressed critical challenges relevant to the prob-

9

lem of fire monitoring and propagation prediction. In particular, we propose to

explore the problem of run-time monitoring and prediction of fire spread in building

structures, an interdisciplinary topic involving aspects of Fire Protection Engineer-

ing and Computer Science. Our proposed matching technique could be employed in

Building Control Systems to monitor the location and spread of fire and smoke by

observing sensors placed within the building structure; analyzing the measurement

streams and controlling associated data acquisition rates at run-time. Therefore, we

aim to match live sensor streams against pattern sequences captured during various

fire events in an effort to predict fire spread.

In this thesis, we propose an efficient framework for matching a streaming time-

series against a set of data sequences (we call them pattern sequences). We call it

n-Snippet Indices Framework (in short SNIF). Our approach divides the matching

task into two phases:

1. Offline Preprocessing Phase: where the pattern sequences are processed offline

and stored into a 2-level index structure; and

2. Online Live Stream Matching Step: streaming time-series (or the live stream)

is on-the-fly matched against the indexed pattern sequences.

Based on the notion of n-Grams used for textual information retrieval [Coh97] we

now introduce the concept of n-Snippets for numeric data as the unit for matching.

The insight is to match small snippets of the live stream against prefixes of the

patterns and maintain them in succession. The longer the pattern prefixes identified

to be similar to the live stream, the better the confirmation of the match. In our

framework, the live stream matching is performed using two levels of matching:

bag matching for matching snippets while allowing for partial disorder in and order

checking for maintaining the lengths of the match.

As part of our experiments we worked on the EDaFS dataset [WVM04] to test

the applicability of our stream matching system on the fire domain. We also used

the Motes [SPF] and the Chlorine [EPA] datasets for evaluating the effectiveness of

our proposed approach on data from other domains. We find that our framework is

quite effective in matching sequences from various datasets.

In the next section we compare streaming data with static time-series data.

Thereafter in Section 1.3 we discuss the current state of research in streaming time-

series matching. Lastly, we list our contributions in Section 1.4.

10

1.2 Time-series versus Streaming data

A live stream is defined as a series of relational records, usually assumed to have

infinite length. More recent data elements are considered more meaningful than

the older ones [BBD+02]. A time-series is a sequence of real numbers representing

values from some given domain at specific points in time. Time-series data stored

in a database are commonly called data sequences. A live stream that is composed

of a time-series data is called a streaming time-series [GW02, GYW02].

The processing of queries over streaming time-series should be handled in a

different way from traditional time-series due to the following reasons according to

Bobcock et. al. [BBD+02]. First, the elements in a live stream must be processed

online due to the real-time nature of the application requirements. The data tends to

be continuously appended to the end of the live stream at high arrival rates. Thus,

the most recent elements typically are processed before the next elements arrive,

unless some elements are processed collectively. As a comparison, in traditional

static time-series stored in a databases, there is no limit on the processing time.

For example in a financial application (online) analysing the daily stock trends from

streaming data as opposed to another such application (offline) that requires to

analyse the stock trends from data stored in a database for each decade (70′s, 80′s,

90′s, etc.).

Second, the streaming time-series are assumed to have infinite lengths, and hence

cannot be stored in a database in their entirety. Since static time-series are assumed

to be finite, algorithms for processing them can access the whole sequences either

sequentially or by preprocessing into indexed form for faster access. For these reasons

algorithms defined for time-series cannot be easily adapted for streaming time-series.

Third, any portion of the streaming time-series obtained previously can not be

assumed to be available again at a later time. Since the streaming time-series are

assumed to have infinite lengths, the data obtained in the far past must either

be explicitly stored by the system in a compressed form or simply discarded. On

the contrary, in traditional static time-series database, the entire time-series can

be retrieved at any time. Thus multiple passes or some indexed access can be

performed.

11

1.3 The State-of-the-Art

Similarity queries have been classified in the literature into the following two classes:

1. Whole Matching. The sequences to be compared have the same length n.

2. Subsequence Matching. The query sequence is smaller; we look for one or more

subsequences in the large sequence that best match the query sequence.

Within both the whole matching and the subsequence matching cases, another

classification based on the query output [AFS93] is often given as:

1. Range Query. Given a query sequence, find all subsequences that are similar

within distance ε instead of being identical.

2. k-Nearest Neighbor Search. Given a query sequence SQ, find the top k subse-

quences from the patterns that are more similar to SQ compared to all other

possible subsequences.

3. All-Pairs Query or Spatial Join. Given n query sequences, find the pairs of

sequences that are within ε of each other.

ε is the distance measure that controls when two sequences should be considered

to be sufficiently similar. Typically the solutions to all these matching problems

perform approximate matching rather than exact matching. Noisy data from real-

time data sources require these match techniques to address gaps and skews between

the sequences being matched.

For static time-series data, several well established algorithms [AFS93, ALSS95,

FRM94, WW00, CN04] have been proposed. The solutions cover the complete

classification of similarity queries given above. Various similarity measures such as

Euclidean Distance [KPL04], Dynamic Time Warping [KP99], Fourier Transform

[AFS93], etc. have been studied for use in similarity matching (finding pattern

sequences from the database similar to the given query sequence).

For similarity matching over streaming time-series data, some solutions are based

on domain specific models and techniques such as for medicine [WSS+05] and for

finance [WSZ04, BS03].The challenges are aggrevated in a streaming context by

issues such as fast arrival rates, infinite length of live streams, limited memory and

the need for real-time response. Query sequences can be formed out of the live

12

streams up to the data points that have arrived till the current time. Performing a

whole match between the query sequences and the pattern sequences is not possible

unless the whole of the query sequence is available. Algorithms proposed for live

stream matching mostly provide prediction based solutions range query [GW02]

and k-NN Search [GYW02] respectively. Gao et. al. [GW02, GYW02] utilize

extrapolation of the already arrived live stream data using some error models (square

root, linear and square errors). However, they employ similar functions to generate

synthetic pattern sequences as well as live stream. Such prediction-based systems

may not be applicable for sensor data due to noise. Moreover, the use of Discrete

Fourier Transform as the match measure is quite compute-intensive thus may not be

most suitable for live streams where real-time performance is of utmost importance.

Han et. al. [HLMJ07] claim to be the only ranked subsequence matching (k-

NN) solution. They propose to use Dynamic Time Warping approaches which suffer

from dimensionality curse since the similarity measure computation requires each

data point. One of the overreaching questions we may ask at this point is to what

degree we can develop general-purpose stream matching query technology that can

be applied to a broad classification of similarity queries?

1.4 Approach

We propose a new generic framework for discovering similarity between live stream

and pattern sequences. We call it n-Snippet Indices Framework (in short SNIF).

As the live stream is infinite we need to work with chunks of data from the live

stream, we introduce the concepts of n-Snippets and m-SnippetCollections. The

pattern sequences are processed offline into two levels of indices − n-Snippets and m-

SnippetCollections. Our proposed live stream matching is performed in two stages:

1. bag matching, and

2. order tracking

The bag matching step performs approximate matching of small chunks of live

stream data to discover subsequences of pattern sequences within the live stream.

Moreover, the order tracking step is analogous to stitching the adjascent subse-

quences to discover which of the pattern sequences match the live stream and in-

crementally computing how closely each such pattern sequence matches. Therefore,

13

our approach can be used for subsequence matching as well as building upon the

subsequences to find whole matches (if any). The method can perform range queries

as well as nearest neighbor searches.

The SNIF framework addresses the concerns of the streaming environment. The

preprocessing of the pattern sequences into an index structure saves processing time

during the live stream matching step. The framework is also applicable to matching

variable length pattern sequences (SP), since the patterns are divided into two levels

of indices. Our approach performs robustly and accurately for considerable amounts

of noise in the live stream data. It is tolerant to noise such as missing data, extra-

neous data or out-of-order data (details provided in the evaluation Section 5.3). We

present different variations of our algorithm, namely Best One and Best K, based

on the number of matches maintained for each pattern sequence, which allow us to

trade off between speed and accuracy.

SNIF uses a set parameters which can be used to tune the pre-processing and

the matching steps according to the domain. We use data statistics (average &

standard deviation) as the match measure. They are incrementally computable

and not much compute-intensive. However, it is also fairly easy to switch these

data statistics with any other matching measures such as DTW, DFT or Euclidean

Distance. SNIF remains effective as long as the pattern sequences are preprocessed

into the indices using the match measure M and the live streams are matched against

the index structure using the same match measure M.

1.5 Outline of Thesis

The thesis document is organized as follows. Chapter 2 reviews existing work re-

lated to similarity matching in time-series databases. Chapter 3 presents the formal

definitions of the live stream and pattern sequences as well as the live stream match-

ing problem. It also includes discussions regarding the concepts of n-Snippets and

m-SnippetCollections and the index structure. Chapter 4 describes the steps of the

matching framework in details. Chapter 5 presents the results of performance and

robustness evaluation. Chapter 6 summarizes and concludes our work.

14

Chapter 2

Related Work

In this section we explore the existing research in similarity matching for time-

series data. Similarity matching problems can be broadly classified as Range Query

and Nearest Neighbor Search. We explore proposed solutions for both. For static

time series data, we find that several well established algorithms [AFS93, ALSS95,

FRM94, WW00, CN04] have been proposed to target each of the different classifi-

cations of the similarity queries (defined in 1.3). Since continuous stream processing

gained importance, there have been several attempts to extend the traditional se-

quence matching techniques to work for the streaming environment. We review

such sequence matching techniques [GW02, GYW02, HLMJ07]. Finally, we investi-

gate some text matching techniques [KWLL05, Coh97, LA96, BYRN99, MSLN00]

from the information retrieval world that form the basis of our proposed n-Snippet

inverted index solution.

