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Abstract: This study investigated the effects of representational scripting on non-expert student learning while 

collaboratively carrying out complex learning-tasks. The premise underlying this research is that effective 

cognitive activities would be evoked when complex learning-tasks are structured into phase-related part-tasks and 

are supported by providing students with part-task-congruent external representations for each phase; 

representational scripting. It was hypothesized that this approach would lead to increased individual learning and 

better complex learning-task performance. In groups, 96 secondary education students worked on a complex 

business-economics problem in four experimental conditions, namely one condition in which the groups received 

representations that were part-task-congruent for all three phases and three conditions in which the groups 

received one of these representations for all three phases (i.e., part-task-incongruent for two of the three phases). 

The results indicate that groups receiving part-task-congruent representations in a phased order performed better 

on the complex learning-task, though this did not result in increased individual learning. 

 

Keywords: External representations, Complex learning-tasks, Computer Supported Collaborative Learning, 

Representational scripting 



Introduction 

Research on computer supported collaborative learning (CSCL) has shown that computer technology can 

provide support for students collaboratively carrying out complex learning-tasks. For such learning-tasks, groups 

of students often carry out different kinds of activities in two different dialogue spaces. In the content space, 

students carry out cognitive activities to deal with the phase-related part-task such as orienting themselves to the 

problem, finding solutions to the problem and evaluating the solutions found. In the relational space, students 

carry out communicative activities such as making their own knowledge and ideas explicit to others, creating 

shared understanding with the other group members, and negotiating multiple perspectives with the others 

(Barron, 2003; Janssen, 2008). To this end, students can be: 

• stimulated to externalize their knowledge and ideas through chat and representational tools (e.g., Fisher, 

Bruhn, Gräsel, & Mandl, 2002),  

• provided with scaffolding for their learning through scripting and representational guidance tools that 

structure the learning process (Reiser, 2004, Suthers, 2006), and/or  

• offered offloading possibilities through the availability of storage spaces for  contributions, external 

representations, and/or external information sources, all of which leave more working memory capacity 

for (part or whole) task completion (e.g., Hollan, Hutchins, & Kirsh, 2000).  

 

These studies, though very valuable and informative, neglect the fact that complex learning-tasks are usually 

composed of fundamentally different phase-related part-tasks, each of which needs to be supported by different 

tools for them to be properly carried out (e.g., Van Bruggen, Boshuizen, & Kirschner, 2003). This is not only the 

case for CSCL, but is true of all complex learning-tasks. For carrying out such learning-tasks, students need to be 

supported in (1) dealing with the phase-related part-task demands and carrying out activities endemic to the 

different part-tasks in the proper sequence, (2) acquiring and applying well-suited problem representations for 

each part-task, and (3) combining these different problem representations into a whole (Ploetzner, Fehse, Kneser, 

& Spada, 1999; Spector, 2008; Van Merriënboer, Kester, & Paas, 2006; Van Merriënboer & Kirschner, 2007).  

The study reported on here is aimed at designing a CSCL-environment to support students in 

successfully carrying out complex learning-tasks. By scripting the completion-process with representational 

tools (i.e., representational scripting), collaborative cognitive activities beneficial for carrying out the different 

part-task are evoked. The goal of this study is to determine whether integrating scripting and representational 

tools leads to a better use of available computer technology, and specifically whether this representational 

scripting affects both complex learning-task performance and individual learning gains in CSCL. In this article 

we speak of students, since the CSCL-environment is intended to be used in an educational setting where 

students learn collaboratively by carrying out complex learning-tasks, but the design of the representational 

scripting and its use might also be beneficial for all those involved in carrying out complex learning-tasks that 

have a part-task structure.  



Representational Scripting 

Representational scripting entails the integration of scripting and representational tools whereby the different 

phase-related part-tasks of a problem-solving process are made explicit and are sequenced for students which in 

turn leads to the evocation and application of specific problem representations. This part-task-related support is 

intended to guide students when carrying out complex learning-tasks, leading to more successful complex 

learning-task performance and better solutions. 

Scripting is intended to structure the completion-process to make it more efficient and effective. 

According to Dillenbourg (2002) a script is ‘‘a set of instructions regarding to how the group members should 

interact, how they should collaborate and how they should solve the problem’’ (p. 64). Such scripting entails the 

segmentation of a complex problem in distinct phases for discussion, solution and evaluation, with distinct 

purposes of each phase for the problem solving process (Beers, Boshuizen, Kirschner, & Gijselaers, 2005; 

Dillenbourg; O’Donnell & Dansereau, 1992). The script structures the complex learning-task by dividing it into 

a sequence of ontologically distinct problem-phases (i.e., problem orientation, problem solution, solution 

evaluation) so that they can be provided with representations congruent with the part-task demands and activities 

required for each phase (Duffy, Dueber, & Hawley, 1998; Van Bruggen, et al., 2003).  

The representational tools are meant to provide different views (i.e., problem representations) of the 

knowledge domain in which the complex learning-task is situated. Visualizing the domain by providing external 

representations (ERs) influences students’ cognitive behavior through their representational guidance (Ertl, 

Kopp, & Mandl, 2008; Suthers, 2006). Due to its ontology (i.e., objects, relations, and rules for combining them) 

every ER offers a restricted view of the domain making it easier to express certain aspects of that domain (Brna, 

Cox, & Good, 2001; Van Merriënboer & Kirschner, 2007). By matching the representational guidance of the 

ERs with the phase-related part-tasks, student understanding and part-task-specific activity should increase. 

