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Abstract This study investigated whether and how scripting learners’ use of represen-

tational tools in a computer supported collaborative learning (CSCL)-environment fostered

their collaborative performance on a complex business-economics task. Scripting the

problem-solving process sequenced and made its phase-related part-task demands explicit,

namely defining the problem and proposing multiple solutions, followed by determining

suitability of the solutions and coming to a definitive problem solution. Two tools facili-

tated construction of causal or mathematical domain representations. Each was suited for

carrying out the part-task demands of one specific problem-solving phase; the causal was

matched to problem–solution phase and the mathematical (in the form of a simulation) to

the solution–evaluation phase. Teams of learners (N = 34, Mean age = 15.7) in four

experimental conditions carried out the part-tasks in a predefined order, but differed in the

representational tool/tools they received during the collaborative problem-solving process.

The tools were matched, partly matched or mismatched to the part-task demands. Teams

in the causal-only (n = 9) and simulation-only (n = 9) conditions received either a causal

or a simulation tool and were, thus, supported in only one of the two part-tasks. Teams in

the simulation-causal condition (n = 9) received both tools, but in an order that was

mismatched to the part-task demands. Teams in the causal-simulation condition (n = 7)

received both tools in an order that matched the part-task demands of the problem

phases. Results revealed that teams receiving part-task congruent tools constructed more
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task-appropriate representations and had more elaborated discussions about the domain. As

a consequence, those teams performed better on the complex learning-task.

Keywords Complex learning-tasks � Computer-supported collaborative learning �
Qualitative and quantitative representations � Representational scripting �
Learner interaction

Introduction

The current interest in complex learning is often regarded as education’s response to the

rapidly changing demands of society and work complex learning is necessary to carry out

the activities endemic to modern real-life tasks which are complex because they (1) cannot

be described in full detail, (2) give no certainty about what the best solution is, and

(3) require different perspectives on the problem and the problem-solving strategy for their

solution (Jonassen 2003; Van Merriënboer and Kirschner 2007). To this end, educational

approaches such as collaborative problem-solving are increasingly incorporated into

training programs and curricula. The premise underlying this approach is that externalizing

one’s knowledge, discussing it with peers, and establishing and refining (e.g., specifying

and correcting) a team’s shared understanding of the problem and problem-domain ben-

eficially affects learning (Hmelo-Silver et al. 2007). That is, teams and individuals may

acquire knowledge and skills which can be effectively transferred to and applied in dif-

ferent situations. Educators and instructional designers, however, must realize that these

elements of collaborative problem-solving are those which are carried out by experts and

that learners (e.g., novices) need ample instructional support and guidance to approximate

such a problem-solving approach (Kirschner et al. 2006; Mayer 2004). Without guidance,

learners focus on superficial details of problems instead of on underlying domain principles

(Corbalan et al. 2009), and employ weak problem-solving strategies such as working via a

means-ends strategy towards a solution (Simon et al. 1981).

To address this, the support provided should gradually increase the learners’ level of

expertise, for example by mimicking the processes of experts in a way that learners are

supported in acquiring and applying a well-developed understanding of the domain in

question (Reiser 2004). In most domains, this understanding consists of the availability of

both qualitative and quantitative representations of the domain which enable constructing

meaningful problem representations and flexibly coordinating them (Jonassen 2003;

Löhner et al. 2003). Combining representations is beneficial because different represen-

tations initiate different kinds of operators which act to produce new information sup-

porting problem solvers in coming to suitable solutions to problems (Frederiksen and

White 2002; Scaife and Rogers 1996). Qualitative representations represent the concepts

underlying a particular domain and the inference rules which interrelate them and, thus,

give them meaning. These representations stimulate reasoning about the concepts, their

underlying causal principles, and the circumstances under which those principles can

legitimately be applied, enabling problem solvers to effectively define the problem and

propose multiple solutions for solving it. Quantitative representations represent the for-

malism(s) underlying a particular domain to describe the definitions of concepts and their

functional relationships, for example via algebraic equations in the domain of business-

economics. Such representations stimulate reasoning about the concepts and their math-

ematical relationships, enabling evaluation of the effects of proposed solutions and, thus,

reaching a solution (Jonassen 2003; Ploetzner et al. 1999). Working with multiple
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representations, thus, might be a good way to guide and support complex learning.