2.1 Static Time-series Sequence Matching

Pioneering work in sequence matching for static time series has been conducted by

Agrawal et. al. [AFS93, ALSS95]. They propose an indexing method for time

sequences to process similarity queries. Their proposed solution works in two steps:

index building and similar sequence matching. Their idea of an index suits the

real-time response criteria of applications such as ours as an index helps quicken

the processing. In the index building step each data sequence is transformed into a

lower-dimensional representation and stored in an R*-Tree. They use the Discrete

Fourier Transform (DFT) to map time sequences to the frequency domain.

15

Over the years several researchers have used other lower-dimensional transfor-

mations such as DTW, PAA, or SDV. In the sequence matching step, the query

sequence is transformed into the lower-dimensional points similar to the patterns

in index building step and a range query identifies the candidates lying within the

tolerance. This eliminates chances of false negatives (potential candidates being dis-

missed), however there may be false positives (several non-candidates in the result)

present in the candidates. A confirmation step follows this range query evaluation

where the candidates are matched closely with the query sequence to eliminate the

false alarms. This forms a great framework for a similarity matching solution with

the sequence matching being performed in steps. However, the proposed technique

is for whole sequence matching only. This makes their approach inapplicable for

streaming time-series data. Moreover, a Fourier Transform is a very expensive op-

eration [KPM07].

A range subsequence matching algorithm for static time-series data is given by

Faloutsos et. al. [FRM94]. Their technique is an extension of the whole match-

ing solution. They use window construction to divide time-series sequences into

windows. In the index building step, the data sequences are partitioned into sliding

windows, the data points in each window are transformed into lower-dimensional val-

ues and the transformed points are stored in a R*-Tree. For subsequence matching

the query sequence is partitioned into disjoint windows, each window is transformed

into low-dimensional values and a range query is performed against the R*-Tree

to extract candidates. In our problem the live stream is infinite and processing in

successive windows is required, we explore more options into how windows can be

constructed. DualMatch [MWL01, LPK06] and GeneralMatch [MWH02] are varia-

tions of FRM with significant performance improvements. Both resemble FRM in

index building and sequence matching steps but differ from FRM in the logic of

window construction. DualMatch works on the notion of duality of construction

window, data sequences are split into disjoint windows where as query sequence

is partitioned into sliding windows. GeneralMatch defines J-Sliding windows and

J-Disjoint windows.

Wang et. al. [WW00] have studied database techniques that support fast

searches for time-series whose contents are similar to the users’ specification. The

content types include shapes, trends, cyclic components and so forth. Since simi-

larity searches over such contents are complex, traditional database techniques are

16

slow particularly with high data volumes. They propose techniques to answer these

queries based on approximation. They present two approximation methods. One

method is based on the linear B-spline wavelet function. The wavelet transform

decomposes a time series into a linear combination of given basis functions known

as wavelets. The wavelets with the most significant coefficients in the decomposition

are selected. The linear combination of the selected wavelets is the decomposition

of the time series. The other method uses the least square method to fit a given

time series into consecutive line segments. This line fitting method finds the best

fitting line segment closest to the subseries. Thus starting from the first time point

A of the series, they find the farthest point B such that when the subseries over

[A,B] is considered, the distance of the given time series to its best fitting line is

less than a given threshold. Also, no other point B nearer to A violates the above

condition. This process continues with B as the starting point and so forth. These

approximation methods can be combined with indexing. Thus it is possible to build

indexing structures on the approximated series to further speed up the search.

Wong et. al. [WW03] advocate for time warping as a more robust distance

measure than Euclidean distance. Dynamic time warping (DTW) allows matching

variable length sequences as well as time skewed sequences. They present a method

that supports dynamic time warping for subsequence matching within a collection

of sequences. Their method takes full advantage of the sliding window approach

and can handle queries of arbitrary length. Certain limitations of DTW are that it

does not satisfy the triangle inequality, so that spatial indexing techniques cannot

be applied. DTW also does not exploit dimensionality reduction,and also requires

each data value for distance computation. As we are dealing with real numbers we

would ideally like to be able to apply some staistical or transformation technique

to summarize groups of data values. Hence DTW does not look like a potential

candidate for application to the live stream matching problem.

The traditional k-NN search algorithms use a minimum priority queue to find

the k-nearest objects from a query object. Hjaltason et al. [HS95] and Roussopoulos

et al. [RKV95] proposed variations of k-NN. The object is assumed to be stored

in the multidimensional index as an MBR (minimum bounding rectangle). Each

time, for each such object the minimum priority queue holds the topmost k nodes

based on distances from the query object. In the k-NN algorithms, the records

of the queue are repeatedly replaced with the new nearest ones, and eventually k

17

objects that are nearest from the query object are identified. Here we note that

several solutions for both range and k-NN similarity matching propose to use an

index structure for processing time-series sequences before matching. As the pattern

sequences are available to us, we believe that, prior to matching them against the live

stream, we could process them into some index structure too. In the case of similar

sequence matching, Keogh et al. [KCMP01] and Chan et al. [CFY03] proposed

k-NN search algorithms for the whole matching problem. Keogh et al. proposed

a novel dimension reduction technique, called APCA (adaptive piecewise constant

approximation), and they describe a k-NN whole matching algorithm based on the

basic k-NN solutions [HS95, RKV95] in order to demonstrate superiority of their

reduction technique. Chan et al. proposed another k-NN whole matching algorithm

that first finds an upper bound of search range using Roussopoulos et al.′s k-NN

solution, and then performs the range whole matching using the bound.

2.2 Similarity Matching over Live Streams

Gao and Wang [GW02] proposed the first similarity matching solution for live

streams, which is a prediction-based similarity matching technique. The system

monitors the streams to search patterns that are relevant and solves the problems

of Nearest Neighbor and h-Near Neighbor (h being the distance tolerance) for whole

matching. The technique uses the already arrived data to predict future subse-

quences. They pre-compute the distances between the query sequence and the pre-

dicted subsequences employing Fast Fourier Transform (FFT). FFT computes cross

correlations of the predicted series and patterns to get predicted distances between

the incoming series at future time positions and the database patterns. When the

actual data arrives, the prediction error with the predicted distances is used to filter

patterns that cannot possibly be nearest neighbors. This provides fast responses.

They observe that with reasonable prediction errors the performance gain is signifi-

cant. However, there are inherent limitations in the method. The technique has the

overhead of adjusting the prediction error, which can be significant if the actual data

is much different from the predicted series. Also the technique must compute the

distance for each of the query sequences in the database at each time unit, making

it difficult to maintain large number of query sequences in the database. However,

the very idea of forming large number of query sequences out of the live stream

18

seems a very naive approach for live stream matching. Synthetic data is used for

both the patterns and the live stream generation. Hence applicability to real data

is unknown.

Gao et. al. [GYW02] propose another sequence matching method which solves

the k-Nearest Neighbor problem using prefetching. This approach finds the most

similar k nearest query sequences from the database against the live sequence. Here

the k is the number of query sequences and not the tolerance. This technique

transforms the query sequences into lower-dimensional points, and stores them to

disk in a multi-dimensional index. As the new data points arrive, k nearest query

sequences are searched from the database similar to the live sequence. This method

uses prefetching in which the arrived data values are used to predict k-NN candidates

for the near future. The authors claim that the index and the candidate query

sequences are processed during the idle time between data arrival, thus saving on

CPU costs. However, this does not seem to be reducing the cost much. Due to the

multidimensional index and the amortized disk reads, this technique can handle a

large number of query sequences. However, disk storage is only useful for a very large

number of queries and not if the queries can be handled in main memory. Another

limitation of this technique is that it solves k-NN for only fixed length patterns

and the method relies on a fixed tolerance of the pattern sequences. However, the

datasets [WVM04, SPF, EPA] that we consider have pattern sequences of different

lengths, thus this approach is not applicable to such real datasets.

Kontaki et. al. [KPM07] propose the IDC-index for streaming time-series data in

which DFT computations are performed incrementally over the streaming sequences.

They address both range query and k-NN search problems. An R*-tree storing the

dimensionality-reduced points is maintained for the streaming time-series data. Ap-

plication of computationally expensive FFT over the live stream and simultaneously

building an index structure requires a response time longer than desired by critical

real-time applications. They focus on both range and k-nearest neighbor queries for

situations where the query sequence change over time. In their case the problem is

that the DFT coefficients of a streaming time series must be updated when a new

value arrives. If they update the index every time a new value becomes available, the

overhead may be prohibitive due to additional page accesses. To avoid continuous

deletions from and insertions into the R*-tree, they use a deferred update policy.

They also use a simple heuristic approach to adapt to the update frequency of the

19

data streams and maintain it to a specified level. Since the purpose of the system is

to run against the infinitely arriving time-series data and detect if it matches with

any of the pattern data sequences, maintenance of the R*-Tree for the whole live

streaming series is a big overhead.

Han et. al. [HLMJ07] present techniques for ranked subsequence matching un-

der time warping, that finds top-k data sequences most similar to a query sequence.

They introduce a notion of minimum-distance matching-window pair MDMWP.

They claim that mdmwp-distance is a lower bound between the data subsequences

and a query sequence. The mdmwp-distance can be computed prior to accessing

the actual subsequence. Based on the mdmwp-distance, they then develop a ranked

subsequence matching algorithm to prune unnecessary subsequence accesses. Next,

to reduce random disk I/Os and bad buffer utilization, they develop a method of

deferred group subsequence retrieval. They then derive another lower bound, the

window-group distance, that can be used to effectively prune unnecessary subse-

quence accesses during deferred group-subsequence retrieval.

