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Abstract

Consistent evidence suggests that the way we reach and grasp an object is modulated not

only by object properties (e.g., size, shape, texture, fragility and weight), but also by the

types of intention driving the action, among which the intention to interact with another agent

(i.e., social intention). Action observation studies ascribe the neural substrate of this ‘inten-

tional’ component to the putative mirror neuron (pMNS) and the mentalizing (MS) systems.

How social intentions are translated into executed actions, however, has yet to be addr-

essed. We conducted a kinematic and a functional Magnetic Resonance Imaging (fMRI)

study considering a reach-to-grasp movement performed towards the same object posi-

tioned at the same location but with different intentions: passing it to another person (social

condition) or putting it on a concave base (individual condition). Kinematics showed that indi-

vidual and social intentions are characterized by different profiles, with a slower movement

at the level of both the reaching (i.e., arm movement) and the grasping (i.e., hand aperture)

components. fMRI results showed that: (i) distinct voxel pattern activity for the social and the

individual condition are present within the pMNS and the MS during action execution; (ii)

decoding accuracies of regions belonging to the pMNS and the MS are correlated, suggest-

ing that these two systems could interact for the generation of appropriate motor commands.

Results are discussed in terms of motor simulation and inferential processes as part of a

hierarchical generative model for action intention understanding and generation of appropri-

ate motor commands.

Introduction

The way an object is grasped could depend not only on its physical characteristics like size,

shape, texture, fragility and weight [1], but also on the intention driving the action [2, 3].

Using kinematics, several studies have tested whether it is possible to differentiate the reach-

to-grasp motor patterns of human agents acting in isolation from those implemented when
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interacting with others [2]. In particular, the reach-to-grasp movement executed in isolation

has been compared with a similar movement executed in the context of a social exchange. In

one study [4] participants were asked to reach toward, grasp an object and put it in a concave

base (i.e., individual condition), or instead pass it to a co-agent (i.e., social condition). The

authors have shown that the two conditions were characterized by distinct kinematic profiles.

Specifically, during the reach-to-grasp phase, the maximum hand aperture and the amplitude

of peak grip closing velocity were lower for the social than for the single agent condition. In

another study [5], it has been demonstrated that an unexpected human social request changes

dramatically the kinematics of a pre-planned reach-to-grasp action. At a higher level of

abstraction, other reach-to-grasp studies have highlighted specific kinematic patterns for coop-

erative or competitive behavior with respect to individual conditions [6, 7].

Therefore, the findings that social intentions, defined as intentions accomplished in a con-

text of reciprocal interaction (i.e., the social “why” of the action), can be quantified at the level

of the kinematics, contrasts the critical assumptions that social intentions are inaccessible to

perception, as things that cannot be seen [8]. Indeed, social intentions seem to have a visible

face, which is reflected into different, observable, motor patterns [3].

In contrast to the wealth of behavioral data on this issue, little is known on how the motor

system keeps social intentions into account when planning and executing a reach-to-grasp

action at a neural level. Consistent evidence suggests that in humans, like in monkeys, reach-

to-grasp movements involve a wide fronto-parietal network of interconnected areas [1, 9].

Neuroimaging studies in humans, suggested the hypothesis of two dedicated neural circuits

underlying the reaching and the grasping components of the “reach-to-grasp” action [10, 11]:

a dorsomedial pathway consisting of superior parietal areas and the dorsal premotor cortex

(dPM) for the reach component; a dorsolateral pathway consisting of the anterior intraparietal

sulcus (aIPS) and the ventral premotor cortex (vPM) for the grip component [12–15]. This

hypothesis, however, has been recently questioned by multi-voxel pattern analysis (MVPA)

studies, which provided evidence against a segregation of reaching and grasping circuits [16,

17] and suggested the existence of distinct voxel pattern activity within the same areas of the

whole fronto-parietal network, for both reaching and grasping.

To date, it is unclear how the neural circuits underlying the execution of reach-to-grasp

movements are modulated by social intentions, though some indirect evidence comes from

action observation studies. For instance, the observation of grasping movements performed

with social versus individual intents revealed that differential activity within the human puta-

tive mirror neuron system (pMNS) [18–20]—which is characterized by an execution compo-

nent—with specific reference to the inferior frontal gyrus (IFG) and the inferior parietal lobule

(IPL), was stronger during the observation of socially intended relative to individual move-

ments [21]. Similarly, areas belonging to the mentalizing system (MS) [22, 23], such as the

temporo-parietal junction (TPJ), the medial prefrontal cortex (mPFC) and portions of the

middle temporal gyrus (MTG) were more active during the observation of ‘social’ than ‘indi-

vidual’ grasping movements [21]. Moreover, there is evidence that the areas of the MS (e.g.,

the mPFC) are more involved when participants have to infer communicative intentions of

other individuals (e.g., to offer an apple to another person) rather than individual intentions

(e.g., to look at the apple;) [24]. Both the MS and the pMNS can thus be involved in under-

standing social intentions underlying motor behavior, depending on the goal of the social

interaction. Indeed, the pMNS (i.e., the inferior prefrontal-parietal network) seems to be

recruited in a more significant way while observing cooperative interactions (e.g., helping each

other climb a tree) rather than affective interactions (e.g., establish an affective contact, as for

example shaking hands). Differently, the MS (i.e., the mPFC) appeared to be more engaged by

affective interactions rather than cooperative ones [25]. It is commonly believed that the
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pMNS allows to rapidly sense the goal of the perceived other person’s actions, at least for famil-

iar executed actions [26, 27]. The MS, instead, rely on relatively high-level cognitive processes

and may allow us to understand other’s goals and beliefs by constructing a Theory of Mind

(ToM) that can help us to read other’s mind [28]. Some theorists proposed that the two sys-

tems are mutually independent [29], whereas others sustained the idea that the pMNS supports

the MS [30–32]. However, the exact nature of the interaction between these two systems is

unclear and has become one of the major issues in social neuroscience. One hypothesis is that

the pMNS may subserve the low-level (sensorimotor-based) embodied processes that are

involved in the decoding of proximal (motor) intentions [20, 33]. In this view, the pMNS may

provide a neural route for the rapid, pre-reflective understanding of another person’s inten-

tions. In contrast, the MS might be devoted to higher-level reflective inferences, such as the

attribution of complex distal intentions or motives.

