613 research outputs found

    Successfully carrying out complex learning tasks through guiding teams’ qualitative and quantitative reasoning

    Get PDF
    Slof, B., Erkens, G., Kirschner, P. A., Janssen, J., & Jaspers, J. G. M. (2012). Successfully carrying out complex learning tasks through guiding teams' qualitative and quantitative reasoning. Instructional Science, 40, 623-643. DOI: 10.1007/s11251-011-9185-2This study investigated whether and how scripting learners’ use of representational tools in a Computer Supported Collaborative Learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely defining the problem and proposing multiple solutions, followed by determining suitability of the solutions and coming to a definitive problem solution. Two tools facilitated construction of causal or mathematical domain representations. Each was suited for carrying out the part-task demands of one specific problem-solving phase; the causal was matched to problem-solution phase and the mathematical (in the form of a simulation) to the solution-evaluation phase. Teams of learners (N = 34, Mean age = 15.7) in four experimental conditions carried out the part-tasks in a predefined order, but differed in the representational tool/tools they received during the collaborative problem-solving process. The tools were matched, partly matched or mismatched to the part-task demands. Teams in the causal-only (n = 9) and simulation-only (n = 9) conditions received either a causal or a simulation tool and were, thus, supported in only one of the two part-tasks. Teams in the simulation-causal condition (n = 9) received both tools, but in an order that was mismatched to the part-task demands. Teams in the causal-simulation condition (n = 7) received both tools in an order that matched the part-task demands of the problem phases. Results revealed that teams receiving part-task congruent tools constructed more task-appropriate representations and had more elaborated discussions about the domain. As a consequence, those teams performed better on the complex learning-task

    Fostering complex learning-task performance through scripting student use of computer supported representational tools

    Get PDF
    This study investigated whether scripting student use of computer supported representational tools fostered students’ collaborative performance of a complex business-economics problem. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely (1) determining core concepts, (2) proposing multiple solutions, and (3) coming to a final solution. The representational tools facilitated students in constructing specific representations of the domain (i.e., conceptual, causal, or mathematical) and were each suited for carrying out the part-task demands of a specific phase. Student groups in four experimental conditions had to carry out all part-tasks in a predefined order, but differed in the representational tool(s) they received during their collaborative problem-solving process. In three mismatch conditions, student groups received either a conceptual, causal, or simulation representational tool which supported them in only carrying out one of the three part-tasks. In the match condition, student groups received the three representational tools in the specified order, each matching the part-task demands of a specific problem phase. The results revealed that student groups in the match condition constructed more task-appropriate representations and had more elaborated and meaningful discussions about the domain. As a consequence, those student groups performed better on the complex learning-task. However, similar results were obtained by student groups who only received a representational tool for constructing causal representations for all part-tasks

    Design and effects of representational scripting on group performance

    Get PDF
    This study investigated the effects of representational scripting on non-expert student learning while collaboratively carrying out complex learning-tasks. The premise underlying this research is that effective cognitive activities would be evoked when complex learning-tasks are structured into phase-related part-tasks and are supported by providing students with part-task-congruent external representations for each phase; representational scripting. It was hypothesized that this approach would lead to increased individual learning and better complex learning-task performance. In groups, 96 secondary education students worked on a complex business-economics problem in four experimental conditions, namely one condition in which the groups received representations that were part-task-congruent for all three phases and three conditions in which the groups received one of these representations for all three phases (i.e., part-task-incongruent for two of the three phases). The results indicate that groups receiving part-task-congruent representations in a phased order performed better on the complex learning-task, though this did not result in increased individual learning

    Fostering complex learning-task performance through scripting student use of computer supported representational tools

    Get PDF
    Slof, B., Erkens, G., Kirschner, P. A., Janssen, J., & Phielix, C. (2010). Fostering complex learning-task performance through scripting student use of computer supported representational tools. Computers & Education, 55(4), 1707-1720.This study investigated whether scripting student use of computer supported representational tools fostered students’ collaborative performance of a complex business-economics problem. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely (1) determining core concepts, (2) proposing multiple solutions, and (3) coming to a final solution. The representational tools facilitated students in constructing specific representations of the domain (i.e., conceptual, causal, or mathematical) and were each suited for carrying out the part-task demands of a specific phase. Student groups in four experimental conditions had to carry out all part-tasks in a predefined order, but differed in the representational tool(s) they received during their collaborative problem-solving process. In three mismatch conditions, student groups received either a conceptual, causal, or simulation representational tool which supported them in only carrying out one of the three part-tasks. In the match condition, student groups received the three representational tools in the specified order, each matching the part-task demands of a specific problem phase. The results revealed that student groups in the match condition constructed more task-appropriate representations and had more elaborated and meaningful discussions about the domain. As a consequence, those student groups performed better on the complex learning-task. However, similar results were obtained by student groups who only received a representational tool for constructing causal representations for all part-tasks