Overall, the state-of-the-art stream sequence matching algorithms have been

extensions to the well-established sequence matching techniques for static time-

series data. Most of them have been reusing the dimensionality reduction as used

for static time-series. However, on-the-fly dimensionality reduction operations are

very expensive. Moreover, most of the existing sequence matching techniques focus

on either whole matching range query and k-NN Search [AFS93, CFY03, GW02,

GYW02, KPM07] or range query in subsequence matching. Han et. al. [HLMJ07]

claim to be the only ranked subsequence matching (k-NN) solution. Their method

uses DTW approaches which suffer from the dimensionality curse. They also require

all the data values for distance computation. Also, DTW does not satisfy the triangle

inequality, so that spatial indexing techniques cannot be applied. These limitations

motivated us to explore new avenues for solving the prefix matching problem. One

such technique for matching that is yet unexplored for sequence time-series matching

is n-Gram matching using inverted-index.

2.3 Text Matching and Data Cleaning

An inverted index [BYRN99] is a frequently used datastructure in the Information

Retrieval world. Inverted index is a term-oriented technique for quickly searching

20

documents containing a given term. Here the document is a finite sequence of

characters and a term is a subsequence of a document. Term and posting list

combined together form an inverted index. The posting list is a list of postings and

each posting contains information about the occurrence of the term. Based on the

definition of the term, an inverted index is classified as [MSLN00, WMB99, LA96] :

1. a word-based inverted index, a word is used as a term;

2. an n-Gram inverted index, a sequence of n characters is used as a term.

An n-Gram inverted index uses n-Grams as indexing terms. If there is a doc-

ument d consisting of characters C0, C1, CN . An n-Gram is a subsequence of

length n [KWLL05]. n-Grams can be extracted from document d using the 1-sliding

technique, i.e., sliding a window of length n from C0 to CN−n and storing the char-

acters located in the window. For instance the jth n-Gram will be Cj, Cj+1, Cj+2,.....

Cj+n−1.

Query processing is done in two steps:

1. split a given query string into multiple n-grams and search the posting lists of

those n-grams; and

2. perform merge join between those posting lists using the document identifier

as the join attribute [BYRN99].

Kim et al. [KWLL05] propose the two-level n-gram inverted index (henceforth

we will refer to it as the n-gram/2L index) that significantly improves the query

performance while preserving the advantages of the n-gram inverted index. The

proposed index eliminates the redundancy of the position information that exists in

the n-gram inverted index. The proposed index is constructed in two steps:

1. extracting subsequences of length m from documents, and

2. extracting n-grams from those subsequences.

They prove that this two-step construction is identical to the relational normal-

ization process that removes the redundancy caused by a non-trivial multivalued

dependency. The n-gram/2L index has excellent properties:

1. it significantly reduces the size and improves the performance compared with

the n-gram inverted index with these improvements becoming more marked

as the database size gets larger;

21

2. the query processing time increases only very slightly as the query length gets

longer.

Experimental results using databases of 1 GByte show that the size of the n-gram/2L

index is reduced by up to 1.9∼2.7 times and, at the same time, the query perfor-

mance is improved by up to 13.1 times compared with those of the n-gram inverted

index.

However, the scope of n-Gram is restricted to text matching. We propose to

develop a framework for sequence matching for streaming time series data using

an underlying datastructure similar to n-Gram/2L. We extend this concept of n-

Grams to apply it to numeric time-series data (we call it n-Snippets) and develop

approximate matching methods for subsequence matching of the live streaming data.

Our framework maintains the count of the subsequences matched up to the current

time to give us a picture of how much of the live stream has matched a pattern. We

do not need to maintain the live stream for the whole matching.

22

Chapter 3

Preliminaries

3.1 Definitions

In this section we define the basic concepts and terminology as backgound for our

work. We begin by listing the notations we use (Table 3.1).

Symbols Definitions
SID Sequence with its unique identifier ID
Len(S) Length of a sequence S, S is either the SL or the

SP

S[i] ith data value in the sequence S
S[i : j] The sub-sequence of S from ith to jth data value,

inclusive for any i, j ∈ I ; i ≤ j.

Table 3.1: List of notation used

A live stream sequence SL is a time-series data stream to which new data entries

are continuously appended at every time unit. The arrival of data may be in equal

or unequal intervals. At any time ti, the live stream sequence consists of a sequence

of data values collected starting at time t0 until the current time ti.

SL[t0 : ti] = d[t0], d[t1], ..., d[ti]

A d[ti] can be a single value or multiple values. For example, a temperature

reading from a sensor or a combination of temperature and humidity values at time

ti.

A pattern sequence SP is a finite time-series data sequence, such as a sequence

of sensor readings collected over time, which is designed to record the characteristic

behavior during a phenomenon (such as a fire event). The SL is matched against a

23

set of SP to identify the most similar SP in the set.

For simplicity we consider our sequences (both SL and SP) to consist of single

valued data points. However, the techniques would apply to multi-valued data

points.

The live stream matching problem can be defined as follows:

Given a set of SP , continuously match the data of the SL with the set of SP . As

new data keeps appending to the SL, we need to dynamically include the current

data and detect the SP similar to the SL. The definition of similarity is explained

in the next paragraph.

3.2 Similarity of Sequences

For the purpose of finding a suitable similarity measure for our matching framework,

we examined the following datasets using MATLAB: 1) the EDaFS fire dataset

[WVM04], 2) the Chlorine dataset [EPA], and 3) the Motes dataset [SPF]. Several

similarity measures for time-series numeric data have been proposed over the years.

Some of the commonly used ones are Euclidean Distance [KPL04], Dynamic Time

Warping [KP99], Fourier Transform [AFS93], etc. Descriptive statistics are also good

candidates for measuring similarity between numeric sequences as they summarize

the data values they represent.

The statistics and similarity measures that we tested for the sequences of each

of the datasets are: Fast Fourier Transform, Euclidean Distance, average, slope

and standard deviation. There are several requirements that a similarity measure

must meet in order to be suitable for comparing streaming time-series numeric

data. We compared the candidate similarity measures with respect to the following

requirements of the live stream matching problem.

Firstly, the data source may be noisy. The noise from the sensors necessitates

smoothing of data before matching. Matching against noisy data can increase

chances of false alarms. For this Fourier Transform (FT) has been recognized as

a suitable candidate. Using FT one can limit the number of Fourier coefficients

to include starting from the lowest frequency. High frequency coefficients can be

eliminated as noise. The choice of how many coefficients to select greatly depends

on the dataset and may also vary according to the domain. Smoothing could also

be achieved by applying a moving average over the sequence.

24

Secondly, Reduction of data points required for distance computation is consid-

ered to be a big plus in time-series sequence matching. Distance computation after

applying Fourier transform achieves this reduction from time-series data points to

frequency coefficients. Euclidean Distance requires each data point for computation.

Hence it is not a good choice.

Thirdly, since the live stream is continuous, a match measure that is incre-

mentally computable is preferred over having to recompute distance measures from

scratch upon arrival of each new data. Fourier Transforms [KPM07] and Data Statis-

tics (although not all of them are incrementally computable) satisfy this criterion.

Moreover, another criterion is that the measure be efficiently computable. On-the-

fly computations are required due to the dynamic nature of SL. More computation

means more response time if we consider limited CPU resources. We note here that

the Fourier Transform is considered quite compute intensive [KPM07]. So for this

reason one may want to look elsewhere.

The conclusion from our analysis of the datasets was that FFT, average and

standard deviation all formed good distinguishers between the sequences of the

datasets. However, application of FFT over chunks of live stream is computationally

expensive. Average is one suitable candidate as it takes care of data smoothing; thus

eliminating chances of false alarms. It is also incrementally computable and not so

compute intensive. However, average itself does not serve as a sufficient criterion

since it may not facilitate matching the shape of the sequence more precisely. Also

the degree of smoothing is an important factor. We select standard deviation as

another suitable data statistic. It also satisfies all the above requirements, just like

the average statistics.

Moreover, we were able to observe empirically that it forms a significant dis-

tinguisher between the pattern sequences in the datasets we examine. However,

standard deviation by itself is not a strong candidate since the same standard devi-

ation value can occur at totally different temperature bandwidths,even though we

would not call them similar. Hence, we choose a combination of the two (average

& standard deviation) as our similarity criteria, making it a more reliable match

measurethan either alone. This also helps us with reduction of data points for the

distance computation as we match only the two data statistics over n data values

assuming n ≥ 2.

25

3.3 n-Snippet Extraction

In this section we discuss n-Snippets and m-SnippetCollections that form the build-

ing blocks for our match framework. We first define some terms we use in the

discussion through the rest of this section (see Table 3.2).

Term Definition
n-Snippet It is our unit for matching. Average and Standard

Deviation value pair over a collection of n consecutive
data values. e.g. 〈 t , Avg(S[1:5]), Stdev(S[1:5])〉.
For simplicity it will be referred to as a snippet.

1-Sliding technique It is the act of collecting groups of n consecutive data
values by shifting through a dataset by 1 data point
at a time. snippets are extracted from the SP using
1-sliding technique.

m-SnippetCollection Collection of m consecutive snippets, m+n-1 consec-
utive data values form a single m-SnippetCollection.
For simplicity we will refer to it as a collection of m
snippets or simply a collection

Occurrence list For a term (here snippets or collections), it consists
of the identifier of the SP and the list of offsets where
the term occurs within the SP .