However, an ER is seldom effective for all part-task demands and activities (Schnotz & Kürschner, 2008; Van 

Bruggen, et al., 2003). Carrying out complex learning-tasks requires students to create different perspectives of 

the whole learning-task (i.e., different problem representations) which necessitates providing multiple ERs to 

support them in creating these representations. To effectively do this, one must avoid or neutralize the 

difficulties students encounter when combining multiple ERs, namely problems translating from and 

coordinating between different kinds of representations (Ainsworth, 2006), and incongruence between 

representation and phase-related part-task (Vekiri, 2002). This necessitates that the representational guidance of 

a specific ER must be congruent (i.e., matched) with the part-task demands and activities of a specific problem 

phase.  

Matching ERs and Part-task Demands  

Non-expert students carrying out complex learning-tasks without guidance rely primarily on surface features 

(i.e., using objects referred to in the problem) instead of the underlying principles of the domain, and tend to 

employ weak problem-solving strategies such as working via a means-ends strategy towards a solution instead of 

strong ones that are carefully tailored to the specific structure of the domain (Simon, Langley, & Bradshaw, 

1981). An important reason for this is that these students have problems with creating and combining suitable 



knowledge representations, lacking a well developed understanding required for carrying out the complex 

learning-task (Ploetzner, et al., 1999; Seufert, 2003). Without such an understanding, students are often not able 

to create a meaningful problem representation. This is problematic because the ease with which a problem can be 

solved often depends on the quality of the problem representation. Different problem representations initiate 

different kinds of operators which can act to produce new information that supports problem solvers in coming 

to a solution to the problem (Chi, Glaser, & Rees, 1982; Jonassen, 2003). To overcome these difficulties, 

students need to be made aware of the different problem phases and their required problem representations and 

be supported in creating and combining these representations  (Ainsworth, 2006; Bredeweg & Forbus, 2003; 

Frederiksen & White, 2002; Ploetzner, et al., 1999). As described in Table 1 this might be accomplished through 

scripting the problem-solving process by sequencing and making the part-tasks explicit so that they could be 

foreseen with ontologically congruent ERs in the  representational tools (i.e., representational scripting). In the 

following two paragraphs the different problem phases and their part-task demands and the different ERs are 

described in more detail.  

 

Table 1: Representational Scripting; Matching ERs and Phase-related Part-task Demands 
Problem phase Part-task demand ER 

Problem orientation Determining core concepts and relating 

them to the problem 

Showing concepts and their interrelationship 

Problem solution Proposing multiple solutions to the 

problem 

Showing causal relation between the concepts 

and possible solutions 

Solution evaluation Determining suitability of the solutions 

and coming to a final solution to the 

problem 

Showing mathematical relation between the 

concepts and enabling manipulation of their 

value 

Problem phases and their part-task demands  

Solving a complex problem is frequently regarded as a three-phase process, namely (1) orienting to the problem, 

(2) finding one or more possible problem solutions, and (3) evaluating the solutions so as to choose the best one 

(Duffy, et al., 1998; Van Bruggen, et al., 2003). Each of these phases requires the creation of a specific 

qualitative or a quantitative problem representation. Qualitative representations provide an overview of the 

relevant concepts and their interrelationships in the knowledge domain and/or their underlying causal principles. 

When the interrelationships are quantitatively specified, as is often the case in business-economics for example, 

students are more restricted in creating a suitable problem representation because their attention is more focused 

on the mathematical relationships between specific concepts. This may be detrimental for the first two phases of 

problem solving (i.e., problem orientation, problem solution) because it hinders them in thinking about multiple 

solutions. Furthermore, quantitative representations can only be understood and applied if the students have a 

well developed qualitative understanding of the knowledge domain. When understood, quantitative 

representations enable students to evaluate their proposed solutions, something qualitative representations do not 

allow.  

In the problem orientation phase, students need to construct a cognitive bridge between their initial 

mental model and the mental model to be created (Chi, et al., 1982; Jonassen, 2003). This phase involves a part-

task which focuses on constructing a global problem representation, becoming aware of the problem itself and of 

the important concepts of the knowledge domain, and becoming aware of the constraints and criteria for solution 



and evaluation (e.g., this concept should affect this concept and that is something that will help to achieve the 

goal). For creating such a problem overview, a qualitative problem representation containing the relevant 

concepts is more appropriate than a quantitative one for supporting students in broadening the problem space. 

The problem solution phase, which follows the orientation phase, is where the students apply the underlying 

causal principles of the knowledge domain to produce concrete solutions. The part-task in this phase is more 

structured than in the previous phase and focuses on combining the concepts of the domain into principles and 

making causal relationships between the problem and the proposed solutions explicit (e.g., if this concept is 

increased, then this concept decreases). Here students might create a number of possible solutions and then 

reason about the advantages and disadvantages of each. The main advantage of these activities is that the 

solutions come in a rather straightforward, often causal, way from this which makes the completion-process 

more efficient and effective (e.g., Jonassen & Ionas, 2008). The problem representation remains qualitative, but 

contains - along with the central concepts of the problem - causal information (i.e., if this, then that) which 

supports students in finding multiple solutions to the problem. During the third and final phase, the solution 

evaluation phase, it is more appropriate that students relate the solutions they arrived at to their consequences so 

as to determine their suitability. This should enable students to reach a final and suitable problem solution. This 

part-task focuses on calculating the proposed solutions and gaining insight into their quantitative effects (e.g., 

increasing this concept doubles that concept, but also increases it to a level that is unrealistic).  

Part-task congruent external representations 

External representations (ERs) support students in creating different problem representations (i.e., qualitative and 

quantitative ones) through their differences in representational guidance. In order to be beneficial for problem 

solving it is important that the representational guidance of a specific ER is congruent with part-task demands 

and activities of a specific problem phase (Schnotz & Kürschner, 2008; Van Bruggen, et al., 2003). The 

representational guidance of an ER is provided by its ontology, which is specified through its expressiveness and 

processability (see Table 2). Expressiveness refers to what the ER can represent, namely concepts and their 

interrelationships (i.e., specificity), and how accurately they are represented (i.e., precision). Processability 

refers to the differences in processing the information from the ER caused by the difference in expressiveness, 

and which determines the number and quality of inferences that can be made. Less expressive (i.e., less specific 

and less precise) ERs have the advantage of being highly processable (Larkin & Simon, 1987) making it easy to 

make many inferences from them (i.e., elaboration). Such ERs guide students in elaborating on the concepts of 

the knowledge domain and in relating them to the problem (e.g., Jonassen, 2003). These ERs, however, do not 

have much expressive power (Cox, 1999); the inferences made from them cannot be very specific and precise. 