    Toward a script theory of guidance in computer-supported collaborative learning

    Get PDF
    This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions

    Explorations in graphical argumentation:The use of external representations of argumentation in collaborative problem solving.

    Get PDF
    Van Bruggen, J. M. (2003). Explorations in graphical argumentation The use of external representations of argumentation in collaborative problem solving. Unpublished doctoral dissertation, Open University of the Netherlands. The Netherlands

    Guiding students’ online complex learning-task behavior through representational scripting

    Get PDF
    Slof, B., Erkens, G., Kirschner, P. A., Jaspers, J. G. M., & Janssen, J. (2010). Guiding students’ online complex learning-task behavior through representational scripting. Computers in Human Behavior, 26(5), 927-939. doi:10.1016/j.chb.2010.02.2007This study investigated the effects of representational scripting on students’ collaborative performance of a complex business-economics problem. The scripting structured the learning-task into three part-tasks, namely (1) determining core concepts and relating them to the problem, (2) proposing multiple solutions to the problem, and (3) coming to a final solution to the problem. Each provided representation (i.e., conceptual, causal, or simulation) was suited for carrying out a specific part-task. It was hypothesized that providing part-task congruent support would guide student interaction towards better learning-task performance. Groups in four experimental conditions had to carry out the part-tasks in a predefined order, but differed in the representation they received. In three mismatch conditions, groups only received one of the representations and were, thus, only supported in carrying out one of the part-tasks. In the match condition, groups received all three representations in the specified order (i.e., representational scripting). The results indicate that groups in the match condition had more elaborated discussions about the content of the knowledge domain (i.e., concepts, solutions and relations) and were better able to share and to negotiate about their knowledge. As a consequence, these groups performed better on the learning-task. However, these differences were not obtained for groups receiving only a causal representation of the domain

    Epistemic and Social Scripts in Computer-Supported Collaborative Learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. Therefore, instructional support needs to be implemented into computer-supported collaborative learning environments. One possibility to improve collaborative learning environments is to conceptualize scripts that structure epistemic activities and social interactions of learners. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors "epistemic script" and "social script" have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not lead to the expected effects.Unter kooperativem Lernen in computerunterstützten Lernumgebungen versteht man typischerweise, dass Lernende Wissen erwerben indem sie gemeinsam Aufgaben bearbeiten und dabei ihre individuellen Perspektiven mittels textbasierter Medien oder in Videokonferenzen diskutieren. Kooperatives Lernen scheint aber häufig suboptimal zu sein in Bezug auf die inhaltliche Bearbeitung der zu lernenden Konzepte sowie hinsichtlich der sozialen Interaktionen der Lernenden. Eine Möglichkeit kooperative Lernumgebungen zu verbessern besteht darin, Skripts zu konzeptualisieren, die epistemische Aktivitäten und soziale Interaktionen von Lernenden unterstützen. In diesem Beitrag werden zwei Studien berichtet, die die Wirkungen epistemischer und sozialer Skripts auf den individuellen Wissenserwerb in einer text- bzw. einer videobasierten computerunterstützten Lernumgebung untersuchen. In beiden Studien wurden die Faktoren "epistemisches Skript" und "soziales Skript" unabhängig voneinander in einem 2×2-faktoriellen Design miteinander variiert. 182 Studierende der Pädagogik der LMU München nahmen an diesen beiden Studien teil. Die Ergebnisse beider Studien deuten darauf hin, dass soziale Skripts individuellen Wissenserwerb substanziell fördern können, während epistemische Skripts scheinbar nicht zu den erwarteten Ergebnissen führen

    Epistemic and social scripts in computer-supported collaborative learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. One possibility to improve collaborative learning environments is to conceptualize epistemic scripts, which specify how learners work on a given task, and social scripts, which structure how learners interact with each other. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors ‘epistemic script’ and ‘social script’ have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not to lead to the expected effects
    • …
    corecore