Inverted index Consists of map between the terms (here snippets or
collections) and their occurrence list. Refer to Figure
3.2 or Figure 3.3

Probe Another term for index lookup to extract the occur-
rence list.

Bag matching When snippets of the SL are matched against the
set of SP without considering the order in which
n-Snippets occur in the SP . Usually the extent of
match is determined by the number of n-Snippets
matched / total number of n-Snippets.

Order tracking Sequence matching step where the order of occur-
rence of components (here, collections) is checked to
establish a match between them. The match can
be reported till any position i for the ith component
and corresponding extent of match between the se-
quences is computed over all components starting the
first upto the ith component.

Table 3.2: Definition of Terms

Having chosen the similarity measure as (average & standard deviation), the

next question is the choice of the window size and type over which to compute the

average and standard deviation.

An n-Snippet is our unit for matching. An n-Snippet consists of a collection

of n consecutive data values, where n determines the degree of smoothing involved

26

during matching. For simplicity we will refer to n-Snippets as simply s̈nippetsäs n

simply denotes the size of the snippet.

Here is an example of how snippets of size n can be extracted from a sequence

S. Without loss of generality, say n = 5 for the rest of the discussion. To form a

snippet of length 5, we collect 5 consecutive data values and compute the similarity

measure (average & standard deviation) for this snippet. A typical snippet will look

like 〈 ti, Avg(S[ti:ti+4]), Stdev(S[ti:ti+4])〉, where the ti value is t2, the timestamp

of the middle element. ti also denotes the position of the snippet in the sequence

S. Even starting or end element′s timestamp will also work equally as long as it is

consistent for all extracted snippets.

For the choice of window type we chose sliding windows for extracting successive

snippets. However disjoint windows could be used. Snippets of disjoint windows are

beyond the scope of this discussion. We extract snippets from a sequence using the

1-sliding technique (defined in Table 3.2). Suppose the sequence is a time-series of

temperature readings from sensor DAN2 (taken from the EDaFS [WVM04] dataset)

as shown in the Figure 3.1.

Figure 3.1: Forming n-Snippets from a sequence

27

Since, we 1-slide, the consecutive snippets are 〈 2, 22.98, 0.008 〉, 〈 4, 22.99,

0.0106 〉, 〈 4, 23.001, 0.01517 〉, and so on. There would be Len(S)n+1 snippets

formed from a sequence of length Len(S). For example, from a sequence of 22 data

points (as in Figure 3.1), 18 (i.e., 22-5+1) snippets can be formed.

By analyzing various datasets such as the EDaFS fire dataset [WVM04], the

Chlorine monitoring dataset [EPA] and the Network Motes dataset [SPF] we found

that lots of snippets are common across the SP . Hence, we consider bag matching

(defined in Table 3.2) as one possible design choice for matching snippets. However,

bag matching does not serve sequence matching well since similar trends of statistical

behavior such as rise or fall of a curve overtime would thus not be discernable

from overall fluctuations over time. In other words, we cannot say that a rise in

temperature for 5 seconds, then a fall for another 5 seconds and then again a rise

for 5 seconds will be similar to a fall for 5 seconds and then a rise for 10 seconds. So

instead we may opt to match and report if the live snippets, as they are formed out

of the SL, are matching in the exact order as snippets occurring in the SP . We call

this order checking. Order checking over snippets however seems like a very strict

constraint. Consider the example of the following consecutive snippets of length 5

(corresponding to the above dataset):

〈 10, 23.362, 0.244 〉, 〈 11, 23.608, 0.4319 〉, 〈 12, 23.999, 0.6757 〉, 〈 13, 24.56,

0.939 〉, 〈 14, 25.323, 1.2372 〉, 〈 15, 26.304, 1.5424 〉, 〈 16, 27.512, 1.8765 〉, 〈 17,

28.941, 2.2063 〉.
The snippets show a trend of gradual increase in both the average value and

the standard deviation. As we see the data points we see that from timestamp

10 to timestamp 17, the slope transforms from plane to steep rising. We will be

matching not for the exact average and standard deviation values, but do range

search (defined in section 2.1). But if there is a slight alteration like swapping

between snippet 11 and 12, which might occur due to noise in SL, it should still be

considered as a match. Hence, as a good framework should support approximate

matching, we allow some flexibility by preparing for some level of disorder between

the occurrences of snippets in a sequence. Another alternative is to use the concept

of collections of snippets (defined in Table 3.2) as explained in the following section.

To compare two snippets against each other we can measure the Euclidean Dis-

tance between them. The Euclidean distance can be computed using just the average

and the standard deviation values that summarize the data values of the snippets,

28

rather than using each data value itself. The distance comparison between any ar-

bitrary snippet pair (SnipA SnipB) is shown in equation 3.1. However, weighted

Euclidean Distance is also one choice if we wish to give one measure (out of average

and standard deviation) more importance over the other.

∆(SnipA,SnipB) =
√

(AverageA −AverageB)2 + (StdevA − StdevB)2 (3.1)

3.4 Snippet index and matching

As an alternative to order checking at the snippet level we propose to have two

levels of matching: Bag matching across snippets within a collection of m snip-

pets and order checking across the collections of snippets for a sequence. An m-

SnippetCollection is a collection of m consecutive snippets extracted from a sequence

(either a SP or the SL). Forming collections of m consecutive snippets out of se-

quences divides the sequence into d(Len(S)/m+n-1)e groups of consecutive snippets.

Alternatively, one can say that each snippet collection consists of m+n-1 consecu-

tive data values. Like the term snippet we will use the term c̈ollectionöf snippets

to denote m-SnippetCollection, where m will simply denote the number of snippets

within a collection. In other words, due to the way snippets are extracted, two

consecutive collections of snippet just overlap by n-1 data values. The purpose of

introducing the collection of m snippets is, on one hand, to allow some margin of

disorder in finding the snippets of a sequence and, on the other hand, matching

the order of the occurrence of collections. We will now call it a match only if the

consecutive collections of snippets of the SL are found in exactly the same order as

the successive collections of snippets occur in SP . Another benefit of introducing

collections of m snippets is to get rid of the redundancy caused by a non-trivial

Multivariate Dependency [KWLL05].

Now two inverted indices are formed and used for matching (for each abstract

match level). The front-end index or the snippet index, where the occurrence list for

each snippet now contains the identifier of the collection of m snippets and offsets

where the snippet occurs in the collection. It is used for bag matching of snippets

to report fractions of m-SnippetCollections matched. The back-end index or the

m-SnippetCollection index is the one used for the order checking (defined in Table

3.2) of the collection within the set of SP . Due to the evident merits of the snippet

indices in 2 levels, given in the above paragraph, we choose two indices instead of

29

the single snippet index.

3.4.1 n versus m Ratio

Here we discuss the effect of considering different values for n and m over the func-

tionality of the framework.

n determines the degree of smoothing. To preserve the significant patterns of

the sequence yet be able to eliminate noise, n needs to be a much smaller value

compared to the sequence length (n � Len(S)). Setting n = 1 corresponds to using

the original sequence. On the other hand, setting n to a larger value may cause

over-smoothing. Hence, smoothing over a medium size of data values in our case 3

≤ n ≤ 8 has been found to be a good choice.

m is the degree of allowed randomness in the snippets while still calling it a

match. Ideally we would avoid the choice of extreme values for m. m =1 will

correspond to order checking over every individual snippet. However, ironic though,

m = Len(S) (i.e., equal to the size of the sequence) will also mean matching just

at the snippet level, but bag matching of all the snippets in the sequence. In that

case we will be order checking just 1 collection of m snippets. Hence, for almost all

domains we will keep low value of m (say 3 ≤ m ≤ 30) compared to sequence sizes

(m � Len(S)).

3.4.2 The 2-Level Indices

The snippets are extracted during preprocessing from the SP as explained in Section

3.3. Simultaneous to the extraction, collections of snippets are formed as well. Say

we consider m as the size of the collection. So every time we collect m number

of snippets, they are grouped together and given a unique identifier. The snippets

are loaded into the snippet inverted index (we call it the front-end index, as during

matching it is matched against the snippets of the live stream). Similarly, the m-

SnippetCollections are loaded into the m-SnippetCollection Index (we call it the

back-end index, as this is not matched against the live stream, it is referenced for

the match measurement though).

The front-end inverted index (Figure 3.2) uses snippets as indexing terms. For

each snippet there is an occurrence list that contains information about the occur-

rence of the snippet within a collection. The occurrence list information corresponds

30

to a vector 〈 SColID,〉 o1,o2,..,oi 〉 〉 i.e. the identifier of the Snippet Collection in

which the snippet exists along with each of the offsets oi within the Collection where

the snippet occurs.

Figure 3.2: n-Snippet Index

The back-end inverted index (Figure 3.3) uses the identifier of collections as

indexing terms. For each collection there is an occurrence list that contains in-

formation about occurrence of the collection within the SP . The occurrence list

information is 〈 SID, 〈 o1,o2,..,oi 〉 〉 where SID is the identifier of the SP in which

the collection exists along with each of the offsets within the SP where the collection

occurs.

Figure 3.3: m-SnippetCollection Index

31

We make use of the 2-Level inverted indices for live stream matching. Details of

this are explained in the approach section (Chapter 4.3).

32

Chapter 4

Approach

In this section we describe our matching framework in detail. We also provide

explanations of the key heuristics used in the algorithm. We begin with a quick

overview of the approach. Then we explain our framework for live stream matching

that uses the two level indices.

