213 research outputs found

    Dynamic Congestion and Tolls with Mobile Source Emission

    Get PDF
    This paper proposes a dynamic congestion pricing model that takes into account mobile source emissions. We consider a tollable vehicular network where the users selfishly minimize their own travel costs, including travel time, early/late arrival penalties and tolls. On top of that, we assume that part of the network can be tolled by a central authority, whose objective is to minimize both total travel costs of road users and total emission on a network-wide level. The model is formulated as a mathematical program with equilibrium constraints (MPEC) problem and then reformulated as a mathematical program with complementarity constraints (MPCC). The MPCC is solved using a quadratic penalty-based gradient projection algorithm. A numerical study on a toy network illustrates the effectiveness of the tolling strategy and reveals a Braess-type paradox in the context of traffic-derived emission.Comment: 23 pages, 9 figures, 5 tables. Current version to appear in the Proceedings of the 20th International Symposium on Transportation and Traffic Theory, 2013, the Netherland

    Second best toll and capacity optimisation in network: solution algorithm and policy implications

    Get PDF
    This paper looks at the first and second-best jointly optimal toll and road capacity investment problems from both policy and technical oriented perspectives. On the technical side, the paper investigates the applicability of the constraint cutting algorithm for solving the second-best problem under elastic demand which is formulated as a bilevel programming problem. The approach is shown to perform well despite several problems encountered by our previous work in Shepherd and Sumalee (2004). The paper then applies the algorithm to a small sized network to investigate the policy implications of the first and second-best cases. This policy analysis demonstrates that the joint first best structure is to invest in the most direct routes while reducing capacities elsewhere. Whilst unrealistic this acts as a useful benchmark. The results also show that certain second best policies can achieve a high proportion of the first best benefits while in general generating a revenue surplus. We also show that unless costs of capacity are known to be low then second best tolls will be affected and so should be analysed in conjunction with investments in the network

    Counter-intuitive throughput behaviors in networks under end-to-end control

    Get PDF
    It has been shown that as long as traffic sources adapt their rates to aggregate congestion measure in their paths, they implicitly maximize certain utility. In this paper we study some counter-intuitive throughput behaviors in such networks, pertaining to whether a fair allocation is always inefficient and whether increasing capacity always raises aggregate throughput. A bandwidth allocation policy can be defined in terms of a class of utility functions parameterized by a scalar a that can be interpreted as a quantitative measure of fairness. An allocation is fair if alpha is large and efficient if aggregate throughput is large. All examples in the literature suggest that a fair allocation is necessarily inefficient. We characterize exactly the tradeoff between fairness and throughput in general networks. The characterization allows us both to produce the first counter-example and trivially explain all the previous supporting examples. Surprisingly, our counter-example has the property that a fairer allocation is always more efficient. In particular it implies that maxmin fairness can achieve a higher throughput than proportional fairness. Intuitively, we might expect that increasing link capacities always raises aggregate throughput. We show that not only can throughput be reduced when some link increases its capacity, more strikingly, it can also be reduced when all links increase their capacities by the same amount. If all links increase their capacities proportionally, however, throughput will indeed increase. These examples demonstrate the intricate interactions among sources in a network setting that are missing in a single-link topology

    Non-Cooperative Scheduling of Multiple Bag-of-Task Applications

    Get PDF
    Multiple applications that execute concurrently on heterogeneous platforms compete for CPU and network resources. In this paper we analyze the behavior of KK non-cooperative schedulers using the optimal strategy that maximize their efficiency while fairness is ensured at a system level ignoring applications characteristics. We limit our study to simple single-level master-worker platforms and to the case where each scheduler is in charge of a single application consisting of a large number of independent tasks. The tasks of a given application all have the same computation and communication requirements, but these requirements can vary from one application to another. In this context, we assume that each scheduler aims at maximizing its throughput. We give closed-form formula of the equilibrium reached by such a system and study its performance. We characterize the situations where this Nash equilibrium is optimal (in the Pareto sense) and show that even though no catastrophic situation (Braess-like paradox) can occur, such an equilibrium can be arbitrarily bad for any classical performance measure
    corecore