For this, the order of the ER is important. 

The order of an ER (Frederiksen, White, & Gutwill, 1999) determines the quality of the inferences (i.e., 

kind of reasoning). A zero order ER supports reasoning about concepts and in relating this reasoning to the 

problem in qualitative way. It is highly processable, but not very expressive. A first order ER is more expressive 

- and thus specific and precise - which supports reasoning about causal relationships and guides discussion 

and/or thought about possible solutions. A second order ER is the most expressive guide and supports 

quantitative inference-making enabling negotiation and/or determination of suitability of the proposed solutions. 

When the representational guidance of the ER is congruent with (i.e., matched to) the ontological demands of the 



part-task of a problem phase, students are supported in carrying out the required part-task demands and activities 

of that phase. A mismatch, on the other hand, means that the ER is incongruent with the part-task and, therefore, 

may hinder students carrying out complex learning-tasks. Reasons for this could be that the available ER is not 

expressive enough because it contains only global information, or that it is too hard to process because students 

do not have enough prior domain knowledge to properly grasp it and make use of the ERs’ expressiveness.  

 

Table 2: Congruence between External Representations and Phase-related Part-task Demands 
Phase-related part-task ER Representational guidance

 Expressiveness Processability 

 Specificity Precision Elaboration  Order 

Problem  orientation Conceptual Low Undirected relations Unstructured Zero 

Problem  solution Causal Middle Causal directed relations Quasi-structured First 

Solution  evaluation Simulation High Model directed relations Structured Second 

Design and Expectations 

This study focuses on how the design of a CSCL-environment that scripts problem-solving behavior by 

providing ontologically distinct ERs affects both complex learning task-performance and individual learning 

gains. To this end, four experimental conditions were defined. In triads, students in all conditions had to 

collaboratively solve a case-based problem in business-economics which was divided into three problem phases, 

each coupled with different ERs. To study the effects of the representational scripting, the ERs were either 

matched or mismatched to the different problem phases (see Table 3).  

 

In three 

mismatch conditions, student groups received either a static ER (i.e., conceptual or causal ER) or a dynamic ER 

(i.e., simulation) which matched only one of the part-tasks, namely problem orientation, problem solution, and 

solution evaluation, respectively. The scripting structured the problem-solving process in three phases, but only 

one of the three ERs was available to the students for solving the problem. In other words, there was a phase-

mismatch where the ER which was provided ontologically matched only one of the three phases and there was a 

mismatch for the other two. In the fourth condition, student groups received all three ERs in a phased order 

receiving the ER most suited to each problem phase. Here, thus, there was a match between all three ERs and all 

three part-tasks. Student groups in this condition received the complete array of representations. Due to the 

presumed match between ERs and phase-related part-tasks, student understanding and part-task-related activity 

should increase, allowing them to come up with better solutions for the problem. It was, therefore, hypothesized 

students in the match condition (H1) create a better developed understanding (i.e., learning gains) and (H2) will 

Table 3: Overview of the Experimental Conditions 
Condition Phase-related part-task/ER Match/mismatch 

 Problem orientation Problem solution Problem evaluation  

Conceptual Conceptual ER  Conceptual ER Conceptual ER Match for the orientation phase only 

Causal Causal ER  Causal ER Causal ER Match for the solution phase only 

Simulation Simulation ER  Simulation ER Simulation ER Match for the evaluation phase only 

Match Conceptual ER Causal ER Simulation ER Complete match 



arrive at a better solution to the problem (i.e., complex learning-task performance), because their knowledge has 

progressively evolved from qualitative to quantitative. 

Method  

Participants 

Participants were students from six business-economics classes in three secondary education schools in the 

Netherlands. The total sample consisted of 96 students (59 male, 37 female). The mean age of the students was 

16.67 years (SD = 0.77, Min = 15, Max = 18). Students were, within classes, randomly assigned to a total of 32 

triads, which were equally divided between the four experimental conditions.  

Design of the CSCL-environment and the complex learning-task 

Students collaborated in a CSCL-environment called Virtual Collaborative Research Institute (VCRI, see Figure 

1). VCRI is a groupware application for supporting the collaborative performance of complex learning-tasks, 

inquiry-tasks and research projects (Jaspers, Broeken, & Erkens, 2005). For this study, five tools that are part of 

the VCRI were augmented with representational scripting. All tools, except the Notes tool, were shared among 

group members.  

 



Fig. 1 Screenshot of the VCRI-environment 

VCRI 

The chat tool enables synchronous communication and supports students in externalizing and discussing their 

ideas and knowledge. The chat history is stored automatically and can be re-read. Students can find the 

description of the complex learning-task and its phase-related part-tasks in the Assignment menu. Besides this, 

additional information sources such as a definition list, formula list, and clues for solving the problem were also 

available in the assignment menu.  The Co-writer is a shared text-processor where students can formulate and 

revise their answers to the part-tasks. The Notes tool is an individual notepad that allows students to store 

information and to structure their own knowledge and ideas before making them explicit. The Status bar is an 

awareness tool that displays which group members are logged into the system and which tool a group member is 

currently using. All students in all conditions had access to these tools and information sources, and were, thus, 

information equivalent. The conditions only differed in the way that the ERs guided the students in creating and 

combining different problem representations. 