4.1 Overview

We propose the n-Snippet Indices Framework in 2-Levels (in short SNIF Tool). The

matching of the live stream SL against the set of patterns SP is performed in the

following two phases:

1. Off-line Preprocessing Phase: Each SP is scanned through once and snippets,

as well as collections, are extracted from them. This step is performed simul-

taneously with index building. We concurrently clean the index by removing

approximate duplicates during this index construction process. This helps to

reduce the index size, thus enhancing the performance during the live stream

matching step.

2. On-line Live Stream Matching Phase: As new data values continuously arrive

at SL, live snippets (LS) are incrementally extracted from it in a way identical

to snippet extraction from each SP . The LS is then used to probe the front-

end index to record the portions of the respective collections found so far.

The high ranked collections then probe the back-end index to perform order

33

checking to output the potential SP candidates.

Before we discuss each of the two steps of the matching framework in more detail

below we define some parameters used in the framework in Table 4.1.

Parameters Definitions
SColThreshold Corresponds to the lower bound on the collec-

tions match score. Only a collection having
score greater than or equal to this value is used
to probe the back-end index.

SP Threshold Corresponds to the lower bound on the SP

match score. Only the SP with a match score
greater than or equal to this value is output as
candidate matches

Delta-AvgStdev The tolerance (ε) for the range query over a snip-
pet.

AllowedMissingCollections Used in the back-end index matching step. This
is an additional parameter to allow gaps of col-
lections in the order checking step. For now we
have set this value to 0 to allow no gaps.

Table 4.1: Parameters used in the Match Framework

4.2 Preprocessing Phase

The index building (shown in Figure 4.1) and the index cleaning steps are performed

offline. The rationale behind this plan of having offline steps prior to the live stream

matching phase is to have minimum possible computation during the live matching

to reduce the response time.

The preprocessing phase consists of two tasks:

1. extracting snippets and collections from each SP . (refer to Section 3.3 for

details)

2. building the 2 levels of indices. (refer to Section 3.4 for details)

In addition to building the indices, we consider the design of auxiliary structures

to help the tuning of the indices to provide possibly more efficient indices for lookup

to the matching algorithm.

One issue to be addressed offline is the lookup identifier problem. Since the

front-end index is a hash-based index using the snippet identifier as shown in Figure

34

Figure 4.1: Building the Indices

3.2. Hence, the live snippet (LS) identifier cannot be used directly to lookup that

index. We propose to have a tree structure called Avg-StdevSortedTree (ASTree)

(illustrated in figure 4.2) of the snippets present in the front-end index which, as

the name suggests, is sorted on the average and standard deviation values. This

sorted tree can be created as a B-tree. Prior to the front-end index lookup, the live

snippet LS performs a range search on the ASTree to extract similar (in average

and standard deviation) snippets (there will possibly be multiple). These snippets,

obtained from the ASTree, are then used to lookup the front-end index.

However, while creating the above sorted tree we observed that there are large

numbers of similar snippets. This is attributed to the fact that the data values fall

within a certain common bandwidth (say, temperature readings ranging from 20 to

900).

Since we perform range search on the sorted tree, there are always multiple

snippets extracted, which eventually result in multiple (likely redundant) front-end

index looks up. Moreover, this means that the front-end index is loaded with a large

number of similar snippets. Hence, there is a potentially great scope for index size

reduction. From the point of view of the matching step, such index reduction will

significantly boost the efficiency since the search space is reduced. Our proposed so-

35

Algorithm 1 Algorithm for building the indices
Input:

1. The set of SP ,

2. The length m of collections,

3. The length n of snippets.

Output: The 2-level n-Snippet Indices
1: Extraction of collections:

for each SP in the set
Suppose that a SP is a sequence of time-series data values d0, d1, d2, dN ;
where N = Len(SP).
Extract collections starting from the data value di of sizes (m+n-1), where (0 ≤ i ≤ b((N-
n+1)/m c) and record the offsets of the collections within SP .
If the length of the last collection is less than m, pad the sequence with dN value to form the
last m-SnippetCollection.

2: Construction of the back-end inverted index:
for each m-SnippetCollection obtained in Step 1
Suppose that a collection SColA occurs in a pattern sequence SP at offsets o0,o1,...,of ;
append an occurrence 〈 SID, o0,o1,...,of] 〉 to the occurrence list of SColA.

3: Extraction of snippet:
For each collection say SColB
Extract snippets starting at the data value di, where (0 ≤ i ≤ L-n) and record the offsets of
the snippet within SColB .

4: Index Cleanup/Clustering of snippets:
Process all the extracted snippets through the clustering algorithm, keeping average and stan-
dard deviation values as the dimensions to cluster on.
Obtain the clusters in the form of 〈 CID | set of snippets 〉

5: Construction of the front-end inverted index:
for each Cluster obtained in Step 4
Suppose that a cluster CE consists of set of snippets [SnipA, SnipB , SnipC , . . . SnipG] ;
for each snippet contained in the cluster CE

Suppose that a snippet SnipX occurs in a collection SColC at offsets o0, o1 ,..., of ;
Append the occurrence 〈 SColC , [o0,o0,...,of] 〉 to the occurrence list of CE .

36

Figure 4.2: Avg Stdev Sorted Tree

lution for index size reduction is to cluster the snippets on the average and standard

deviation values using some third party clustering tools [GMM+03]. This clustering

task takes place offline, either between or after the initial two preprocessing tasks.

We propose slight modifications to the auxiliary ASTree and the front-end index to

make this work, as explained below.

Now, after the snippets are extracted and clustered. Each snippet is associated

with a cluster identifier (CID) depending on the range of average and standard

deviation values it belongs to. The ASTree now contains the average and standard

deviation ranges mapping to the CID instead of the set of possible snippets. Also

the front-end index now contains CID (which represents all the similar snippets

within the range) as the term. Therefore, the occurrence list of each CID consists of

the individual occurrence lists of all the snippets that belong to that cluster. This

optimization cuts down the index size and reduces multiple index lookups to a single

lookup.

4.3 Live Stream Matching Phase

We propose the following framework for the live stream matching. Using the 2-level

indices, the live stream matching is divided into two levels of matching:

1. Snippet Index lookup for bag matching of snippets to determine which and

37

how much of a given collection is matched, and

2. Collection Index lookup for order checking of the collections to determine

which SP and how much of it is matched.

These two abstract levels of matching make the matching against SP of different

lengths possible. A SP of length Len(S) consists of d(Len(S)/m+n-1)e collections.

We explain each of the above two levels of matching in the following sections.

4.3.1 n-Snippet Index Lookup

As new data is being appended to SL, live snippets LS are extracted from SL (refer

to Section 3.3 for details of the snippet extraction process). Each LS probes the

n-Snippet (front-end) index through the ASTree. The n-Snippet index uses the

identifiers of snippets present in the SP (or CID from the index cleaning step) for

indexing (explained in Section 4.2). Therefore, LS identifiers cannot directly probe

the n-Snippet index. As an intermediate step, the average and standard deviation

values of the LS are used to perform a range query (refer to Section 2.1) over the

ASTree (illustrated in figure 4.3). The identifier of a snippet or CID thus obtained

by probing the ASTree is used to further probe the n-Snippet index. The list of the

collections obtained from probing the index are the potential collections to which the

LS belongs. The matching phase uses several auxiliary structures for recording the

matches at the two level. One such structure, that we call Collections of Latest m

LS, is used to record each extracted LS and the list of the collections corresponding

to it.

As the memory is limited, one obvious question may be: for how many such

LS do we need to maintain the candidate collections? As the name suggests, we

propose to maintain the Collections of Latest m LS for the m current LS, i.e., equal

to the count of snippets in each collection of a SP . For example, we discard the

LSi and its corresponding list of collections as LSi+m is extracted, and so on, for

any general ith LS. This in turn means that we need to store just the latest m+n-1

data points of SL for our matching technique. For a wide range of m and n values,

m+n-1 numbers is certainly a feasible amount of memory. One issue to address here

is whether approximately matching a single snippet of the collection of SP should be

considered as the occurrence of the collection? For order checking (defined in Table

3.2) of collections of an SP , there may be several options of reporting if a collection is

38

Figure 4.3: Performing a range query: a snippet probing the ASTree

matched. One such option may be to say that the collection has either OCCURRED

or NOT-OCCURRED (1 or 0 respectively). But when do we say that? Approximate

matching of a single snippet corresponding to the collection is not proof enough of

the occurrence of the whole collection since the latter is comprised of m snippets.

Requiring all m snippets of the collection to match to report that it has matched

is too strict a requirement. In any case, a collection′s occurrence depends directly

on the fraction of its snippets in the observed set of the latest m LS. The set of

the latest m LS may be considered as the live collection (CollLive). We propose to

report a collection match when a significant portion of its snippets, exists above the

SColThreshold (defined in Table 4.1) in the CollLive.

SBM (CollLive,Coll of SP) =
|Matched n-Snippets between CollLive and Coll of SP |
max(|n-Snippets in CollLive|,|n-Snippets in Coll of SP |)

(4.1)

Moreover, another question is: what do we report as output of the bag matching

(defined in Table 3.2) step to the order checking step? A binary OCCURRED value?

Or should we be distinguishing 15 out of 26 versus 26 out of 26 (considering m =

26)? Here we propose to report the fraction from the bag matching (refer to the

Formula 4.1) as the score for how much of the collection is matched, where SBM

stands for score of bag matching. In our case, each of the Collections of SP and also

39

the CollLive are of size m. To compute the fraction of bag matching, we maintain

the frequency count of each collection existing in the list of Collections of Latest m

LS across the latest m LS. We utilize another auxiliary structure called Frequency

Count of Latest m LS to record the counts. For each collection appearing in the

collection list, the score is the ratio between its frequency count across m LS and

the value m, since finding all m snippets of a collection will be called a complete

match.