In summary, behavioral studies provide consistent evidence that the way we reach and

grasp an object is modulated by the intention driving the action. But, how planning and exe-

cuting a ‘social’ or an ‘individual’ action is encoded at a neural level remains unsolved.

To this purpose, here we performed a (i) behavioral and an (ii) fMRI experiment on the

same group of participants, capitalizing on a previously reported paradigm that has the ability

to distinguish the nature of intentions underlying the action from their kinematic profile [4].

Participants were asked to reach toward, grasp an object and put it in a concave base (i.e., indi-

vidual condition), or pass it to a co-agent (i.e., social condition). The behavioral study allowed

us to confirm whether social and individual intentions could be distinguished from each other

at the level of kinematics. In line with previous findings [4], we expected a delayed and slower

kinematic patterning for the social than for the individual condition. For the fMRI study, we

used MVPA, based on a linear classifier (Support Vector Machine—SVM) in order to explore:

(i) whether and to what extent it is possible to discriminate between social and individual

intentions during the execution of a reach-to-grasp action within the pMNS; (ii) whether and

to what extent the MS conveys information about social intentions; (iii) whether and how the

decoding accuracies from the selected brain areas within the pMNS and the MS are correlated

to each other when intention needs to be operationalized into action. The involvement of both

the pMNS and the MS in conveying information about the social side of the action has been

supported by the aforementioned action observation studies [21, 24, 25]. In line with the previ-

ous neuroimaging evidence and with the unifying hierarchical model for motor control and

social interaction [34], we hypothesized that the pMNS and the MS should play a crucial

role in translating the social intention into an appropriate motor command during action

execution.

Materials and methods

We asked the same group of participants to perform a behavioral and an fMRI experiment. In

the behavioral experiment, participants were tested in a kinematics laboratory equipped with

six video cameras and the kinematics of the action was recorded during the task performance.

In the fMRI experiment, participants were asked to perform the same task (appropriately

translated into a paradigm suitable for fMRI data collection) without a simultaneous recording

of the kinematics. The order of the experiments was adequately counterbalanced across partic-

ipants, for controlling potential task-learning effects.

Ethical statement

Testing was performed in accordance with the ethics approval by the Institutional Review

Board at the University of Padua, in line with the Declaration of Helsinki (Sixth revision,

Decoding social intentions in prehensile action

PLOS ONE | https://doi.org/10.1371/journal.pone.0184008 August 28, 2017 3 / 20

https://doi.org/10.1371/journal.pone.0184008


2008). All participants gave informed written consent before participating in the behavioral

and the fMRI experiments.

Behavioral experiment

Participants. Twenty-three participants (7 males; mean age: 24.8±4.6, age range: 20–42

years) participated in the experiment. All participants were right-handed as measured by the

Edinburgh Handedness Inventory [35]. Participants were recruited through a direct request

within the common Institutional spaces. They participated to both the experiments in the

period [July 2014—December 2015] and received a monetary reimbursement on completion

of the study.

Stimuli and procedure. The stimulus was an object of spherical shape (2 cm diameter)

positioned on a black table in front of the participant at a distance of 30 cm from starting posi-

tion of the hand, along the midsagittal plane. The concave base (12 cm diameter) was posi-

tioned at the participant right side at a 28 cm distance from the target location (see Fig 1, panel

A).

Participants were tested individually in a softly lit room. They were laying supine on a bed,

in order to control postural effects and matching behavioral and fMRI experimental settings

(Fig 1, panel B). Before each trial, the right hand of each participant was resting on a starting

pad (a brown velvet cloth 7 × 6 cm) with the index finger and the thumb gently opposed.

Fig 1. Descriptive example of the experimental setting. Panel (A) shows the distance between the starting position of the hand and the object

to be grasped, and the distance of the object (and the co-agent, i.e., the experimenter) from the concave base. Panel (B) shows a descriptive

example of the participant position, which was identical in the behavioral and the fMRI experiment. Panel (C) shows an example of the reach-to-

grasp movements performed (outside the scanner) in individual and social conditions. Panel (D) shows an example of the reach-to-grasp

movements performed (inside the scanner) in individual and social conditions.

https://doi.org/10.1371/journal.pone.0184008.g001
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Participants were asked to start the action after the presentation of a tone (880 Hz/200 ms).

The action was divided into a reach-to-grasp and a place phase: the social aspect of the action

was manipulated by considering two experimental conditions (Fig 1, panel C): (i) Individual.

Each participant was asked to reach towards, grasp the stimulus (reach-to-grasp phase), and

put it in a concave base (place phase). (ii) Social. Each participant was asked to reach towards,

grasp the stimulus and pass it to another agent whose hand was placed on top of the concave

base (place phase), so that the target location was identical to that of the individual condition

in both phases. The concave base was equated, in terms of concavity and depth, to the hand of

the co-agent as to avoid differences in movement accuracy. The co-agent was seated to the

right side of the table with the hand supine resting on the end-pad. The vision of the partici-

pants was never occluded during the whole experiment.

Participants were informed about the type of trial (individual/social) by visually inspecting

the presence/absence of the hand of the experimenter above the concave base adopted for indi-

vidual trial. After each trial, the experimenter re-positioned the stimulus on the initial target

location. The order of conditions was randomized between participants. Each subject per-

formed 12 trials for each condition.

Analyses were confined to the reach to grasp phase, that is up to the moment the object was

grasped. This was done in order to specifically target the ‘intentional’ component. Grasping

the same object in order to move it or pass it are both intentional actions. The critical differ-

ence is in the intentional component: whereas moving an object contains a purely individual

intention, passing an object to another person necessarily involves a social intention, as shown

in the published literature.