Representational scripting and phase-related part-tasks  

All groups worked on a complex business-economics problem in which they had to advise an entrepreneur about 

changing her/his business strategy in order to make the business more profitable (i.e., achieve a better company 

result). To provide a suitable advice, students had to carry out three different phase-related part-tasks, namely (1) 

determine the main concepts responsible for the company’s results and relate them to the problem, (2) determine 

how certain interventions (i.e., changes of the business strategy) affect company results, and (3) compare these 

consequences and formulate a final advice based on this comparison. Through the use of scripting, the complex 

learning-task was divided into three phases (i.e., problem orientation, problem solution, solution evaluation) each 

focusing on one of the part-tasks. All groups were ‘forced’ to carry out the part-tasks in a predefined order; they 

could only start with a new part-task after finishing the earlier part-task. When group members agreed that a 

part-task was finished, they had to ‘close’ that phase in the assignment menu. This ‘opened’ a new phase, which 

had three consequences for the groups, namely they (1) received a new part-task (2) had to enter their new 

answers in a different window of the Co-writer and could not alter, but could still see, their prior answers, and 

(3) received an ER. For the three mismatched conditions, the ER did not change. Only in the fourth, matched, 

experimental condition, did the students get a new ER which was ontologically matched to the demands of that 

phase-related part-task. A description of the different phases and the matching ERs for the fourth experimental 

conditions follows. All other experimental conditions received the part-tasks in the same order (i.e., used the 

same script), but did not receive different ERs. 

The problem orientation phase focused on creating a global problem representation by asking students 

to explain what they thought the problem was, and describing what the most important concepts were for coming 

to an advice. During this phase, students received the conceptual ER (i.e., a static representation of the 

knowledge domain; see Figure 2), which made two aspects salient, namely the core concepts needed to carry out 

this part-task and which core concepts were related to which other core concepts. Students could, for example, 

see that the ‘company result’ is determined by the ‘total profit’ and the ‘efficiency result’. This should make it 

easier for them to create an overview of all relevant concepts (i.e., to broaden the problem space), which should 



support them in finding multiple solutions to the problem in the following phase. The low expressiveness of the 

conceptual ER supports the creation of a global problem representation which can be elaborated on in the 

following problem phases that contain part-tasks that require the support of more expressive ERs, that is: a 

qualitative casual and a quantitative problem representation. 

 

Fig. 2 Conceptual ER 

 

The problem solution phase aimed at creating a scientific problem representation (i.e., explicating the underlying 

business-economics principles) by asking students to formulate several solutions to the problem. During this 

phase, students received the causal ER (i.e., a static representation of the knowledge domain; see Figure 3), in 

which the causal relationships - visible through the arrows showing direction of the relationship between the 

concepts - were specified. The causal ER also contributed to increasing student understanding by providing them 

with possible interventions (i.e., changes of the business strategy), each of which had a different effect on the 

company results. This should make it easier to explore the solution space and therefore should support students 

in finding multiple solutions to the problem. Students could, for example, see that receiving a rebate from a 

supplier affects the ‘variable part cost price’, which in turn affects the ‘cost price’. The conceptual ER is not 

expressive enough for this part-task because the relations in that ER were not specified and the students did not 

receive any information about possible solutions. This means that they had to produce the advice themselves, 

without having sufficient understanding of the underlying principles of the knowledge domain. The simulation 

ER used in the following phase has a quantitative character which supports testing the proposed advices, but is 

difficult to process without a properly developed qualitative understanding.   



 

Fig. 3 Causal ER 

 

The solution evaluation phase aimed at increasing understanding of the knowledge domain with the aid of a 

quantitative problem representation. Students were asked to determine the financial consequences of their 

proposed solutions, and to formulate a final advice for the entrepreneur by negotiating the suitability of the 

solutions with each other. During this phase, students received a simulation ER (i.e., a dynamic representation of 

the knowledge domain; see Figure 4) which enabled them to manipulate the value of the concepts by clicking on 

the arrows in the boxes. When the value of a certain concept was increased or decreased, the simulation model 

automatically computed the value of all other concepts. The results obtained here should facilitate determining 

and negotiating the suitability of the proposed solutions and coming to a final advice. Students could, for 

example, test how a supplier rebate (i.e., decrease of the total variable costs) affects the ‘cost price’ and how this 

in turn affects the ‘company result’. Only the simulation ER is capable of providing this kind of support, because 

the relationships between the concepts in this ER were specified as equations (i.e., weight of the relationship).  



 

Fig. 4 Simulation ER 

Procedure 

In total, students devoted three, 70-minute, lessons to the completion of the complex learning-task during which 

each student worked on a separate computer in a computer room. Before the first lesson, students received an 

instruction about the (1) CSCL-environment, (2) group composition, and (3) complex learning-task and its 

phase-related part-tasks. The instruction made it clear to the students that their score on the post-test as well as 

their group answer to the problem (i.e., complex learning-task performance) would serve as grades and affect 

their GPA. Furthermore, a 45-minute pre-test was administered to determine prior domain knowledge and 

relevant personal information (e.g., age, sex). Thereafter, students worked on the complex learning-task in the 

computer room, where all actions and answers to the part-tasks were logged. During the lessons, the teacher was 

on stand-by for task-related questions and a researcher was present for technical support. After the final 

computer lesson, a 45-minute post-test was administered to determine the acquired domain knowledge of the 

students after the intervention.  