Figure 4.4: Snapshot 1: Bag matching in progress

Next we explain the whole process of bag matching as illustrated in the two

Figures 4.4 and 4.5. Say, for our example, m = 26 and n = 5. As each live snippet

LS is extracted from the live stream SL, the corresponding collections found by

probing the front-end index are stored in the Collections of Latest m LS. When

we have m LS we can perform the frequency count and store it in the Frequency

Count of Latest m LS. The two figures show bag matching steps for live snippets

1 to 26 and 2 to 27. As we do transition from the Figure 4.4 to the Figure 4.5,

when LS27 arrives, LS1 gets eliminated. The frequency counts for each collection

can be incrementally computed just by taking into account the outgoing LS and the

incoming LS. The Frequency Count of Latest m LS can be used to transfer the bag

matching score to the order checking step as shown in the next section.

40

Figure 4.5: Snapshot 2: Bag matching in progress

4.3.2 m-SnippetCollection Index Lookup

From the bag matching step the candidate collections along with their count scores

are obtained in Frequency Count of Latest m LS. For the order checking step (de-

fined in Table 3.2), the back-end index is probed (defined in Table 3.2) by the

collection identifiers to fetch their corresponding occurrence lists (defined in Table

3.2). However, out of the collections listed in Frequency Count of Latest m LS only

the ones with count scores above the SColThreshold (defined in Table 4.1) are used

to probe the back-end index. By probing the back-end index the candidate SP are

obtained from the occurrence lists. We introduce another auxiliary structure: SP

match node that we use in this step. A SP match node looks like 〈ρ, ν[1:ρ], φ〉
comprising of 3 components:

1. Match Position ρ - The position of the current collection up to which the SP

has been matched.

2. Match Vector ν[1:ρ] - A vector recording the bag matching scores of the col-

lections in the order they occur in the original SP .

3. Match Score SOC - Cummulative score for the Match Vector ν as a function

of the scores of the individual collections averaged up to the Match Position

ρ (as given in the Formula 4.2), where SOC stands for score of order checking.

41

SOC(SP ,ρ) =
∑ρ

k=1 Ck × ν[k]∑ρ
k=1 Ck

(4.2)

Ck stands for a weight for each matched position k. For our score computation

we kept Ck = 1 for all k positions. However, other Ck values could be used for

weighted averages. For example, to give matched SP scores according to the length

of match, one could keep Ck = k. Thus, weighing increases with the increase in the

match position. The exploration of exponential or linear weights for ordering is kept

as future work. SP Match Nodes are maintained for each candidate SP .

Figure 4.6 illustrates the process of order checking using the back-end Index.

Those collections in the Frequency Count of Latest m LS, that are marked with
′green′ are the high ranked collections (SBM ≥ SColThreshold) and are used to

probe the back-end index. The ′red′ ones have low scores. From the SP and position

information of the occurrence list the match for each candidate SP can be recorded

in the SP match nodes. As shown in Figure 4.6, similarly the SP match nodes are
′green′ if their order checking score SOC meet the SP Threshold (defined in Table

4.1), otherwise they are marked in ′red′. Only a high ranked SP will be reported as

a candidate match.

Figure 4.6: Order Checking using Collection Index Lookup

An example of a SP match node is 〈 3,〈0.98|1.0|0.89〉, 0.95 〉. Here 3 denotes

the match position ρ. The 〈0.98|1.0|0.89〉 is the ν[1:3], denoting the scores of the

first 3 consecutive collections for the SP , and 0.95 is the SOC computed according

42

to Formula 4.2. The value of ρ for a SP can vary from 0 to bLen(SP)÷(m+n-1)c,
i.e., the number of the collections into which the SP is divided in the preprocessing

step.

The individual collection score is the result of bag matching between the col-

lection and the latest m LS. Here the order of occurrence is not a concern, hence

it is a bag matching. However, at the next level, while reporting a match for a

SP , the order of the collections is checked. A score for a collection is added to a

ν[1:ρ] of a SP only if that collection is at a position p ≤ (ρ + 1) and with a score

above the SColThreshold. These SP match nodes are also incrementally evaluated

and maintained just like the Frequency Count of Latest m LS.

Next we discuss some issues related to incremental evaluation of the SP Match

Nodes. Firstly, while several SP matches can be formed, there needs to be a mecha-

nism for discarding the matches that become less promising over time. We propose

to discard SP matches where the match vector remains unchanged for more than

Latest m LS as we do not allow gaps or noise of more than m LS worth of live

data. This conforms to our goal of prefix matching. We could relax this restriction

and allow gaps between matched collections. This can be achieved by using the pa-

rameter AllowedMissingCollections (defined in Table 4.1). For now the parameter

AllowedMissingCollections is set to zero.

Secondly, many collections, especially adjacent collections within a SP , can share

similar snippets. For this reason multiple collections within a SP may have high

scores in the latest m LS. There are several options how best to address this. One

may maintain just a single ν[1:ρ] for a SP based on either the best match score (the

SOC value) or the extent of the match (the ρ value). Alternatively, multiple match

vectors can be maintained for that SP . We found that maintaining just the single

ν[1:ρ] for a candidate SP is very efficient and works well for our three experimental

datasets. However, clearly this is a heuristic and, in general, multiple ν[1:ρ] allows

any one of those to become the best choice later. There is a trade off between

response time and result accuracy; hence there needs to be an upper bound on the

maximum number of match vectors to be maintained per SP .

Another design decision to make is that, due to multiple match nodes (ν) per SP ,

there can be a case where two or more nodes ν for a SP may be at the same position

ρ. For example, for a SPi let ν1[1:3] = 〈 1.0|0.7|0.9 〉 and ν2[1:3] = 〈1.0|1.0|0.9〉 be

two match vectors both matched up to ρ = 3. Here SOC1 = 0.86 and SOC2 = 0.93

43

respectively. Since ν2[1:3] has a perfect match (1.0) in the 1st collection position as

well as in the 2nd collection position, the match is as good as it can get with respect

to the first two positions. Hence, ν1[1:3] has the lower score and can be discarded.

The reason being, any change to position 2, will not make it better than ν2[1:3].

Both the νs can get effected if a SBM is reported for either the position 4 collection

or at position 3 itself. In both the cases the ν2[1:3] will always remain the one with

the higher score. Hence in such a situation ν1[1:3] can be safely discarded. Hence,

maintaining multiple SP Match Nodes (ν) per SP but, within them, just a single

per match position ρ of collection, forms another of our heuristics for maintaining

selective multiple match nodes ν per SP .

We propose to have four variations of the live stream matching according to

the number of match vectors maintained per SP . The variations allow the user the

capability to choose between the two conflicting characteristics of result accuracy

versus response time. The variations are:

1. Best 1 - Only a single match vector is maintained per SP based on the match

score.

2. Multiple 1 per position- Multiple matches for a SP but only 1 per position of

collection in the SP

3. Best k - The Top k match vectors are maintained per SP based on the match

score.

4. Best k with 1 per position- Multiple match nodes maintained as a combination

of Best k and Multiple 1 per position.

We present the complete algorithm for the live stream matching step in 2. In

the next section we discuss the performance evaluation experiments done using our

approach.

44

Algorithm 2 Live Stream Matching Algorithm
Input:

1. The 2-level indices,

2. The continuous live stream sequence SL.

Output: Potential pattern sequences SP and SOC .
1: Range search on ASTree.

As data values continuously arrive at the live stream;
Form snippets LS using 1-Sliding technique;
Suppose LS is of the form 〈 LSid, Avg, Stdev 〉
For each LS extracted
Perform range search on the ASTree using the average & stdev value pair of LS ,
Extract the single CID corresponding to the range (average-stdev) of LS .

2: Front-end index lookup.
For each CID extracted in Step 1,
Look up the front-index and collect the list of collections corresponding to the CID.
Report the LS and the corresponding list of collections to Collections of Latest m LS .

3: Incrementally maintain Latest m LS in Collections of Latest m LS .
If the number of LS reported in Collections of Latest m LS exceeds m
Remove the earliest reported LS entry.
Note the collections and their frequency count over the latest m LS in Frequency Count of
Latest m LS

4: Incrementally Maintain Frequency Count of Latest m LS

Suppose Collections of Latest m LS is of the form:
〈 LS1, (List of collections) 〉, 〈 LS2, (List of collections) 〉, , so on till m consecutive LS .
For each collection reported in Collections of Latest m LS

Report the collections count across the latest m LS into Frequency Count of Latest m LS as 〈
SColID, Count 〉.
For each collection,
part of the removed (earliest) LS in Step 3,
Reduce the corresponding count of the collection in Frequency Count of Latest m LS .

5: Back-end index lookup.
From the Frequency Count of Latest m LS ,
select the collections whose SBM exceeds the SColThreshold.
For each such high ranked collection,
Lookup the back-end index
Collect the occurrence lists of the form 〈 SP1, offsets 〉 , 〈 SP2, offsets 〉 . . . 〈 SPi, offsets 〉

6: Incrementally Maintain the SP Match Nodes ν[1:ρ] as per the chosen heuristics.
From the occurrence lists of collection, ν[1:ρ] can be incrementally computed and maintained.
Report SP as a candidate only if SOC exceeds SP Threshold

45

Chapter 5

Experimental Evaluation

In this section we study the performance and accuracy of our live stream matching

framework using an experimental study. The effectiveness of SNIF to detect patterns

has been thoroughly tested through extensive experimental evaluations. We use the

continuous query engine called CAPE [RDS+] as our platform. Experiments were

performed on a dedicated laptop computer (Dell Inspiron 600m with 2GB RAM and

Intel(R) Pentium(R) M processor 1.70 GHz).