Kinematics recordings. A 3D-Optoelectronic SMART-D system (Bioengineering Tech-

nology and Systems, BTS) was used to track the kinematics of the participant’s right upper

limb. Three light-weight infrared reflective markers (0.25 mm in diameter; BTS) were taped to

the following points: 1) thumb (ulnar side of the nail); 2) index finger (radial side of the nail);

and 3) wrist (dorsodistal aspect of the radial styloid process). Six video cameras (sampling rate

140 Hz) detecting the markers were placed in a semicircle at a distance of 1–1.2 m from the

bed. The camera position, roll angle, zoom, focus, threshold, and brightness were calibrated

and adjusted to optimize marker tracking, followed by static and dynamic calibration. For the

static calibration, a 3-axes frame of 5 markers at known distances from each other was placed

in the middle of the table. For the dynamic calibration, a 3-marker wand was moved through-

out the workspace of interest for 60 s. The spatial resolution of the recording system was 0.3

mm over the field of view. The standard deviation of the reconstruction error was below 0.2

mm for the x-, y-, and z-axes.

Data processing. Each trial was individually checked for correct marker identification,

and the SMART-D Tracker software package (BTS) was used to provide a 3-D reconstruction

of the marker positions as a function of time. Then, data were filtered using a finite impulse

response linear filter (transition band = 1 Hz, sharpening variable = 2, cutoff frequency = 10

Hz). Movement onset was defined as the time at which the tangential velocity of the wrist

marker crossed a threshold (5 mm/s) and remained above it for longer than 500 ms. For the

reach-to-grasp phase, the end of movement was defined as the time at which the hand made

contact with the object and quantified as the time at which the hand opening velocity crossed a

threshold (−5 mm/s) after reaching its minimum value and remained above it for longer than

500 ms. For both social e individual reach-to-grasp tasks, the following kinematic parameters

were extracted for each individual movement using a custom Matlab routine (Matlab 2014b,

The 4 Math Works, Natick, MA, USA): the time interval between movement onset and end of

movement (Movement Time–Mov_T), the time at which the tangential velocity of the wrist

was maximum from movement onset (Time to Peak Wrist Velocity–T_peak_V) and its
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amplitude (Amplitude of Maximum Peak Velocity–Amp_peak_V), the time at which the

acceleration of the wrist was maximum from movement onset (Time to Peak Acceleration–

T_peak_A) and its amplitude (Amplitude of Maximum Peak Acceleration–Amp_peak_A),

and the time at which the deceleration of the wrist was maximum from movement onset

(Time to Peak Deceleration–T_peak_D) and its amplitude(Amplitude of Maximum Peak

Deceleration–Amp_peak_D). Furthermore, a grasp-specific measure was assessed, specifically

the time at which the distance between the 3D coordinates of the thumb and index finger was

maximum, between movement onset and hand contact time (Time to Maximum Grip Aper-

ture–T_max_grip_apert).

Statistical analysis. Statistical analysis was performed using JASP software (Version

0.7.5.61; free downloadable at https://jasp-stats.org/download/). Gaussian distribution was con-

firmed for all kinematic indexes (α-level: p< 0.05, all ps� 0.09), except for the T_peak_A, and

Amp_peak_V (all ps� 0.013). We used the Shapiro–Wilk test [36] allowing the use of paramet-

ric statistics for the major part of the kinematic indexes. For the two non-normally distributed

indexes (i.e., T_peak_A, and Amp_peak_V), we performed non-parametric statistics, using the

Wilcoxon signed rank test. The mean value for each kinematic parameter of interest was deter-

mined based on 12 individual observations for each participant and then entered into separate

paired-samples t-tests for comparing social versus individual reach-to-grasp conditions.

fMRI experiment

Participants. The same participants who took part in the behavioral experiment were

tested also in the fMRI experiment.

Stimuli, procedure, and experimental design. The stimulus, task and procedures were

identical to those adopted for the behavioral experiment; timing and number of trials were

modified in order to make the paradigm suitable for fMRI data collection. Participants were

laying in the scanner bore with their head tilted at an approximate angle of 30˚, supported by a

foam wedge permitting direct viewing of the stimulus, and the co-agent arm. The co-agent was

standing on the right side of the participant nearby the bore of the scanner and remained pres-

ent for the entire experimental session (see Fig 1, panel D).

Participants were requested to perform the same action toward the stimulus, which was

decomposed into two phases: i) reach-to-grasp phase, in which participants were instructed to

reach and grasp the object and keep the hand still on the object until an acoustic go signal indi-

cated the beginning of the subsequent stage; ii) place phase, in which participants were asked

to put the grasped object into a concave base (individual condition) or to pass it to a co-agent

(social condition), whose hand was on top of the concave base, positioned on the right side of

the participant. The two phases were separated by a constant temporal interval of 2 s. Each

trial started with a sound (880 Hz/200 ms) delivered by pneumatic MR-compatible head-

phones, and participants were instructed to start their action toward the stimulus only when

the sound was delivered. For each experimental condition, fifty trials were administered,

divided into two functional runs. As for the behavioral experiment, the fMRI analyses were

confined to the reach-to-grasp phase. Participants were informed about the type of trial (social

vs individual) by visually inspecting the presence/absence of the hand of the experimenter

above the concave base adopted for individual trial.

The experiment was conducted by using an event-related design, with Inter Stimulus Inter-

val (ISI) varying from 3 to 8 s with a “long exponential” probability distribution [37]. ISIs dis-

tribution was fully randomized across trials in each run.

Data acquisition and preprocessing. The experiment was carried out on a whole body

1.5 T scanner (Siemens Avanto) equipped with a standard Siemens eight channels coil.
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Functional images were acquired with a gradient-echo, echo-planar (EPI) T2�-weighted

sequence in order to measure blood oxygenation level-dependent (BOLD) contrast throughout

the whole brain (37 contiguous axial slices, ascending interleaved sequence, 56 × 64 voxels, 3.5

mm × 3.5 mm × 4.0 mm resolution, FOV = 196 mm × 224 mm, flip angle = 90˚, TE = 49 ms).