Although it is acknowledged that this can foster understanding and problem-solving, not all

studies confirm this. Common here is that learners experience considerable difficulties

translating information from different kinds of representations and coordinating between

them (Ainsworth 2006; Vekiri 2002). Learners, for example, might not understand/know:

• which parts of the domain are represented,

• the relationship between the representations and the task/problem at hand,

• how to select, use or construct appropriate representations,

• whether and how they should interrelate the different kinds of representations.

This raises the question whether and how educators and instructional designers

can effectively guide learners’ problem-solving process and, thus, their complex learning-

task performance. The research reported on in this article introduces an instructional

approach—representational scripting—as a possible solution and examines how and why

this affects complex learning-task performance.

Representational scripting

Design principles

Integrating scripting with representational tools (i.e., representational scripting) is inten-

ded to guide learners in their acquisition of a well developed understanding of a domain

and to apply this understanding while solving a problem. Using such tools can facilitate

constructing domain-specific representations and, thereby, guide reasoning about the

domain. A tool’s ontology (i.e., its objects, relations, and rules for combining objects and

relations) provides specific representational guidance which makes certain concepts and/or

interrelationships (e.g., causal, mathematical) salient above others. In this way, a tool’s

representational guidance supports externalization of knowledge and ideas about specific

aspects of the domain (Fischer et al. 2002; Slof et al. 2010a). This fosters understanding

since it stimulates cognitive and meta-cognitive activities such as (1) selecting relevant

information, (2) organizing information into coherent structures, (3) relating information to

prior understanding, and (4) determining knowledge and comprehension gaps (Hilbert and

Renkl 2008; Stull and Mayer 2007). Embedding representational tools in collaborative

settings, such as computer supported collaborative learning (CSCL)-environments, may

even further stimulate the elaboration of these representations, due to the environment’s

emphasis on dialogue and discussion, so that multiple perspectives on the domain arise

(De Simone et al. 2001; Janssen et al. 2010a).

The mere availability of a representational tool, however, will not automatically support

solving complex problems since such problems are composed of different part-tasks,
namely (1) determining what the problem to be solved is, (2) proposing possible multiple

solutions to the determined problem, (3) judging the suitability of the different solutions

and (4) reaching the solution. To do all of this, multiple perspectives of the problem

domain (i.e., problem representations) are required (Van Bruggen et al. 2003). Problematic

here is that specific representational tools, each with its specific ontology, guide learners

in constructing and discussing specific representations of the domain and are, thus, not

appropriate for carrying out all aspects of the task (Ainsworth 2006; Schnotz and

Kürschner 2008). In other words, a tool’s ontology provides a specific kind of guidance,

which is specified through its expressiveness and processability (see Table 1).
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Expressiveness refers to which concepts and interrelationships can be represented (i.e., a

tool’s specificity) and how accurately this is done (i.e., a tool’s precision). Processability
refers to the differences in processing the information from the representation caused

by the differences in expressiveness, and which determines the number and quality of

inferences that can be made. Less expressive (i.e., less specific and less precise) ontologies

have the advantage of being highly processable (Larkin and Simon 1987) making it easy to

make many inferences from them (i.e., elaboration). Such ontologies guide learners in

elaborating on the concepts of the domain and in relating them to the problem (e.g.,

Jonassen 2003). These ontologies, however, do not have much expressive power (Cox

1999); the inferences made from them are neither specific nor precise. The order of an

ontology (Frederiksen and White 2002) determines the quality of the inferences that can be

made (i.e., kind of reasoning used). A first order representational tool supports reasoning

about causal relationships and guides discussion and/or thought about the problem and

possible solutions. A second order representational tool is more expressive—and thus more

specific and precise—and supports quantitative inference-making enabling negotiation

and/or determination of suitability of the proposed solutions.