Measures  

Learning gains 

Student recall and understanding of the knowledge domain was measured with a pre-test (20 items, α = .60) 

and a post-test (20 items, α = .79). Based on work of Gagné, Wagner, and Briggs (1992) a learning-task analysis 

was conducted which resulted in 17 business-economics concepts. According to Anderson and Krathwohl 

(2001), a knowledge domain consist of different knowledge dimensions which refer to the different ways (i.e., 

factual, conceptual, procedural) in which the concepts can be understood. Factual knowledge entails students 

being familiar with the concepts of the knowledge domain. Conceptual knowledge entails students understanding 



the interrelationships between the different concepts of the domain. Procedural knowledge entails students 

knowing how to apply a certain technique or procedure and are capable of determining when applying that 

technique or procedure is appropriate. The multiple-choice items in both tests were drawn from the total pool of 

items and equally divided across the three knowledge dimensions and were, thus, unique. Because of the low 

reliability of the scores on the subscales of both tests (e.g., α ≤ .50) we did not test for student recall and 

understanding of the different knowledge dimensions. In the analyses, thus, we only made use of the overall 

scores on the pre-test and the post-test. Below an example for each type of question is provided (questions were 

translated from Dutch): 

 

Factual knowledge 

The cost price is the price that: 

a) a customer has to pay for a product. 

b) an entrepreneur has to pay to produce a product. 

c) an entrepreneur has to pay to store a product. 

d) an entrepreneur has to pay to produce and to sell a product. 

  

Conceptual knowledge 

Does an increase in selling price automatically lead to an increase in turnover? 

a) No, when the selling price increases this may lead to a decrease in actual sales and, thus, not 

automatically to an increased turnover. 

b) Yes, when the selling price increases this does not affect the actual sales and, thus, the turnover 

automatically increases.  

c) No, the turnover is mainly affected by the number of customers willing to buy the product, an increase 

in selling price, therefore, does not automatically lead to an increase in turnover.  

d) Yes, when the selling price increases the turnover automatically increases whether or not the actual 

increase or decrease. 

 

Procedural knowledge  

Entrepreneur Y has an electronics store and sells a wide variety of products such as TVs, stereos and computers. 

At the end of the week the entrepreneur has sold five computers with a selling price of € 1,550.00 each and six 

TVs with a selling price of € 1,350.00 each. What was the turnover for the entrepreneur for the selling of the 

computers? 

a) € 6,750.00 

b) € 7,750.00 

c) € 8,100.00 

d) € 9,300.00 

Complex learning-task performance 

To measure the effect of condition on group performance, an assessment form for each topic of the learning-task 

was developed (see Table 4). The whole learning-task was divided in three phases, and for each phase three 



questions were asked (i.e., nine questions in total). The answers to each of the nine questions were evaluated 

based upon ‘suitability’, ‘elaboration’, ‘justification’, and ‘correctness’, which resulted in 36 metrics for these 

four topics. We also evaluated whether students used their answers from a prior phase and whether they altered 

their way of reasoning when they had to answer the questions asked in a following phase (i.e., ‘continuity’). This 

consisted of two items because there were two phase transitions (i.e., problem orientation to problem solution 

and problem solutions to solution evaluation). Furthermore, the ‘quality of the final advice’ that the students 

gave was evaluated on three aspects, namely how many (1) concepts and (2) financial consequence were 

incorporated, and (3) whether the answer was in line with the guidelines provided in the description of the 

complex learning-task. This resulted in a total of 41 items which all could be coded as ‘0’ (wrong), ‘1’ (passing) 

or ‘2’ (good); the higher the code, the higher the quality of the answer. Groups could maximally score 82 points 

(41 × 2 points) for their complex learning-task performance. 

 

Data Analysis 

When conducting studies in the field of CSCL, students are often working in groups. In such settings, 

researchers have to cope with several statistical concerns, namely (1) hierarchically nested datasets, (2) non-

independence of dependent variables, and (3) differing units of analysis (e.g., Janssen, 2008). The latter concern 

is also relevant for this study because the dependent (e.g., post-test score) and independent (e.g., experimental 

condition) variables were measured at different levels, namely the individual and the group level respectively. 

Multilevel analysis (MLA) is a statistical technique suited to “appropriately grasp and disentangle the effects and 

dependencies on the individual level, the group level, and sometimes the classroom level” (Strijbos & Fischer, 

2007, p. 391). To determine whether MLA was a suited technique for answering our research question we 

computed the amount of variance on the post-test score that could be accounted for by the group (e.g., intraclass 

correlation coefficient, Kenny, Kashy, & Cook, 2006). Of the total variance on post-test score 59% could be 

explained by the variance at the group level. This means that working in groups accounts for more variance on 

individual post-test scores than individual characteristics of the group members (e.g., age, sex). For this reason, 

MLA was used to determine the effect of experimental condition on post-test score. One-way MANOVA was 

Table 4: Items and Reliability for the Complex Learning-task Performance. 
Topic  Description  Items α 

Suitability Whether the groups’ answers were suited to the different part-tasks.  9  .61 

Elaboration Number of different business-economics concepts or financial consequences 

incorporated in the answers to the different part-tasks. 

9 .53 

Justification Whether the groups justified their answers to the different part-tasks. 9 .73 

Correctness Whether the groups used the business-economics concepts and their interrelationships 

correctly in their answers to the different part-tasks. 

9 .68 

Continuity Whether the groups made proper use of the answers from a prior problem phase.  2 .67 

Quality advice  Whether the groups gave a proper final advice. 

- Number of business-economics concepts incorporated in the advice. 

- Number of financial consequences incorporated in the advice.  

- Whether the final answer conformed to the guidelines provided. 

3 .71 

Total  Overall score on the complex learning task-performance.  41 .89 



used for answering the second research question. Since there were specific directions of the results expected (see 

hypotheses) all analyses are one-sided. 

Results 

Learning gains 

The overall mean score on the pre-test was 14.87 (SD = 2.33; max = 20). The overall mean on the post-test score 

was 14.69 (SD = 2.40; max = 20). The t-test showed that the overall post-test score of 90 students (not all 96 

students were present when the pre-test and/or post-test were administered) was not significantly higher than the 

overall pre-test score (t(90) = 0.72, p > .05). There were, thus, no individual learning gains. One-way ANOVA 

showed a significant main effect between condition on the pre-test score (F(3, 86) = 3.34, p < .05). This means 

that students differed in the amount of prior knowledge and it was, therefore, necessary to correct for this. Table 

5 shows the overall and condition means and standard deviations on students’ pre-test and post-test scores. 