Volumes were acquired continuously for each run with a repetition time (TR) of 3 s; 165 vol-

umes were collected in each single scanning run, resulting in functional runs of 8 min and 15 s

duration (16 min and 30 s of acquisition time in all). High-resolution T1-weighted image were

acquired for each subject (3D MP-RAGE, 176 axial slices, no interslice gap, data matrix 256 ×
256, 1 mm isotropic voxels, TR = 1900 ms, TE = 2.91 ms, flip angle = 15˚). Data preprocess-

ing was performed using SPM12 (Statistical Parametric Mapping, Wellcome Institute of

Cognitive Neurology, London, UK) implemented in MATLAB 7.5.0 environment (Math-

Works, Natick, MA, USA). ArtRepair toolbox (ArtRepair software Package, for SPM12) was

adopted to correct for possible images corruption due to signal spikes induced by head

motion. Motion correction was carried out by realigning data. Structural images were seg-

mented and subsequently the image of grey matter was co-registered with all the functional

images. Structural and functional images were then normalized adopting the template pro-

vided by the Montréal Neurological Institute (MNI) implemented in SPM12. No spatial

smoothing was applied for classification purposes, because it introduces a certain degree of

inter-voxel correlation, and may cause the loss of information useful for separating adjacent

but functionally different brain areas.

Region of interest specification. To avoid any circularity issue in regions of interest

(ROI) selection [38], we did not rely on the functional data but selected four ROIs that were

defined purely on anatomical grounds (using the SPM WFU pick atlas toolbox and the Talair-

ach Daemon (TD) anatomical labels (gyral anatomy) atlas, transformed in MNI space; http://

www.fil.ion.ucl.ac.uk/spm/ext/#WFU_PickAtlas).

We anatomically selected frontoparietal areas belonging to the pMNS and the MS, focusing

on previous neuroimaging findings on action observation [9], showing a BOLD signal increase

in areas of the pMNS and the MS (e.g., IFG, IPL, mPFC, and MTG) during social interaction

with respect to individual condition. Thus, we bilaterally selected the IFG, the IPL, the mPFC,

and the MTG. For a better delineation of the mPFC, we used the Automated Anatomical

Labeling (AAL) atlas, selecting the Frontal_Sup_Medial regions.

To test the classifier performance outside of our network of ROIs, we defined two addi-

tional non-brain control ROIs in which no BOLD signal was expected and thus no consistent

classification performance should be possible (see [39], for a similar methodological proce-

dure). A 5 mm3 cubic region was selected within participants’ right ventricle (centroid MNI

coordinates: [10, –12, 22]), plus a second 5 mm3 cubic ROI just outside the skull of the brain,

near the right visual cortex region (centroid MNI coordinates: [56, –90, –10]). We anticipate

that the pattern classification did not reveal any significant decoding in these two areas (i.e.,

right ventricle: M = .5 ± .01 SEM, t = -.16; outside the brain: M = .49 ± .02 SEM, t = -0.54).

Moreover, we considered the bilateral Posterior Cingulate Cortex (PCC) as a cortical con-

trol ROI. This area is particularly interesting because although its activity is associated with

social cognitive processing such as self-reflection it seems not to be involved in the kind of

social processing at stake here. In a recent review [40], the authors suggested that the PCC

activity plays a key role in facing with moral issues regarding ourselves or others, or guilt that

may come as a consequence of our actions. Crucially, Johnson and collaborators [41], found a

dissociation between the medial prefrontal cortex (mPFC–here considered as part of the men-

talising system), and the PCC: the activity of the mPFC was more associated with instrumental

or agentic self-reflection (e.g., hopes and aspirations), whereas PCC activity was more associ-

ated with experiential self-reflection (e.g., duties and obligations). Furthermore, in their mini-
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review on the neural bases of mentalizing [22], the authors reported that the mPFC might be

concerned with anticipating what a person is going to think and feel and thereby predict what

they are going to do. Finally, the role played by the dorsal mPFC in executive inhibition, self-

other distinction, prediction under uncertainty, and intention-related processing, has been

reviewed in [42], where the authors argued that the involvement of the dorsal mPFC in these

processes may explain why it is preferentially activated when people mentalize others’ internal

states. In light of this literature, we reasoned that the PCC could be a good cortical control

ROIs for our study, because it is engaged in social situations that are different from that

induced by our social interaction task. We anticipate that decoding results showed that the

mean decoding accuracy (averaged across participants) from bilateral Posterior Cingulate Cor-

tex (PCC) was M = 0.52 +/- 0.02 SE. The one tailed t-test (t(22) = 1.51, p = 0.07) showed that it

was not possible to discriminate between individual and social intention from the voxel pat-

tern activity within the PCC control ROI.

Classifier decoding. After ROI extraction, the voxel time series were pre-processed

through a series of commonly used steps: linear detrending, temporal filtering, and standardi-

zation. For every participant, each of the two runs was processed separately. Linear trends in

each time series were removed, and a high-pass filter (0.01 Hz) was applied in order to remove

low frequency drift in the signal. Then, time series were standardized in order to have zero

mean and standard deviation one.

To investigate to what extent each selected ROI was involved in encoding the social inten-

tion of the action occurring during the first segment of the action we performed a decoding

analysis using the fMRI signal within a temporal window of [3–6 s] from the onset of each

trial, which better approximates the BOLD peak of the reach-to-grasp phase of the action.

We used Support Vector Machine (SVM) with linear kernel (using Matlab functions

“svmtrain” and “svmclassify”) as multivoxel pattern classifier for discriminating between social

vs. individual action intention. For each participant, we trained a linear classifier on the voxels

within each selected ROI. The target condition was coded in a way to have a vector Ti �{+1,

−1}N, where i refers to the sample and N is the number of samples relative to both conditions

in the classification (e.g., N = 100), in which all the samples corresponding to one target condi-

tion (i.e., Social) were labeled with +1, whereas all the other samples (i.e., Individual) with −1.