When the tools’ ontology is incongruent with the demands of a specific part-task this

will lead to communication problems and decreased performance (Slof et al. 2010b; Van

Bruggen et al. 2003). A reason for this might be that the tool used is not expressive enough

for all part-tasks. To this end, it might be beneficial if learners are provided with different

representational tools for which the representational guidance of each tool is congruent

(i.e., ontologically matched) with the demands of each part-task. To ensure alignment of

the tool, its use, and the part-task demands scripting can be employed (Dillenbourg 2002;

Kollar et al. 2007). According to Dillenbourg, a script is ‘‘a set of instructions regarding to

how the group members should interact, how they should collaborate and how they should

solve the problem’’ (p. 64). Integrating scripting with representational tools sequences the

part-tasks, makes the different part-task demands explicit, and tailors the congruence of the

representational guidance to the part-task demands. This should actively engage learners in

a process of making sense of the domain in question by articulating and discussing multiple

perspectives on the problem and of the problem-solving strategy (Hmelo-Silver et al. 2007;

Ploetzner et al. 1999). Representational scripting, thus, is intended to stimulate learners to

carry out cognitive activities such as (1) discussing the goal of the problem-solving task/

part-tasks, (2) discussing and selecting concepts, principles, and procedures in the domain,

and (3) formulating and revising their decisions (Slof et al. 2010b). Learners may also be

induced to employ a proper problem-solving strategy and reflect on its suitability through

carrying out meta-cognitive activities (Moos and Azevedo 2008). This requires that

learners discuss (1) how they should approach the problem, (2) whether they have finished

the part-tasks on time, and (3) how suitable their approach was.

Table 1 Specification of a representational tools’ ontology and representational guidance

Ontology Representational guidance

Expressiveness Processability

Specificity Precision Elaboration Order

Low–medium Causal directed relations Quasi-structured First Qualitative inference-making

High Model directed relations Structured Second Quantitative inference-making
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Fostering complex learning-task performance in business-economics

In the research reported on here, learners collaborated on solving a case-based business-

economics problem in which they had to advise an entrepreneur about changing the

business strategy to increase profits. To gain insight into the part-tasks and their required

domain-specific representations, a learning-task analysis (Anderson and Krathwohl 2001)

was conducted. Based on these insights, the sequence and demands of the part-tasks were

specified and part-task congruent representational tools were developed (see Table 2).

In the problem–solution phase learners, first, have to determine what the problem is and

what the most important factors are for its solution. Then they have to formulate possible

business-strategy changes (i.e., interventions) and elucidate how the changes might solve

the problem (i.e., problem–solution) by describing how the changes affect outcomes (i.e.,

company result). The representational tool should, thus, facilitate construction and discus-

sion of a causal problem-representation by causally relating the concepts to each other and to

possible interventions. Figure 1 shows an expert’s qualitative representation of the domain.

The causal representational tool facilitates representing the concepts, the interventions and

their causal interrelationships. Selecting relevant concepts and interventions and causally

relating them supports the effective exploration of the solution space and, thus, of finding

multiple solutions to the problem. Learners receiving such a tool could, for example, make

explicit that an intervention such as ‘‘receiving a rebate from a supplier’’ affects the ‘‘total

variable costs’’ which in turn affects the ‘‘total costs’’. Through gradually increasing

learners’ understanding of the underlying qualitative principles governing the domain, it

should be easier for them to come up with an intervention that will solve the problem.

In the solution–evaluation phase learners have to determine the financial consequences

of their proposed interventions and formulate a definitive advice by discussing the suit-

ability of the different interventions with each other. The representational tool must,

therefore, facilitate construction and discussion of a quantitative representation by speci-

fying the relationships as algebraic equations. Figure 2 shows a quantitative presentation of

the domain as seen by an expert. The simulation representational tool facilitates repre-

senting the concepts and their mathematical interrelationships. Selecting relevant concepts

and specifying the interrelationships as algebraic equations supports evaluating the effects

of the proposed interventions and, thus, in choosing a suitable advice. Learners receiving

such a tool could, for example, simulate how an intervention such as ‘‘receiving a rebate

from a supplier’’ affects the ‘‘total variable costs’’ and whether this affects the ‘‘total

costs’’. By manipulating the input values, the values of all other related concepts are

automatically computed. Since such quantitative representations can only be properly

understood and applied when learners have a well-developed qualitative understanding of

the domain, this kind of support is only appropriate for carrying out this type of part-task.