5.1 Experimental Setup

5.1.1 Datasets

We used 3 different real datasets to perform our experiments, namely, the EDaFS

fire dataset [WVM04], the sensor network motes dataset [SPF] and the chlorine

monitoring dataset [EPA]. Each of these datasets consists of 40∼50 different se-

quences.

As we can see from the plot of sample sequences from each of the datasets (refer

to the Figures 5.1, 5.2,5.3), the datasets are from three different domains and are

significantly distinct from each other. The EDaFS dataset (see Figure 5.1) contains

temperature, smoke, CO readings recorded during several fire tests. Specifically,

the temperature ranges vary from room temperature up to 700∼900 F depending

on the fire type. There are mainly data pertaining to two fire types, namely, the

smouldering fire and the flaming fire.

The Motes dataset (see Figure 5.2) consists of 4 groups of sensor measurements

46

Figure 5.1: Sample sequences from the EDaFS dataset

Figure 5.2: Sample sequences from the Motes dataset 1) Temperature 2) Humidity

(i.e., light intensity, humidity, temperature, battery voltages) collected using 48

Berkeley Mote sensors at different locations in a lab, over a period of a month. This

is an example of heterogeneous streams. Temperature shows a weak daily cycle and

a lot of bursts. Humidity does not have any regular pattern.

The Chlorine dataset (see figure 5.3) was generated by EPANET [EPA] that

accurately simulates the hydraulic and chemical phenomena within drinking water

distribution systems. There are two characteristic features of the data. A clear

global periodic pattern (daily cycle, dominating residential demand pattern) and a

slight time shift across different junctions. Thus, most streams exhibit the same

sinusoidal-like pattern, except with gradual phase shifts as we go further away from

47

Figure 5.3: Sample sequences from the Chlorine dataset

the reservoir.

5.1.2 Forming Pattern Sequences and Live Streams

The pattern sequences are extracted from the data sequences present in the datasets.

Specifically, each of the sequences are trimmed to eliminate the regular or common

portions that do not include any phenomenon. Overall, we extract sequences of

length ranging between 200 datapoints and 900 datapoints for different set of ex-

periments. The index building code scans through each data sequence and loads it

into two indices. The auxiliary tree structure ASTree is also created alongside.

The live streams are generated from the sequences of the dataset as well. To

form long (seemingly infinite) live streams, a sequence is repetitively appended to

itself several times.

5.1.3 Experimental Plan

Our experiments are designed to evaluate the following two factors:

1. Performance- We compare the CPU costs for the four proposed variations of

the matching algorithm.

48

2. Robustness- We examine the change in the match score SOC of a live stream

as we increase the noise level in it.

We also compute the robustness and accuracy of the matching technique by

introducing different amounts of noise (missing data values by removing values from

the sequences) in the live sequences. Specifically, we vary the amount of missing

data from 0% up to 20%.

Table 5.1 lists the different parameters of the system with their variations or

their constant settings in the different experiments.

Parameters Range of values
SColThreshold Varies between 0.5 and 0.8
SP Threshold Varies between 0.5 and 0.8
DeltaAvgStdev Varies between 0.1 and 1.0.
AllowedMissingCollections For now it is set 0 to allow no collection gaps.
P Lengths Three sets of SP with lengths ranging 200∼300,

500∼600 and 800∼900 are maintained as SP (s)
Missing Data % SL(s) are formed by varying the missing data %

between 5% and 20%.

Table 5.1: Parameters varied during Experiments on Live Stream Matching

5.2 Performance Evaluation

We evaluate the performance of the following four variations of the algorithm (dis-

cussed in Section 4.3.2) based on the SNIF framework:

1. Best 1 Match Node (ν) per SP

2. Multiple ν but 1 per matching position (ρ) per SP

3. Best k ν per SP

4. Best k ν per SP with just 1 per ρ per SP .

For the performance evaluation, the total CPU time for matching, and the aver-

age CPU time per processing cycle are the performance measurement on the y-axis.

The variables are the desired SColThreshold, the desired SP Threshold and the index

size determined by the length of sequences stored.

49

Figure 5.4: CPU costs for different SColThreshold and fixed SP Threshold: 1〉 Total
CPU costs 2〉 Average CPU costs per processing cycle.

For the experiments 1, 2 and 3, we use the EDaFS fire test dataset.

Experiment 1: We vary the desired SColThreshold keeping the SP Threshold fixed

(refer to Figure 5.4).

Experiment 2: Similar to experiment 1, we also study the processing time by us-

ing two distinct SP Threshold values while keeping a fixed value for the SColThreshold

(as shown in Figure 5.5)

Figure 5.5: CPU costs for different SP Threshold and fixed SColThreshold: 1〉 Total
CPU costs 2〉 Average CPU costs per processing cycle.

Observations: In both experiments 1 and 2, we observe that the CPU cost tends

to be increasing in the following order: Best 1 < Multiple but 1 per ρ per SP < Best

k (=5) with 1 per ρ per SP < Best k (=5). However, there is not much difference in

the processing costs of the four variations except for about 100∼200 milliseconds.

This is attributed to two factors: a) the index lookup is quick, b) the search quickly

narrows down to very small set of candidate SP and their corresponding match nodes

50

ν (refer to Figure 5.6). Hence, the CPU costs are associated to maintaining and

processing very few SP and νs.

Figure 5.6: Count of Match Nodes (νs) maintained through the runs of the four
algorithms

Experiment 3: Further, we evaluate the effect of the size of the index on the

processing cost of the matching algorithms. The longer the patterns and the larger

the number of patterns, the larger the index size becomes. This will eventually effect

the processing cost. We chose to extract three sets of pattern series having length

ranges of 200∼300, 500∼600, and 800∼900, respectively.

Figure 5.7: CPU costs for different pattern sizes 1〉 Total CPU costs 2〉 Average
CPU costs per processing cycle.

51

In Figure 5.7, we compare the total and average CPU costs over sets of patterns

having different lengths. We examine 6 variations of the algorithm, namely, Best 1,

Multiple but 1 per ρ per SP , Best 2, Best 2 with 1 per ρ per SP , Best 5, and Best 5

with 1 per ρ per SP .

Observations: We observe that the longer the pattern lengths, the larger the

index size and the higher the CPU costs become. Also the trend of increasing CPU

times is similar to experiments 1 and 2, i.e., Best 1 < Multiple but 1 per ρ per SP

< Best 5 with 1 per ρ per SP < Best 5. However, for Best 2 and Best 2 with 1 per

ρ per SP , we observe that their CPU costs are quite similar to Best 1 and Multiple

but 1 per ρ per SP . Also for pattern lengths 500∼600, Best 2 < Best 2 with 1 per

ρ per SP . We find that for both the Best 2 variations, the number of νs maintained

per SP is not much different from those in Best 1, hence the similar CPU costs.

Moreover, after maintaining the Best 2 νs per SP , the check for 1 ν per ρ per SP is

consuming some unnecessary CPU as it does not have much scope for reducing the

number of νs.

Experiment 4: Here we evaluate the performance of the Chlorine dataset based

on the total CPU costs and the average CPU costs. We vary the desired SColThreshold

keeping the SP Threshold fixed (refer to Figure 5.8)

Figure 5.8: CPU costs for different SColThreshold and fixed SP Threshold: 1〉 Total
CPU costs 2〉 Average CPU costs per processing cycle.

Observations: The chlorine dataset has many similar patterns and those vary

only within a very small data range (-0.2 to +1.0). Hence several candidate SP

and multiple νs per SP are being maintained. The CPU cost tends to be in the

following increasing order: Best 1 < Multiple but 1 per ρ per SP < Best k (=5)

with 1 per ρ per SP < Best k (=5). Moreover, the CPU costs for the four variations

are distinctly different. This is attributed to the small data range of sequences and

52

the cyclic nature of the patterns. The number of νs maintained is much larger in

variations maintaining multiple νs and the CPU cost is highly dependent on the

number of νs maintained. We also observe that by increasing the SColThreshold,

the CPU costs are decreased as less νs have scores higher than SColThreshold 0.8 as

compared to SColThreshold 0.6.

5.3 Robustness

The robustness criteria of the match algorithms is the effect of the noise levels

(missing data values) in the live stream on the match scores. Experiment 1 is on

the EDaFS dataset whereas experiments 2 and 3 are on the Motes and the Chlorine

datasets respectively.

Experiment 1: We examine various live sequences and the change in their scores

as we increase their noise level. For the results refer to Figure 5.9. We show 6 of

the live sequences in the figure, namely, DAN2, DAN4, DAE1, DAS6, DFN4 and

DFF11.

Figure 5.9: EDaFS dataset- Average scores of different live sequences with increasing
noise.

Observations: Due to the high amount of smoothing (snippet size n =5) and the

large margin of disorder of snippets allowed within each collection (collection size

53

= 25) the scores of the live sequences decrease gradually, when they are matched

against the library of pattern sequences.

Experiment 2: We examine various live sequences of the Motes dataset. We

observe the change in their scores as we increase their noise level. Here we also

examine how varying the snippet size (n) and the collection size (m) will affect

the scores. Snippet size is the degree of smoothing of snippets and collection size

determines the allowed disorder amongst the snippets within a collection for bag

matching. In this experiment we vary the snippet size keeping the collection size

same (refer to Figure 5.10). We show 5 of the live sequences in the figure, namely,

TA, TB, TC, TD, TE.