The value of the regularization constant C was fixed to 1 (i.e., the default value). Cross-valida-

tion was used to estimate the test generalization performance. The SVM classifier was trained

on the data set using a modified version of leave-one-out cross-validation, in order to maintain

a balanced set of training and test examples. At each step of the cross-validation loop, two sam-

ples (one for each condition) were excluded from the training set and used to test generaliza-

tion performance (see [43, 17]). Classifier accuracy, computed across the entire cross-

validation loop on the test set, was used as statistical measures of binary classification.

Previous studies showed that t-test group analysis, with respect to nonparametric randomi-

zation tests, is a rather conservative estimate of significant decoding accuracy [39]). Therefore,

we conducted a set of one-tailed t-tests, one for each ROI, on the classifier accuracy (against

the chance level of 50%) to obtain group statistics regarding the discrimination between the

two conditions included in each classification.

All further analyses on the classifier accuracies were restricted to the ROIs from which it

was possible to significantly discriminate between social and individual intention. Crucially, in

order to investigate the role of the different areas within the pMNS and the MS in distinguish-

ing between individual and social intention, we performed a Repeated Measures Analysis Of

Variance (RM-ANOVA) on the mean classifier accuracies, considering the ROI as a within

subject factor.
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Furthermore, in order to assess whether and to what extent the selected areas cooperate or

are independent, we performed a correlation analysis, using Pearson correlation, among the

decoding accuracies of the ROIs. We used false discovery rate (FDR) for multiple comparisons

correction.

Results

Behavioral experiment

A series of paired t-tests on the kinematics measures (see methods section for details) revealed

that the kind of intention driving the action had the ability to modulate kinematics (all

ts� 9.06; see Table 1 and Fig 2). Specifically, there was an increase in total movement time

together with a delayed occurrence of the time to peak velocity, acceleration and deceleration

for the social with respect to the individual condition. In addition, also the amplitude for these

peaks was lower for the social than the individual condition. Finally, the time of the maximum

hand aperture was significantly greater when the action was performed with a social than an

individual intent. Single subject kinematic parameters can be found in S1 Table (social condi-

tion) and S2 Table (individual condition).

Altogether these findings suggest that the social action calls for a slower and delayed move-

ment at the level of both the reaching (i.e., arm movement) and the grasping (i.e., hand aper-

ture) components, indexing a more careful movement toward the object, with the intention of

positioning it in the co-agent’s hand (i.e., another human agent), with respect to the concave

base (i.e., an object).

fMRI experiment

Decoding accuracies. To investigate whether the voxel pattern activity within the consid-

ered pMNS and MS could convey information regarding the kind of intention motivating a

reach-to-grasp action, we applied a linear SMV classifier to each a priori anatomically selected

Table 1. T statistics on the movement time and kinematic indexes between social and individual conditions during the reach-to-grasp action

phase.

Paired Samples T-Test (Student’s T-Test)

95% Confidence Interval

t

df = 22

p Mean Difference SE

Difference

Cohen’s d Lower Upper

Mov_T 19.12 < .001 84.13 4.40 799.2 75.00 93.26

T_Peak V 11.31 < .001 90.30 7.99 391.0 73.74 106.87

Amp_peak_A -10.93 < .001 -1429.30 130.79 5629.2 -1700.54 -1158.07

Amp_peak_D -9.06 < .001 -1054.74 116.41 5771.0 -1296.16 -813.31

Paired Samples T-Test (Wilcoxon Signed-Rank Test)

95% Confidence Interval

W p Mean Difference SE

Difference

Cohen’s d Lower Upper

T_ Peak_A 276.00 < .001 77.00 6.806 282.7 64.50 90.00

Amp_peak_V 0.00 < .001 -172.45 16.295 581.0 -201.00 -146.00

Mov_T = Movement Time, T_peak_V = Time to Peak Wrist Velocity, Amp_peak_A = Amplitude of Maximum Peak Acceleration, Amp_peak_D = Amplitude

of Maximum Peak Deceleration, T_max_grip_apert = Time to Maximum Grip Aperture, T_peak_A = Time to Peak Acceleration, Amp_peak_V = Amplitude

of Maximum Peak Velocity.

https://doi.org/10.1371/journal.pone.0184008.t001
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ROI. Preliminary analyses performed on each ROI and hemisphere did not show evidence on

hemispheric differences across all the selected ROIs (see Table 2).

We had no a priory hypothesis about a major involvement of one hemisphere over the

other in distinguishing between social and individual action. Thus, for each of the selected

ROI, we pulled together the voxels belonging to both hemispheres. Classifier results showed

that it was possible to decode the social intention of the action from all the selected ROIs (all

ts� 5.3; see, and Fig 3, panel B, and Table 3), but not, as anticipated, from the control ROIs (ts
� -.54).

Interaction amongst the mirror and the mentalizing systems. We performed an RM-A-

NOVA on the mean classifier accuracies, considering the ROI (4 levels) as a within-subjects

factor. Results showed no main effects of the ROI (F(1.99, 43.76) = .13, p = .88, Greenhouse-

Geisser corrected for sphericity). Thus, no significant differences among the decoding accura-

cies of the selected areas emerged.

Finally, we investigated whether and to what extent the decoding accuracies for the selected

areas correlated to each other. After FDR correction for multiple comparisons, results showed

that the decoding accuracy from the PFC was significantly correlated with that from the IFG

(R = .62, p = .001). In summary, correlation results indicate that the mPFC and the IFG do

interact. Specifically, the higher was the decoding accuracy from the mPFC, the higher was

that from the IFG (see Fig 3, panel C).

Fig 2. Behavioral results. Movement time and kinematic values showing all the statistically significant

differences between the social vs. the individual condition, during the reach-to-grasp phase of the action.