Table 2 Matching the representational tools’ guidance to the task demands of each problem phase

Problem
phase

Task demands Representational
tool

Representational guidance

Problem–
solution

Defining the problem and
proposing multiple solutions
to the problem

Causal Representing and discussing causal
relationships between the concepts
and the possible solutions

Solution–
evaluation

Determining suitability of the
solutions and coming to a
definitive solution to the
problem

Simulation Representing and discussing
mathematical relationships between
the concepts and enabling
manipulation of their values

Successfully carrying out complex learning-tasks 627

123



Research questions and hypotheses

The present study is aimed at answering the following research question: ‘‘How and why

does constructing part-task congruent representations affect the collaboration process and

complex learning-task in teams?’’ Due to the presumed match between tools’ represen-

tational guidance and all part-tasks demands (i.e., representational scripting), it was

Fig. 1 Experts’ qualitative representation of the domain

Fig. 2 Experts’ quantitative representation of the domain
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hypothesized that teams receiving and using such tools, in comparison to teams that did

not, would:

H1 Achieve a better problem solving performance, evidenced by proposing better

solutions and a better definitive advice to the problem.

H2 Experience a qualitatively better problem solving process, evidenced by

(a) constructing representations that are more suited for carrying out the part-tasks, and

(b) having more fruitful discussions about the problem, their problem-solving strategy

and the problem domain.

Method

Participants

Participants were students from six business-economics classes in three secondary schools

in the Netherlands. The total sample consisted of 102 students (61 male, 41 female; mean

age = 15.7 years; SD = 0.56, Min = 14, Max = 17). The students were, within classes,

randomly assigned to 34 teams; nine triads in the causal-only, simulation-only and sim-

ulation-causal conditions and seven triads in the causal-simulation condition. Since the

collaborative problem solving task was developed in cooperation with their teachers it is

regarded as a suited pedagogical activity for the students at that point in the curriculum. A

pre-test (20 multiple-choice items, measuring factual, conceptual and procedural knowl-

edge, a = 0.60) was administered to determine students’ prior understanding of the

domain. On average, students scored 10.9 out of the maximum of 20 points, and there were

no significant differences between conditions and classes.

Design

To study the effects of representational scripting, four experimental conditions were

defined by matching, partly matching or mismatching the tool’s representational guidance

to the demands of each problem phase (see Table 3). The rationale behind this design is

twofold, namely it may provide insight into the effects of (1) a specific representational

tool and (2) the sequence in which the tools are provided. By doing so not only the value

of qualitative and quantitative representations but also their interrelationship can be

examined.

Table 3 Overview of the experimental conditions

Conditions Problem phases and provided representational
tools

Match/mismatch

Problem–solution Solution–evaluation

Causal-only Causal tool Causal tool Match for the solution phase only

Simulation-only Simulation tool Simulation tool Match for the evaluation phase only

Simulation-causal Simulation tool Causal tool Mismatch for all problem phases

Causal-simulation Causal tool Simulation tool Match for all problem phases
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Scripting the problem-solving process sequenced and made the part-task demands

explicit. These demands are (1) defining the problem and proposing multiple solutions, and

(2) determining the suitability of the solutions and coming to a definitive solution. Teams

in all conditions had to carry out the part-tasks in a predefined order, but differed in the

representational tool they received. Teams in the matched (i.e., causal-simulation) and the

mismatched (i.e., simulation-causal) conditions received both representational tools in a

phased order. The difference between these conditions was that the tools were part-task

congruent or not. In the simulation-causal condition the teams received both tools, but in an

order that was mismatched to the part-task demands (i.e., simulation tool for the definition

phase and causal tool for the evaluation phase). In contrast, teams in the causal-simulation

condition received representational tools considered to be well-suited to the part-task

demands of each problem phase. In the partly matched conditions (i.e., causal-only,

simulation-only), teams received either a causal or a simulation tool for carrying out both

part-tasks and for constructing the part-task related representations. The tool’s represen-

tational guidance matched only one of the part-task demands.