 

Table 5: Means and Standard Deviations of Students’ Pre-test and Post-test Scores for Conditions  
Test  Conceptual  

condition 
(nstudent = 22) 

Causal 
condition 
(nstudent = 24) 

Simulation  
condition  
(nstudent = 21) 

Match  
condition 
(nstudent = 23) 

Overall 
conditions 
(Nstudent = 90) 

 

 M (SD) M (SD) M (SD) M (SD) M (SD) p -value 
Pre-test 15.20 (1.85) 14.95 (2.76) 13.69 (2.20) 15.72 (2.05) 14.66 (2.37) p < .05 

Post-test 13.70 (2.96) 15.00 (1.90) 14.47 (2.18) 15.50 (2.48) 14.47 (2.45) p < .05 

 

MLA revealed that students in the match condition scored significantly higher than those in the other 

conditions (β = 1.93, p = .04). When comparing the conditions separately, a trend was found; students in the 

match condition scored higher than students in the conceptual condition (β = 1.89, p = .07). Differences between 

the other conditions were not significant. The model fit the data (χ2(3) = 28.65, p = .00) and could, therefore, be 

used to account for the differences in variance on the post-test score.   

These results are not completely in line with our first hypothesis. Students in the match condition only 

scored higher on the post-test in comparison to students in the conceptual condition. Furthermore, there were no 

learning gains.  

Complex learning-task performance 

One way MANOVA on the total score on the complex learning-task performance showed a significant 

difference for condition (F(3, 28) = 1.72, p = .03; Wilks’ Lambda = 0.33; partial eta squared = .31). Bonferroni 

post hoc analyses showed that groups in the match condition scored significantly higher than groups in both the 

conceptual (p = .00; d = 2.19) and the simulation condition (p = .04; d = 1.26). Differences between other 

conditions were not significant. Table 6 shows the overall and condition means and standard deviations of the 

scores on the complex learning-task performance. 

 

Table 6: Means and Standard Deviations of the Complex Learning-task Performance for Conditions  
Topic Conceptual 

condition  
Causal 
condition 

Simulation 
condition   

Match 
condition  

Overall  
conditions 

 



(ngroup = 8) (ngroup = 8) (ngroup = 8) (ngroup = 8) (Ngroup  = 32) 
 M (SD) M (SD) M (SD) M (SD) M (SD) p -value 
Suitability (max 18)  12.25 (2.49)  15.12 (1.64) 13.88 (3.36) 15.75 (2.42) 14.25 (2.76) p < .05 
Elaboration (max 18) 6.38 (3.74)  8.89 (2.70) 6.37 (2.83) 8.38 (2.33) 7.50 (3.03) n.s. 
Justification (max 18) 3.50 (1.69) 6.88 (3.56) 4.12 (2.70) 7.50 (2.62) 5.50 (3.12) p < .05 
Correctness (max 18) 5.50 (2.45) 8.25 (3.69) 7.12 (1.96) 9.25 (2.05) 7.53 (2.87) p < .05 
Continuity (max 4) 2.50 (1.41) 3.12 (1.13) 3.00 (1.31) 3.62 (0.52) 3.06 (1.16) n.s 
Final answer (max 6) 2.75 (1.04) 4.88 (1.64) 5.12 (2.48) 4.25 (1.28) 4.25 (1.87) n.s 
Total score (max 82) 32.88 (10.40) 47.13 (12.30)  39.62 (0.39) 48.75 (7.27) 42.09 (11.68) p < .05 
 

When the results for the dependent variables were considered separately, using one-way ANOVAs with 

Bonferroni post hoc analyses, condition effects were found for suitability (F(3, 28) = 2.99, p = .03), justification 

(F(3, 28) = 4.23, p = .01) and correctness (F(3, 28) = 2.99, p = .03). The mean scores indicated that there were 

several significant differences between conditions. First, groups in the match condition scored significantly 

higher on suitability than groups in the conceptual condition (p = .01; d = 1.45) and a trend was found in 

comparison to the groups in the simulation condition (p = .07; d = 0.77). Second, groups in the match condition 

scored significantly higher on justification than groups in both the conceptual (p = .01; d = 1.53) and the 

simulation condition (p = .02; d = 1.29). Finally, groups in the match condition scored significantly higher on 

correctness than groups in the conceptual condition (p = .03; one sided; d = 1.83) and a trend was found in 

comparison to the groups in the simulation condition (p = .06; d = 1.04). 

These results confirmed our second hypothesis, namely that groups that received an ontologically 

congruent ER for each phase-related part-task scored higher on the complex learning-task performance. 

Conclusion and Discussion 

This study shows that combining the advantages of scripting with representation tools - representational 

scripting - supports students in collaboratively carrying out complex learning-tasks, leading to better complex 

learning-task performance. Structuring the complex problem-solving task into ontologically distinct problem-

phases and providing the phase-related part-tasks with part-task-congruent representations was expected to 

increase group performance in terms of group complex learning-task performance and individual learning gains. 