Figure 5.10: Motes dataset- Average scores of different live sequences with increasing
noise. a) n = 5 and m = 10 and b) n = 1 and m = 10

Observations: In the two graphs of Figure 5.10, we compare the change in average

scores of 5.10 a) n = 5 and m =10 (smoothed snippets with adequate collection

size) against that of 5.10 b) n = 1 and m =10 (snippets with no smoothing but with

adequate collection size). We observe that the average scores of the live sequences

in case b decrease much more rapidly as we increase the noise level as compared to

case a. The unsmoothed snippets (in case b) versus the smoothed snippets (in case

a) cause this difference. However, within case b we find that the adequate collection

size allowing disorder amongst the snippets prevents the scores to fall rapidly up to

8 percent missing data despite unsmoothed snippets.

Experiment 3: We examine various live sequences of the Chlorine dataset. As in

experiment 2 here also we observe the change in the scores as we increase the noise

level in the live sequences. In this experiment we vary the collection size keeping

the snippet size the constant. Refer to Figure 5.11 for results. We show 5 of the

54

live sequences in the figure, namely, CA, CB, CC, CD, CE.

Figure 5.11: Chlorine dataset- Average scores of different live sequences with in-
creasing noise. a) n = 5 and m = 10 and b) n = 5 and m = 3

Observations: In the two graphs of Figure 5.11, we compare the change in average

scores of 5.11 a) n = 5 and m = 10 (smoothed snippets with adequate collection

size) and 5.11 b) n = 5 and m = 3 (smoothed snippets with small collection size).

The small data range of the sequences results in gradual decrease of the average

scores when more noise is introduced in the live sequences. However, the adequate

collection size (allowed disorder) makes the match algorithm more robust than the

small collection size.

55

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose a generic framework for sequence matching over streaming

data. We call it the n-Snippet Indices Framework (in short, SNIF). We introduce

the concepts of snippets and collections for numeric data. We also propose to apply

two abstract levels of matching, namely, bag matching and order checking.

The framework addresses challenges of the streaming environment, namely, noise

elimination, incremental evaluation, and efficient CPU utilization. Our framework

stores very small portions of the live stream SL: i.e., it maintains the live data

up to just the latest m snippets. More precisely, maintaining m snippets means

maintaining just the latest m+n-1 data values.

Experiments demonstrate the efficiency and effectiveness of the SNIF Tool for

sets of patterns having different lengths (300, 600, 900). We show that the framework

is capable of real-time response. We also demonstrate how the framework is tolerant

to the different noise levels in the live streams ranging up to 20 percent of missing

data.

6.2 Future Work

During this thesis work we have addressed several challenges. However, many ad-

ditional research challenges have been identified for possible future work. A few of

them are listed below:

1. Evaluation of the performance and robustness of the framework using other

56

similarity measures such as Dynamic Time Warping, Discrete Wavelet Trans-

form and Fast Fourier Transform.

2. Use of disjoint snippets rather than using 1-Sliding to extract snippets from

a sequence. There are two aspects to be explored namely, a) disjoint pattern

snippets against sliding live snippets, and b) sliding pattern snippets against

disjoint live snippets.

3. Monitor several live streams from adjacent / related sensors and predict some

phenomenon based on the correlation of the matches of those live streams.

This is the next abstract level of a monitoring system which can obtain results

from the matching framework and make decisions based on observations from

several streams.

4. Support for multiple continuous similarity queries is another aspect to explore.

The focus would be to enhance the performance of the framework to be able

to handle several similarity queries while having limited resources.

57

Bibliography

[AFS93] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient

similarity search in sequence databases. In FODO, pages 69–84, 1993.

[ALSS95] Rakesh Agrawal, King-Ip Lin, Harpreet S. Sawhney, and Kyuseok Shim.

Fast similarity search in the presence of noise, scaling, and translation

in time-series databases. In VLDB, pages 490–501, 1995.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and

Jennifer Widom. Models and issues in data stream systems. In PODS,

pages 1–16, 2002.

[BS03] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers

in near linear time with randomization and a simple pruning rule. In

KDD, pages 29–38, 2003.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information

retrieval. ACM Press, 1999.

[CFY03] Kin-Pong Chan, Ada Wai-Chee Fu, and Clement T. Yu. Haar wavelets

for efficient similarity search of time-series: With and without time

warping. IEEE Trans. Knowl. Data Eng., 15(3):686–705, 2003.

[CN04] Lei Chen and Raymond T. Ng. On the marriage of lp-norms and edit

distance. In VLDB, pages 792–803, 2004.

[Coh97] Jonathan D. Cohen. Recursive hashing functions for n-grams. ACM

Trans. Inf. Syst., 15(3):291–320, 1997.

[EPA] www.epa.gov.ord.nrmrl.wswrd.epanet.html.

58

[FRM94] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast

subsequence matching in time-series databases. In Proceedings 1994

ACM SIGMOD Conference, Mineapolis, MN, pages 419–429, 1994.

[GMM+03] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and

Liadan O’Callaghan. Clustering data streams: Theory and practice.

IEEE Trans. Knowl. Data Eng., 15(3):515–528, 2003.

[GW02] Like Gao and Xiaoyang Sean Wang. Continually evaluating similarity-

based pattern queries on a streaming time series. In SIGMOD Confer-

ence, pages 370–381, 2002.

[GYW02] Like Gao, Zhengrong Yao, and Xiaoyang Sean Wang. Evaluating contin-

uous nearest neighbor queries for streaming time series via pre-fetching.

In CIKM, pages 485–492, 2002.

[HLMJ07] Wook-Shin Han, Jinsoo Lee, Yang-Sae Moon, and Haifeng Jiang.

Ranked subsequence matching in time-series databases. In VLDB, pages

423–434, 2007.

[HS95] Gı́sli R. Hjaltason and Hanan Samet. Ranking in spatial databases. In

SSD, pages 83–95, 1995.

[KCMP01] Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and

Michael J. Pazzani. Locally adaptive dimensionality reduction for in-

dexing large time series databases. In SIGMOD Conference, 2001.

[KP99] Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time

warping to massive dataset. In PKDD, pages 1–11, 1999.

[KPL04] Sang-Wook Kim, Dae-Hyun Park, and Heon-Gil Lee. Efficient process-

ing of subsequence matching with the euclidean metric in time-series

databases. Inf. Process. Lett., 90(5):253–260, 2004.

[KPM07] Maria Kontaki, Apostolos N. Papadopoulos, and Yannis Manolopoulos.

Adaptive similarity search in streaming time series with sliding windows.

Data Knowl. Eng., 63(2):478–502, 2007.

59

[KWLL05] Min-Soo Kim, Kyu-Young Whang, Jae-Gil Lee, and Min-Jae Lee. n-

gram/2l: A space and time efficient two-level n-gram inverted index

structure. In VLDB, pages 325–336, 2005.

[LA96] Joon Ho Lee and Jeong Soo Ahn. Using n-grams for korean text re-

trieval. In SIGIR, pages 216–224, 1996.

[LPK06] Seung-Hwan Lim, Hee-Jin Park, and Sang-Wook Kim. Using multiple

indexes for efficient subsequence matching in time-series databases. In

DASFAA, pages 65–79, 2006.

[MSLN00] Ethan Miller, Dan Shen, Junli Liu, and Charles Nicholas. Performance

and scalability of a large-scale n-gram based information retrieval sys-

tem. Journal of Digital Information, 2000.

[MWH02] Yang-Sae Moon, Kyu-Young Whang, and Wook-Shin Han. General

match: a subsequence matching method in time-series databases based

on generalized windows. In SIGMOD Conference, pages 382–393, 2002.

[MWL01] Yang-Sae Moon, Kyu-Young Whang, and Woong-Kee Loh. Duality-

based subsequence matching in time-series databases. In ICDE, pages

263–272, 2001.

[RDS+] Elke A. Rundensteiner, Luping Ding, Timothy Sutherland, Yali Zhu,

Brad Pielech, and Nishant Mehta. Cape: Continuous query engine with

heterogeneous-grained adaptivity.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neigh-

bor queries. In SIGMOD Conference, pages 71–79, 1995.

[SPF] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Distributed

pattern discovery in multiple streams. note.

[WMB99] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing

and Indexing Documents and Images. Morgan Kaufmann Publishers,

1999.

[WSS+05] Huanmei Wu, Betty Salzberg, Gregory C Sharp, Steve B Jiang, Hiroki

Shirato, and David Kaeli. Subsequence matching on structured time

60

series data. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 682–693, New

York, NY, USA, 2005. ACM.

[WSZ04] Huanmei Wu, Betty Salzberg, and Donghui Zhang. Online event-driven

subsequence matching over financial data streams. In SIGMOD Con-

ference, pages 23–34, 2004.

[WVM04] J. W. Woycheese, R. Venkatesh, and K. Mihyun. Experiment database

for fire science, database architecture 0.9, August 2004.

[WW00] Changzhou Wang and Xiaoyang Sean Wang. Supporting content-based

searches on time series via approximation. In SSDBM, pages 69–81,

2000.

[WW03] Teddy Siu Fung Wong and Man Hon Wong. Efficient subsequence

matching for sequences databases under time warping. ideas, 00:139,

2003.

61

	Worcester Polytechnic Institute
	Digital WPI
	2008-02-11

	SNIF TOOL - Sniffing for Patterns in Continuous Streams
	ABHISHEK MUKHERJI
	Repository Citation

	tmp.1530275769.pdf.Cd6na