CSCL-environment

The teams worked in a CSCL-environment called Virtual Collaborative Research Institute

(VCRI; Jaspers et al. 2005; see Fig. 3), a groupware application for supporting the col-

laboratively carrying out problem-solving tasks and research projects. For this study, the

tools in VCRI were augmented with representational scripting. In the Assignment menu,

team members can find the description of the task/part-tasks. Furthermore, additional

information sources such as a definition list, formula list, and problem-solving clues were

Fig. 3 Screenshot of the VCRI-environment (causal representational tool)
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also available here. The Model menu enabled team members to construct and adjust their

representations by adding or deleting relationships. At the start of the first lesson, all

diagram boxes—representing the different concepts/solutions—were placed on the left side

of the Representational tool so team members could select them when they wanted to add a

new causal or mathematical relationship. The Chat tool enabled synchronous communi-

cation and supported team members in externalizing and discussing their knowledge and

ideas about the content of the domain and their problem-solving strategy. The chat history

is automatically stored and can be re-read by the team members. The Co-writer is a shared

text-processor where team members could collaboratively formulate and revise their

decisions concerning the part-tasks. The Notes tool is an individual notepad that allowed

team members to store information and structure their own knowledge and ideas before

making them explicit to the other members. The Status bar is an awareness tool that

displayed which team members were logged into the system and which tool a member was

using at any specific moment.

The different conditions were information equivalent and, thus, only differed in the way

the representational tools were intended to guide performance. All teams had to carry out

the part-tasks in a predefined order namely starting with the problem–solution phase and

ending with the solution–evaluation phase. When the team members agreed that the part-

task demands of the first phase were completed, they had to ‘close’ that phase in the

assignment menu. This ‘opened’ the second phase, which had two consequences for all

team members, namely they were instructed to carry out the part-task demands of this

phase and then revise their representation of the domain so it concurred with the decisions

they made when carrying out this part-task. Teams in the causal-only and simulation-only

conditions were facilitated in elaborating on their previously constructed representation.

Since those teams kept the same representational tool, all concepts and their relationships

remained visible and could be revised as the team members deemed appropriate for car-

rying out the task demands of the following phase. Teams in the simulation-causal and

causal-simulation conditions were facilitated in acquiring and applying a different quali-

tative or quantitative perspective of the domain. Their previously selected concepts

remained visible and they were instructed to replace the relationships by specifying them in

either a causal manner (i.e., simulation-causal) or as algebraic equations (i.e., causal-

simulation) with the aid of their new tool.

Procedure

All 34 teams spent four, 45-min lessons solving the problem during which learners worked

on separate computers. Before the first lesson, learners received an instruction about the

team composition, the complex learning-task and the CSCL-environment. The instruction

made clear that their score on the complex learning-task would serve as a grade affecting

their GPA. Learners worked on the problem in the computer classroom and all actions

(e.g., constructed representations, contributions to the chat-discussion, and decisions

concerning the part-tasks) were logged. During the lessons, the teacher was on stand-by for

task-related questions and a researcher was present for technical support.

Variables and analyses

To gain insight in how and why the representational scripting affects learning-task

performance in CSCL an effect oriented and a process oriented research approach

were combined (e.g., Janssen et al. 2010b). Data on both learning results (i.e., complex
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learning-task performance) and learning process (i.e., constructed representations and

learner interaction) were collected.

Complex learning-task performance

To examine performance quality, an assessment form for both part-tasks and for the quality

of the definitive advice was developed. Table 4 provides a description of the aspects on

which the decisions were evaluated, the number of items, and their internal consistency

scores (i.e., Cronbach’s alpha). All 28 items could be coded as ‘0’ (wrong), ‘1’ (adequate)

or ‘2’ (good); the higher the code, the higher the quality of the decision. Teams could, thus,

achieve a maximum score of 56 points for their complex learning-task performance (28

items 9 2 points) and a minimum of 0 points. The internal consistency score for the whole

complex learning-task performance was 0.84.

The effect of condition was examined through conducting a one-way ANOVA on the

total performance score that the teams received. Planned orthogonal contrasts were con-

structed to examine whether a significant difference could be found between the (1) partly

matched conditions and the matched/mismatched conditions), (2) matched condition (i.e.,

causal-simulation) and the mismatched condition (i.e., simulation-causal), and (3) two

partly matched conditions (i.e., causal-only versus simulation-only).