Error bars indicate one standard error of the mean. Mov_T = Movement Time, T_peak_V = Time to Peak

Wrist Velocity, Amp_peak_V = Amplitude of Maximum Peak Velocity, T_peak_A = Time to Peak Acceleration,

Amp_peak_A = Amplitude of Maximum Peak Acceleration, T_peak_D = Time to Peak Deceleration,

Amp_peak_D = Amplitude of Maximum Peak Deceleration T_max_grip_apert = Time to Maximum Grip

Aperture.

https://doi.org/10.1371/journal.pone.0184008.g002

Table 2. T statistics on the decoding accuracy from each ROI between left and right hemisphere.

95% Confidence Interval

ROI t df p Mean Difference SE Difference Cohen’s d Lower Upper

IFG (L vs. R) .41 22 .69 .01 .02 - 4.26 - .04 .06

IPL (L vs. R) - .69 22 .5 - .01 .02 - 5.66 - .05 .03

MTG (L vs. R) .03 22 .98 4.348e -4 .02 - 6.45 - .04 .04

mPFC (L vs. R) - .72 22 .48 - .01 .01 - 7.99 - .04 .02

L = Left hemisphere; R = Right hemisphere.

https://doi.org/10.1371/journal.pone.0184008.t002
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Fig 3. fMRI decoding results. Panel (A) shows regions of interest (ROIs) used in the multivariate classifier analyses, transparently

superimposed on top, lateral and mesial view of a standard template using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) [44]. Panel

(B) shows the mean linear SVM classification accuracy for discriminating between social and individual conditions of the reach-to grasp

action phase as a function of the involved bilateral ROIs. Error bars indicate one standard error of the mean. All decoding accuracies are

significantly greater than 0.5 (chance level = 50%; p < .001, after FDR correction for multiple comparisons). Panel (C) shows the significant

correlation (p� .001, after FDR correction for multiple comparisons) between the decoding accuracy of the IFG (pMNS) and that of the

mPFC (MS). The greater was the discriminant information about the social intention conveyed by the IFG, the greater was that conveyed

by the mPFC. Error bars indicate one standard error of the mean.

https://doi.org/10.1371/journal.pone.0184008.g003

Table 3. T statistics (one-tailed one sample t-test) on the decoding accuracy of the selected ROIs.

95% Confidence Interval

ROI t df p Mean Difference Cohen’s d Lower Upper

IFG 7.12 22 < .001 .09 1.48 .57 1

IPL 5.77 22 < .001 .09 1.20 .56 1

MTG 7.93 22 < .001 .09 1.65 .57 1

mPFC 5.30 22 < .001 .08 1.12 .56 1

https://doi.org/10.1371/journal.pone.0184008.t003
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Discussion

We set out to investigate the role of intention (social vs. individual) in modulating the kine-

matics of the reach-to-grasp action and the neural correlates of these effects. We asked the

same group of participants to perform two separate experiments capitalizing on the same para-

digm. In the behavioral experiment we focused on the effect of action intention on the kine-

matics of reaching and grasping movements performed for moving an object from one spatial

location to another (i.e., a concave base or the hand of a co-agent). In the fMRI experiment,

we investigated whether regions included in the pMNS network could discriminate between

social and individual intention, during the reach-to-grasp phase of the action. As a secondary

hypothesis, we investigated whether brain areas belonging to the MS could also play a role in

encoding the social intention during the execution of the reach-to-grasp action. Finally, we

explored the hypothesis of a possible interaction between the two systems.

Decoding social intentions from kinematics

Kinematical results showed that social intention (i.e., the intention to pass the object to be

grasped to the hand of a co-agent) influences action kinematics. Specifically, the reach-to-

grasp movement was slower and the kinematics more delayed in the social than the individual

condition, as indexed by all the kinematic parameters characterizing both the reaching and the

grasping phases. We argue that a slower movement may stand for the need to adopt a more

careful and accurate approach when passing the object to another person. Overall, our behav-

ioral results confirm the role of social intention in shaping the kinematics of the action. These

results replicate and extend the findings of a previous study [4] to other kinematics measures,

and are in line with the idea of a more gentle modulation of hand shaping with the social

nature of the action goal [7]. Crucially, here we showed that significant differences emerged

between the motor patterns in social and individual conditions, despite the similarity (in terms

of experimental setting) of the reach-to-grasp phase of the action for both conditions. Hence,

the findings that social intentions can be quantified at the level of action kinematics support

the fact that social intentions are accessible to perception [45] and are characterized by distinc-

tive motor patterns [2].

Decoding social intentions from fMRI data

Classifier results showed that it was possible to discriminate between social and individual con-

ditions from all the selected ROIs of both the pMNS and the MS. In line with the accuracies

reported in fMRI studies in the domain of motor control (e.g., [39]) the significant level of

accuracy ranged between 58–60%. This low range could be related to the noise present in the

fMRI signal and to the fact that no spatial smoothing was performed before the decoding anal-

ysis. Spatial smoothing is commonly applied to fMRI data before the conventional univariate

analysis (i.e., the General Linear Model–GLM) because it increases the signal-to-noise ratio.

When applying multivariate decoding procedures, however, the use of spatial smoothing is

not recommended: it could be dangerous, because it might cancel out differences between

anatomically adjacent, but functionally distinct, brain areas. Additionally, a possible lack of

functional specificity of the selected ROIs could have contributed to the resulting low accura-

cies. In [46], the authors suggested that decoding from voxel pattern activity within purely ana-

tomical (and large) ROIs could be biased towards a small accuracy, at least in those cases in

which only a small percentage of voxel activity is informative for the classifier. Multivariate

analysis of fMRI data, however, is more sensitive to distributed coding of information with

respect to univariate analysis [47]. The fact that our accuracy values are in line with those
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reported in other fMRI studies on the motor control, and that null results were found for our

non-brain and cortical control ROIs, support the validity of our findings.

On average, the MS and the pMNS were conveying a similar amount of discriminating

information. However, different dynamics characterized the correlations among their decod-

ing accuracies.