The design of representational scripting did indeed result in better scores on  the complex learning-task 

performance. The groups in the match (i.e., part-task-congruent) condition outperformed the groups in both the 

conceptual and simulation conditions, their answers were more suited for a specific part-task, contained more 

justifications, and were more often correct. No differences were found between the match and the causal 

condition. Apparently the causal representation provided more support than both the conceptual and the 

simulation representation did, but in combination these three representations resulted in a higher score on group 

complex learning-task performance. The results concerning complex learning-task performance confirmed our 

expectation and are in line with those of others (Jonassen, 2003; Ploetzner, et al., 1999), who also stress the 

importance of sequencing and interrelating qualitative and quantitative aspects of the knowledge domain during 

problem solving. As is the case with many other researchers (Ertl, et al., 2008; Fischer, et al., 2002; Schnotz & 

Kürschner, 2008; Suthers, 2006), our results stress the importance of providing ERs during collaborative 

problem solving. The representational guidance that they provide is able to guide student discourse and/or 

activities towards particular task content. However, in contrast to these studies, we provided multiple ERs where 

representational guidance was matched to different kinds of part-tasks that had to be carried out when dealing 



with complex learning-tasks. To our knowledge such an approach has not been used in other studies. Ertl, et al. 

(2008), for example, did use a condition in which scripting was applied to structure the problem-solving process 

and an ER was provided to further support the students. Their design, however, did not enable them to compare 

the effects with those of another condition in which scripting and another or multiple ERs where used. It was 

also expected that gradually shifting from a conceptual to a simulation representation would result in higher 

individual scores on the post-test (i.e., learning gains). Students in the match condition indeed outperformed 

students in the non-matched conditions. However, this difference was only significant when comparing students 

in the match condition to students in the conceptual condition.  

Although most of the results are in line with our expectations, there were, however, two contrasting 

findings that require further discussion. First, students’ pre-test and post-test score did not differ significantly 

from each other resulting in no learning gains. This result might be explained by the (1) design of the 

representational scripting and/or (2) measurement of the learning gains. The design of the representational 

scripting was primarily aimed at supporting students in applying domain knowledge in order to come to better 

and richer solutions and might, therefore, be less suited for knowledge acquisition. According to Kirschner, 

Sweller, and Clark (2006), carrying out complex learning-tasks is an instructional method based on the 

epistemological content (i.e., methods and processes) instead of the pedagogical content (i.e., acquiring 

knowledge) of a knowledge domain. Although both the epistemological and the pedagogical content include 

factual, conceptual and procedural knowledge, students do not necessarily use the same cognitive processes 

(Anderson & Krathwohl, 2001). That is, recalling and grasping the meaning of concepts, principles and 

procedures is often regarded as prerequisite for the higher-order cognitive processes required for carrying out 

complex learning-tasks. Such learning-tasks consist of part-tasks demanding students to apply their 

understanding of the domain in order to analyze the problem, come up with proper solutions and evaluate their 

suitability and might be less supportive for acquiring more domain knowledge. Furthermore, the pre-test and the 

post-test measured recall and understanding of the knowledge domain. Both tests were, therefore, only useful for 

determining learning gains in terms of acquired domain knowledge. The tests did not enable students to 

demonstrate whether they were better able to apply their understanding of the domain, an ability which also can 

be regarded as a form of learning gains. This also could be an explanation for the lack of differences in learning 

gains. Second, individual learning gains and learning-task performance of students in the causal condition was 

very similar to what was found in the match condition. Students in both conditions received the causal ER, 

which showed all relevant concepts, solutions and their causal interrelationships, providing students with 

multiple qualitative perspectives on the knowledge domain. It seems therefore important to recognize that causal 

reasoning is beneficial for complex learning-task performance (Jonassen & Ionas, 2008). However, it does not 

completely explain the lack of differences. Perhaps combining the causal ER with both the conceptual and the 

simulation ER hinders complex learning-task performance when students experience difficulties integrating the 

different ERs. When students do not know how to use an ER and/or combine multiple ERs, they might choose to 

stick with the familiar one and make no attempt to integrate the different ERs (Ainsworth, 2006). Furthermore, 

students in the causal condition did not receive additional ERs and their cognitive processes were, therefore, less 

focused on applying their understanding of the domain in comparison to students in the match condition. In this 

respect students in the causal condition could devote more attention to understanding the concepts and their 

causal relationship which might have made the post-test more suited for them in comparison to students in the 



match condition. An alternative explanation might be that collaboration requires interaction in both the content 

space and the relational space from all group members. If the whole group is not able to carry out these 

activities, the collaboration process may hinder students in successfully carrying out their complex learning-task 

(e.g., Barron, 2003).  

Implications and Future Research  

This study has several implications for learning-environment design (e.g., CSCL-environment) for supporting 

students in carrying out complex learning-tasks. The results indicate that complex learning-task completion is 

facilitated and complex learning-task performance is better when the different phase-related part-tasks are made 

explicit and properly sequenced, and part-task congruent ERs (i.e., domain specific content schemes) are 

provided. Using multiple ERs can provide different perspectives of the knowledge domain and, when properly 

matched to the task demands and activities, the complementary function (see Ainsworth, 2006) of those ERs can 

gradually increase student understanding and phase-related part-task activity. However, several limitations have 

to be taken into account when interpreting the results and the implications of this study. First, conducting studies 

within schools for a longer period of time has the advantage of taking place in a more ecologically valid research 

setting than the laboratory. The current study was integrated into the curriculum of the participating schools and 

student’ scores on the post-test as well as the complex learning-task performance affected their GPA. 

Unfortunately this also had as a result that there were acceptable but still low reliability scores for the 

instruments used. When tailoring the measurement of the learning gains to the specifics of the curriculum there 

are often no suitable standardized measurement instruments available. These instruments, therefore, needed to be 

developed in cooperation with the teachers which made them more (ecologically) valid for measuring the 

individual and group learning gains. Although this is how teachers usually work with and assess their students, 

this approach could compromise the reliability of the instruments compromising the generalization of the results. 

Since our study was conducted in six classes divided over three different schools this concern appears to not be 

substantial in our study, but cannot be ruled out completely. Second, this study took place in the field of 

business-economics. Although there are many other domains (e.g., physics, urban planning, meteorology) in 

which qualitative and quantitative problem representations are required, the effects of a particular design 

depends on the characteristics of the problem and the involved knowledge domains. When designing tools, 

representational scripting, and/or learning environments one should carefully take this into account. The effect of 

the design of representational scripting does, therefore, not automatically apply to all complex learning-tasks. 

