4,276 research outputs found

    Decoding social intentions in human prehensile actions: Insights from a combined kinematics-fMRI study

    Get PDF
    Consistent evidence suggests that the way we reach and grasp an object is modulated not only by object properties (e.g., size, shape, texture, fragility and weight), but also by the types of intention driving the action, among which the intention to interact with another agent (i.e., social intention). Action observation studies ascribe the neural substrate of this `intentional' component to the putative mirror neuron (pMNS) and the mentalizing (MS) systems. How social intentions are translated into executed actions, however, has yet to be addressed. We conducted a kinematic and a functional Magnetic Resonance Imaging (fMRI) study considering a reach-to-grasp movement performed towards the same object positioned at the same location but with different intentions: passing it to another person (social condition) or putting it on a concave base (individual condition). Kinematics showed that individual and social intentions are characterized by different profiles, with a slower movement at the level of both the reaching (i.e., arm movement) and the grasping (i.e., hand aperture) components. fMRI results showed that: (i) distinct voxel pattern activity for the social and the individual condition are present within the pMNS and the MS during action execution; (ii) decoding accuracies of regions belonging to the pMNS and the MS are correlated, suggesting that these two systems could interact for the generation of appropriate motor commands. Results are discussed in terms of motor simulation and inferential processes as part of a hierarchical generative model for action intention understanding and generation of appropriate motor commands

    Affordances, context and sociality

    Get PDF
    Affordances, i.e. the opportunity of actions offered by the environment, are one of the central research topics for the theoretical perspectives that view cognition as emerging from the interaction between the environment and the body. Being at the bridge between perception and action, affordances help to question a dichotomous view of perception and action. While Gibson’s view of affordances is mainly externalist, many contemporary approaches define affordances (and micro-affordances) as the product of long-term visuomotor associations in the brain. These studies have emphasized the fact that affordances are activated automatically, independently from the context and the previous intention to act: for example, affordances related to objects’ size would emerge even if the task does not require focusing on size. This emphasis on the automaticity of affordances has led to overlook their flexibility and contextual-dependency. In this contribution I will outline and discuss recent perspectives and evidence that reveal the flexibility and context-dependency of affordances, clarifying how they are modulated by the physical, cultural and social context. I will focus specifically on social affordances, i.e. on how perception of affordances might be influenced by the presence of multiple actors having different goals

    Autistic traits affect interpersonal motor coordination by modulating strategic use of role-based behavior

    Get PDF
    Background: Despite the fact that deficits in social communication and interaction are at the core of Autism Spectrum Conditions (ASC), no study has yet tested individuals on a continuum from neurotypical development to autism in an on-line, cooperative, joint action task. In our study, we aimed to assess whether the degree of autistic traits affects participants' ability to modulate their motor behavior while interacting in a Joint Grasping task and according to their given role. Methods: Sixteen pairs of adult participants played a cooperative social interactive game in which they had to synchronize their reach-to-grasp movements. Pairs were comprised of one ASC and one neurotypical with no cognitive disability. In alternate experimental blocks, one participant knew what action to perform (instructed role) while the other had to infer it from his/her partner’s action (adaptive role). When in the adaptive condition, participants were told to respond with an action that was either opposite or similar to their partner. Participants also played a non-social control game in which they had to synchronize with a non-biological stimulus. Results: In the social interactive task, higher degree of autistic trait s predicted less ability to mod ulate joint action according to one’s interactive role. In the non-social task, autistic traits did not predict differences in movement preparation and planning, thus ruling out the possibility that social interact ive task results were due to basic motor or executive function difficulties. Furthermore, when participants played the non-social game, the higher their autistic traits, the more they were interfered by the non-biological stimulus. Conclusions: Our study shows for the first time that high autistic traits predict a stereotypical interaction style when individuals are required to modulate their movements in order to coordinate with their partner according to their role in a joint action task. Specifically, the infrequent emergence of role-based motor behavior modulation during on-line motor cooperation in participants with high autistic traits sheds light on the numerous difficulties ASC have in nonverbal social interaction

    Causative role of left aIPS in coding shared goals during human-avatar complementary joint actions

    Get PDF
    Successful motor interactions require agents to anticipate what a partner is doing in order to predictively adjust their own movements. Although the neural underpinnings of the ability to predict others' action goals have been well explored during passive action observation, no study has yet clarified any critical neural substrate supporting interpersonal coordination during active, non-imitative (complementary) interactions. Here, we combine non-invasive inhibitory brain stimulation (continuous Theta Burst Stimulation) with a novel human-avatar interaction task to investigate a causal role for higher-order motor cortical regions in supporting the ability to predict and adapt to others' actions. We demonstrate that inhibition of left anterior intraparietal sulcus (aIPS), but not ventral premotor cortex, selectively impaired individuals' performance during complementary interactions. Thus, in addition to coding observed and executed action goals, aIPS is crucial in coding 'shared goals', that is, integrating predictions about one's and others' complementary actions