The putative mirror neuron system (pMNS). Concerning the pMNS, our results provide

evidence of a direct involvement of these areas in mediating the social intention underlying

the execution of the action: all regions included in the network (i.e., bilateral IFG and IPL)

revealed distinct patterns of activity for the social and the individual condition. Only the first

phase of the action (i.e., the reach-to-grasp phase) was considered in the analysis. Thus, despite

the identical physical experimental setting of the reach-to-grasp phase during social and indi-

vidual conditions (i.e., the object to be grasped was the same and was located at the same posi-

tion), the intention underlying the action (i.e., individual vs social component) appeared to be

represented by distinct voxel pattern activity. In other words, actions performed with and

without a final social aim appeared to be coded differently within the pMNS. This is a novel

finding that could answer a controversial question concerning the role of the pMNS in repre-

senting the social intentions during the execution of a social action.

The fact that these areas of the pMNS were encoding the action intention through distinct

patterns of activity highlights their crucial role in mediating the construction of the final

motor code for the appropriate execution of the action. This contribution becomes evident

also when considering the difference between the kinematic profile characterizing the two con-

ditions. Our findings are in line with other neuroimaging results investigating the neural cor-

relates of joint action execution, and showing that the coordination of two agents for the

achievement of a common goal recruits regions of the pMNS [48–49]. Due to a close link

between perception and action provided by the pMNS brain regions, an agent could use simu-

lation for predicting the intentions and consequences of actions performed by the co-agent, in

order to adjust his own action planning and then successfully achieve the joint goal. In our

experiment, the co-agent was always present and the participants were informed regarding the

kind of action to be executed by visually inspecting the presence (i.e., social condition) or the

absence (i.e., individual condition) of the co-agent’s hand. We argue that the pMNS could

provide an automatic representation of an action based on the visual state of the other, by

translating the perceived action (i.e., the hand movement) into motor and somatosensory

representation of “how” and “what” the co-agent has done, in order to integrate this informa-

tion into an appropriate common motor code. This argumentation is in line with the predic-

tive coding account [50] for understanding the function of the mirror system: the most

probable causes of an observed action can be inferred by minimizing the prediction error at

each level of the cortical hierarchy involved during action observation.

For the execution of the reach-to-grasp action with a social intention, however, the pMNS

might be only one component of a hierarchical system for abstracting the intention of the

action (i.e., social vs. individual) and integrating it into appropriate motor commands [34, 51].

The metalizing system (MS). The social nature of the intention underlying the reach-to-

grasp action appeared to be decoded also within the MS, considered as responsible for the

attribution of goals and intentions [51, 52]. During action observation, the MS appeared to

become active when observers reflected on the intentionality of an observed action [53–55].

This suggests that MS regions contribute to the analysis of other people’s actions when the

viewer decides to reflect upon their goals, intentions and beliefs [30, 51]. But why is the MS

recruited for the execution of socially intended movements? Evidence from studying gaze-

based social interactions suggests that activity in areas concerned with mentalizing is evident

when participants follow the gaze of another person to engage in joint attention [56]. However,
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no study so far has elucidated the possibility that social information engaging the mentalizing

system is conveyed as to influence movement kinematics. Our data on action execution may

say something about this issue. We argue that the MS could provide a representation of an

action intention by continuously monitoring both the self and the co-agent and that the nature

of such process may be the integration of low-level embodied mechanisms within higher level

inference-based mentalizing. This may serve to integrate mentalizing kind of information with

that coming from low-level embodied processes, into an appropriate common motor code.

Indeed, there is empirical evidence on the existence of shared neural circuits for mentalizing

about the self and others [57]. Brain regions that are part of the mentalizing network are specif-

ically engaged when we reflect about intentions [55].

Here, we suggest that the MS (in concert with the pMNS) may have the ability to inform

regions responsible for shaping action kinematics regarding the ‘social’ intent motivating the

action. Another possible role of the MS system might be to monitor, during the on-line control

phase, that the social side of action is maintained throughout the movement.

Correlation amongst the mirror and the mentalizing systems. In order to test the possi-

ble interactions among the areas of the two systems (the pMNS, and the MS) we investigated

possible differences and correlations among their decoding accuracies. Our results showed

that the selected areas are equally involved in representing the social intention of the action.

Further analyses on decoding accuracies showed a different correlation dynamics among the

two circuits: the decoding accuracy from the mPFC (MS) was positively correlated to that

from the IFG (pMNS): the more informative was the activity pattern encoding action intention

within the mPFC, the more informative was that within the IFG. These results confirm the

idea that the pMNS and the MS can work in concert [31, 32, 57]. The pMNS might subserve

the MS that, in turn, might integrate the representational code provided by the pMNS with its

own in order to enrich the motor code with the information concerned with the “what” and

the social “why” of an action. Indeed, studies focusing on action observation have shown that

the pMNS and the MS do integrate [51]: the mirror system could translate the perceived action

into motor and somatosensory representation [58–60] of how and what others do. Such simu-

lated representation could be later interrogated by the MS to ‘reflect’ on why other people act

[30]. Action observation and execution could be two faces of the same coin. Indeed, increasing

the sensitivity of the fMRI data analysis (i.e., using a single subject analysis and no spatial

smoothing), it has been shown that during the observation and execution of hand actions, the

classical pMNS areas (i.e., ventral PM cortex and rostral IPL) together with additional brain

areas like the MTG, contain “shared voxels” between execution and observation [61].

Hence, our findings are consistent with the idea that motor simulation and mentalizing

(i.e., inferential mechanisms) are not mutually exclusive, but play complementary roles in

understanding the intentions of other agents around us. Whether the role of the pMNS is sub-

ordinate to that of the MS is not clear. One hypothesis is that the pMNS may allow a rapid and

pre-reflective understanding of another person’s intentions through sensorimotor processes,

whereas the MS may allow higher-level reflective inferences, such as the attribution of complex

distal intentions. Although a meta-analysis of functional MRI data suggested that these two

systems are relatively independent [32], data from a number of activation or effective connec-

tivity functional MRI studies [57, 62] do not support this view. The two systems may interact

and cooperate.