Third, condition effects were found for complex learning-task performance and learning gains, but when one 

inspects the standard deviations it appears that there are also differences between groups within the conditions. 

The present results of this study are solely focused on the question whether a difference in characteristics of 

representational scripting affects complex learning-task performance and individual learning.  

Finally, at least one issue remains unclear, namely how the design of representational scripting lead to 

the results obtained. We, for example, cannot yet explain the lack of significant differences between the causal 

and the match condition To resolve this issue, additional research into the effects of representational scripting 

should be carried out to investigate the results and the collaboration process in multiple settings (i.e., CSCL and 

face-to-face) for multiple problems and in a diversity of knowledge domains. We are, therefore, currently 

analyzing the log-files (i.e., dialogue-protocols) to determine what students talked about (i.e., content space) and 



how students coordinated their collaboration process (i.e., relational space). These analyses should provide 

insight into the completion-process and how it was affected by the design of the representational scripting. 
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Tables  
 

Table 1: Representational Scripting; Matching ERs and Phase-related Part-task Demands 
Problem phase Part-task demand ER 

Problem orientation Determining core concepts and relating 

them to the problem 

Showing concepts and their interrelationship 

Problem solution Proposing multiple solutions to the 

problem 

Showing causal relation between the concepts 

and possible solutions 

Solution evaluation Determining suitability of the solutions 

and coming to a final solution to the 

problem 

Showing mathematical relation between the 

concepts and enabling manipulation of their 

value 

 
Table 2: Congruence between External Representations and Phase-related Part-task Demands 
Phase-related part-task ER Representational guidance

 Expressiveness Processability 

 Specificity Precision Elaboration  Order 

Problem  orientation Conceptual Low Undirected relations Unstructured Zero 

Problem  solution Causal Middle Causal directed relations Quasi-structured First 

Solution  evaluation Simulation High Model directed relations Structured Second 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Overview of the Experimental Conditions 
Condition Phase-related part-task/ER Match/mismatch 

 Problem orientation Problem solution Problem evaluation  

Conceptual Conceptual ER  Conceptual ER Conceptual ER Match for the orientation phase only 

Causal Causal ER  Causal ER Causal ER Match for the solution phase only 

Simulation Simulation ER  Simulation ER Simulation ER Match for the evaluation phase only 

Match Conceptual ER Causal ER Simulation ER Complete match 



 

 

 

 
Table 5: Means and Standard Deviations of Students’ Pre-test and Post-test Scores for Conditions  
Test  Conceptual  

condition 

(nstudents = 22) 

Causal 

condition 

(nstudents = 24) 

Simulation  

condition  

(nstudents = 21) 

Match  

condition 

(nstudents = 23) 

Overall 

conditions 

(Nstudents = 90) 

 

 M (SD) M (SD) M (SD) M (SD) M (SD) p -value 

Pre-test 15.20 (1.85) 14.95 (2.76) 13.69 (2.20) 15.72 (2.05) 14.66 (2.37) p < .05 

Post-test 13.70 (2.96) 15.00 (1.90) 14.47 (2.18) 15.50 (2.48) 14.47 (2.45) p < .05 

 
Table 6: Means and Standard Deviations of the Complex Learning-task Performance for Conditions  
Topic Conceptual 

condition  

(ngroups = 8) 

Causal 

condition 

(ngroups = 8) 

Simulation 

condition   

(ngroups = 8) 

Match 

condition  

(ngroups = 8) 

Overall  

conditions 

(Ngroups  = 32) 

 

 M (SD) M (SD) M (SD) M (SD) M (SD) p -value 
Suitability (max 18)  12.25 (2.49)  15.12 (1.64) 13.88 (3.36) 15.75 (2.42) 14.25 (2.76) p < .05 

Elaboration (max 18) 6.38 (3.74)  8.89 (2.70) 6.37 (2.83) 8.38 (2.33) 7.50 (3.03) n.s. 
Justification (max 18) 3.50 (1.69) 6.88 (3.56) 4.12 (2.70) 7.50 (2.62) 5.50 (3.12) p < .05 
Correctness (max 18) 5.50 (2.45) 8.25 (3.69) 7.12 (1.96) 9.25 (2.05) 7.53 (2.87) p < .05 
Continuity (max 4) 2.50 (1.41) 3.12 (1.13) 3.00 (1.31) 3.62 (0.52) 3.06 (1.16) n.s 
Final answer (max 6) 2.75 (1.04) 4.88 (1.64) 5.12 (2.48) 4.25 (1.28) 4.25 (1.87) n.s 
Total score (max 82) 32.88 (10.40) 47.13 (12.30)  39.62 (0.39) 48.75 (7.27) 42.09 (11.68) p < .05 

 

 

 

 

Table 4: Items and Reliability for the Complex Learning-task Performance. 
Topic  Description  Items α 

Suitability Whether the groups’ answers were suited to the different part-tasks.  9  .61 

Elaboration Number of different business-economics concepts or financial consequences 

incorporated in the answers to the different part-tasks. 

9 .53 

Justification Whether the groups justified their answers to the different part-tasks. 9 .73 

Correctness Whether the groups used the business-economics concepts and their interrelationships 

correctly in their answers to the different part-tasks. 

9 .68 

Continuity Whether the groups made proper use of the answers from a prior problem phase.  2 .67 

Quality advice  Whether the groups gave a proper final advice. 

- Number of business-economics concepts incorporated in the advice. 

- Number of financial consequences incorporated in the advice.  

- Whether the final answer conformed to the guidelines provided. 

3 .71 

Total  Overall score on the complex learning task-performance.  41 .89 



 