    Complementary Actions

    Get PDF
    Human beings come into the world wired for social interaction. At the fourteenth week of gestation, twin fetuses already display interactive movements specifically directed towards their co- twin. Readiness for social interaction is also clearly expressed by the newborn who imitate facial gestures, suggesting that there is a common representation mediating action observation and execution. While actions that are observed and those that are planned seem to be functionally equivalent, it is unclear if the visual representation of an observed action inevitably leads to its motor representation. This is particularly true with regard to complementary actions (from the Latin complementum ; i.e. that fills up), a specific class of movements which differ, while interacting, with observed ones. In geometry, angles are defined as complementary if they form a right angle. In art and design, complementary colors are color pairs that, when combined in the right proportions, produce white or black. As a working definition, complementary actions refer here to any form of social interaction wherein two (or more) individuals complete each other\u2019s actions in a balanced way. Successful complementary interactions are founded on the abilities:\ua0 (1)\ua0 to simulate another person\u2019s movements; (2)\ua0 to predict another person\u2019s future action/ s; (3)\ua0to produce an appropriate congruent/ incongruent response that completes the other person\u2019s action/ s; and (4)\ua0to integrate the predicted effects of one\u2019s own and another person\u2019s actions. It is the neurophysiological mechanism that underlies this process which forms the main theme of this chapte

    Grasping intentions: from thought experiments to empirical evidence

    Get PDF
    Skepticism has been expressed concerning the possibility to understand others' intentions by simply observing their movements: since a number of different intentions may have produced a particular action, motor information—it has been argued—might be sufficient to understand what an agent is doing, but not her remote goal in performing that action. Here we challenge this conclusion by showing that in the absence of contextual information, intentions can be inferred from body movement. Based on recent empirical findings, we shall contend that: (1) intentions translate into differential kinematic patterns; (2) observers are especially attuned to kinematic information and can use early differences in visual kinematics to anticipate the intention of an agent in performing a given action; (3) during interacting activities, predictions about the future course of others' actions tune online action planning; (4) motor activation during action observation subtends a complementary understanding of what the other is doing. These findings demonstrate that intention understanding is deeply rooted in social interaction: by simply observing others' movements, we might know what they have in mind to do and how we should act in response

    The visible face of intention: why kinematics matters

    Get PDF
    A key component of social understanding is the ability to read intentions from movements. But how do we discern intentions in others’ actions? What kind of intention information is actually available in the features of others’ movements? Based on the assumption that intentions are hidden away in the other person’s mind, standard theories of social cognition have mainly focused on the contribution of higher level processes. Here, we delineate an alternative approach to the problem of intention-from-movement understanding. We argue that intentions become “visible” in the surface flow of agents’ motions. Consequently, the ability to understand others’ intentions cannot be divorced from the capability to detect essential kinematics. This hypothesis has far reaching implications for how we know other minds and predict others’ behavior

    Transitory Inhibition of the left anterior intraparietal sulcus impairs joint actions: a continuous Theta-Burst stimulation study

    Get PDF
    Although temporal coordination is a hallmark of motor interactions, joint action (JA) partners do not simply synchronize; they rather dynamically adapt to each other to achieve a joint goal. We created a novel paradigm to tease apart the processes underlying synchronization and JA and tested the causal contribution of the left anterior intraparietal sulcus (aIPS) in these behaviors. Participants had to synchronize their congruent or incongruent movements with a virtual partner in two conditions: (i) being instructed on what specific action to perform, independently from what action the partner performed (synchronization), and (ii) being instructed to adapt online to the partner's action (JA). Offline noninvasive inhibitory brain stimulation (continuous theta-burst stimulation) over the left aIPS selectively modulated interpersonal synchrony in JA by boosting synchrony during congruent interactions and impairing it during incongruent ones, while leaving performance in the synchronization condition unaffected. These results suggest that the left aIPS plays a causal role in supporting online adaptation to a partner's action goal, whereas it is not necessarily engaged in social situations where the goal of the partner is irrelevant. This indicates that, during JAs, the integration of one's own and the partner's action goal is supported by aIPS

    The combined effects of motor and social goals on the kinematics of object-directed motor action

    Get PDF
    Voluntary actions towards manipulable objects are usually performed with a particular motor goal (i.e., a task-specific object-target-effector interaction) and in a particular social context (i.e., who would benefit from these actions), but the mutual influence of these two constraints has not yet been properly studied. For this purpose, we asked participants to grasp an object and place it on either a small or large target in relation to Fitts' law (motor goal). This first action prepared them for a second grasp-to-place action which was performed under temporal constraints, either by the participants themselves or by a confederate (social goal). Kinematic analysis of the first preparatory grasp-to-place action showed that, while deceleration time was impacted by the motor goal, peak velocity was influenced by the social goal. Movement duration and trajectory height were modulated by both goals, the effect of the social goal being attenuated by the effect of the motor goal. Overall, these results suggest that both motor and social constraints influence the characteristics of object-oriented actions, with effects that combine in a hierarchical way.- This work was funded by the French National Research Agency (ANR-11-EQPX-0023) and also supported by European funds through the program FEDER SCV-IrDIVE. MFG was financed by the Region Hauts-de-France and the University of Lille. We are grateful to Anya Attou for her contribution to the data collection, Laurent Ott for his support in the computer programming of the study and Celia Moreira (mathematical researcher at FCUP-CMUP, University of Porto) for her helpful suggestions for statistical analysis
    • 

    corecore