Whether these two systems interact at a horizontal or vertical level within the cortical hierar-

chy requires further investigation. The unifying framework for motor control and social inter-

action [34] assumes a vertical hierarchy in the organization of movements with higher levels

representing goals and intentions and lower levels representing kinematics and muscle-group

selection. In this proposed hierarchical model it is possible to have several representations of the
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observed action ranging from the low-level kinematics of movement, to the representation of

sequence of actions (at the intermediate level), to the task goal representation (i.e., the action

intention) at the highest level. This model could be used in a forward and inverse way: the for-

ward model can learn both elementary movements (lower level) and their sequential order

(intermediate level) through sensorimotor learning; then, progressively higher levels could

learn more abstract representations with the higher level learning task goals (i.e., intentions).

Later, in the inverse model, the activation of a high-level goal, or intention, would progressively

activate lower levels representations in such a way to generate the appropriate motor commands

(at the lower level) to perform the required action. It is not clear, however, at which level of the

hierarchical generative model the pMNS and the MS could interact. Neuroimaging studies

based on effective connectivity, Diffusion Magnetic Resonance Imaging, and artificial simula-

tions based on hierarchical generative models should help to understand how these two neural

systems interact for recognizing the action intention and efficiently generating an appropriate

motor command.

Overall, our findings challenge current theories in social cognition, blending motor simula-

tion and inferential processes as part of the same hierarchical generative model for action’s

intention understanding and generation of appropriate motor commands. Our findings sug-

gest that the crosstalk between the MS and the pMNS, could be a crucial step in mediating the

transition from intention understanding to action execution during social interactions, and

could be a valuable insight for understanding which mechanism is impaired in disorders that

show deficits in social cognition, such as autism spectrum disorder.

Strength of the study and steps forward

The present study investigated, for the first time, how the social intention is translated into

executed prehensile actions testing the same human subject population at the behavioral and

neural level. Furthermore, it is the first study using MVPA for assessing whether it is possible

to decode social intention from voxel pattern activity of brain areas within the pMNS and the

MS. However, some aspects should be considered for future studies.

Firstly, in our experimental paradigm, our “individual” condition correspond to the "pas-

sive observer" condition as in [4], where participants performed the reach-to-grasp action with

the intention to place the object in a concave base while the co-agent was visible to their right.

Our “social” condition was their “social” condition, where participants performed the reach-

to-grasp action with the intent to interact with the co-agent. Becchio and colleagues [4] dem-

onstrated that there is no difference (at the kinematical level) between "single agent" and "pas-

sive observer" condition, and claimed that the mere presence of a non- interacting co-agent do

not modulate the kinematics of the action, whereas only the interaction between the co-agent

and the participant, do influence the action kinematics. However, future studies could con-

sider adding another control condition in order to strengthen the social aspect of the action.

For example the use of a robotic hand in a control condition could allow the exploration of

whether distinct patterns of voxel activity emerge within the pMNS and the MS when interact-

ing with a robotic vs. a human hand. Indeed, at a behavioral level, Sartori and colleagues [5]

investigated the influence of an unexpected social request on the kinematics of a pre-planned

action, and showed no kinematics modulation when the perturbation was caused by the

robotic agent or by a human agent performing a non-social gesture. Only when the perturba-

tion was characterized by a social request involving a human agent, the kinematics of the

action directed toward the target changed.

Furthermore, in order to better disentangle whether the different findings found for ‘to

place’ and ‘to give’ are determined by the presence of a different social intention and not only
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because they are two actions performed to reach two different goals with different accuracy

requirements, future studies should include a control condition in which the accuracy for the

two goals is equated.

Finally, in our study the visibility of the co-agent was not completely identical during

the kinematical and the fMRI experiments. Although the co-agent was always present at

the right side of the participant (like in the behavioral experiment), his visibility was

reduced by the physical structure of the scanner, due to differences between a setting hav-

ing an open view (e.g., in kinematical setting), and being in a tube (e.g., in the fMRI set-

ting). However, the co-agent’s arm was always visible by each participant laying supine in

the fMRI scanner. We acknowledge this empirical limitation, and propose that future com-

bined kinematics-fMRI studies should decrease the visibility of the co-agent also in the

kinematical setting.

Conclusions

This is the first study investigating through MVPA how the social intention is translated

into executed actions, and provides novel insights into the nature of social interactions.

Overall, our results showed that social intention shapes the kinematics of the action in

terms of a more careful patterning when we interact with another person rather than when

performing the same action alone. Critically, we analyzed our kinematical and neuroimag-

ing data only during the reach-to-grasp phase of the action, which allowed us to compare

the social and the individual condition in physically identical experimental setting (the

object to be grasped was the same and it was positioned at the same location in both condi-

tions). This was done in order to specifically target the nature (individual/social) of the

intentional component of the action. Neuroimaging results showed that areas belonging to

the pMNS and the MS are involved in encoding different representational codes for the

social and the individual intention of the action. In particular the mPCF could interact with

the IFG, through a translation of the simulated action code provided by the IFG (i.e., the

“what” and the “how” of the action) into an action code equipped with a social meaning

(i.e., the social “why” of the action) that could eventually be translated into an appropriate

motor command. Our results, even if correlational in nature, fit well with the hierarchical

unifying framework for motor control and social interactions of Wolpert and colleagues

[34]. Future studies using structural, functional and effective connectivity, as well as simula-

tions based on hierarchical generative models should help to understand how these two

neural systems interact for recognizing the action intention and for efficiently generating

an appropriate motor command.

To conclude, examining how the decoding of intentions is modulated by the degree to

which healthy humans perceive themselves as participants of an ongoing interaction is of cru-

cial importance in social cognition. Our results may help to shed light on the putatively com-

plementary roles of mirror and mentalizing networks in situations that better approximate

those encountered in daily life.
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