Constructed representations

A content analysis was conducted on the phase-related representations to examine the

quality of the constructed representations. To this end, the representations were selected at

the end of each problem phase just before a phase was ‘closed’, and transferred from the

log-files using the Multiple Episode Protocol Analysis program (MEPA; Erkens 2005). The

Table 4 Items and reliability of complex learning-task performance

Criteria Description Items a

Suitability Whether the teams’ decisions were suited to the different
part-tasks

6 0.65

Elaboration Number of different business-economics concepts or financial
consequences incorporated in the decisions to the different
part-tasks

6 0.47

Justification Whether the teams justified their decisions to the different
part-tasks

6 0.51

Correctness Whether the teams used the business-economics concepts and
their interrelationships correctly in their decisions to the
different part-tasks

6 0.55

Continuity Whether the teams made proper use of the decisions from the
prior problem phase

1 –

Quality advice Whether the teams gave a proper definitive advice
Number of business-economics concepts incorporated in the
advice
Number of financial consequences incorporated in the advice
Whether the definitive advice conformed to the guidelines
provided

3 0.71

Total score Overall score on the complex learning-task performance 28 0.84
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representations were automatically coded by comparing them with the expert’s represen-

tations (see Figs. 1, 2).

The effect of condition was examined by analyzing the part-task related representations

of the concepts, their relationships and the correctness of those relationships.

Learner interaction

MEPA was also used to examine the quality of learner interaction. The content of the chat-

protocols was assumed to represent what learners know and consider important for car-

rying out the problem-solving task (Chi 1997; Moos and Azevedo 2008). MEPA uses a

multidimensional data structure, allowing chat-protocols to be segmented into multiple

levels for analysis, here the episodic level and the event level. Measurement at the episodic
level was aimed at gaining insight into the learners’ meta-cognitive, cognitive and off-task
activities (see Table 5). An episode is regarded as a dialogue between minimally two

learners in which a distinct discourse topic is discussed and which ends with a confirmation

by at least two learners that they understood each other. For example, discussing the

suitability of a problem solving strategy requires the involvement of multiple learners who

each use more than one utterance to make their point (Mercer et al. 2004). The topics were

hand-coded and Cohen’s kappa was computed for three independently coded chat-proto-

cols (2,457 lines) by two coders. An overall Cohen’s Kappa of 0.74 was found, an

intermediate to good result (Cicchetti et al. 1978).

Measurement at the event level was aimed at gaining insight into the discussion of

concepts, interventions and the ways of interrelating them (see Table 6). A problem here is

that even within in a single sentence, multiple concepts or statements may be expressed

and, thus, would require multiple codes (Strijbos et al. 2006). Utterances were automati-

cally segmented into smaller, still meaningful, subunits with a MEPA-filter using 300 ‘if–

then’ decision rules. Punctuation marks (e.g., period, exclamation point, question mark)

and connecting phrases (e.g., ‘and if’, or ‘but if’) were used to segment the utterances.

After segmentation, coding was done automatically with a MEPA-filter which makes use

Table 5 Coding and category kappa’s (Jc) of the meta-cognitive, cognitive and off-task activities

Activities Discourse topic Discussion of Jc

Meta-cognitive 0.75

Planning The problem-solving strategy; how and when the
group has to carry out a specific activity

0.65

Monitoring Whether they have finished the part-tasks on time 0.71

Evaluating The suitability of their problem-solving strategy 0.78

Cognitive 0.72

Preparation The goal of the problem-solving task and the
different part-tasks

0.55

Executing Content-related topics and formulating/revising
their decisions to the part-tasks

0.85

Ending How, where, and when their decisions need
to be registered

0.75

Off-task 0.79

Social Non-task related topics 0.83

Technical Problems with the CSCL-environment 0.76
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of 814 ‘if–then’ decision rules containing explicit references to a concept, solution or

relationship (e.g., name, synonyms, etc.) which were coded as representing that concept,

solution or relationship. Comparison of the three hand-coded protocols (2,457 lines) to the

automatically coded protocols yielded an overall Cohen’s Kappa’s ranging from 0.65 to

0.73.

The effect of condition on the quality of the learner interaction was determined using

multilevel analysis (MLA) which addresses the statistical problem of non-independence

often associated with CSCL research (Cress 2008; Janssen et al. 2010a). Many statistical

techniques (e.g., t-test, ANOVA) assume score-independence and violating this assump-

tion compromises interpretation of the output of the analyses (e.g., t-value, standard error,

P-value). Non-independence was determined by computing the intraclass correlation

coefficient and its significance (Kenny et al. 2006) for all dependent variables relating to

learner interaction. Its value demonstrated non-independence (a\ 0.05) for all tests,

justifying MLA use. MLA entails comparing the deviance of an empty model and a model

with one or more predictor variables to compute a possible decrease in deviance. The latter

model is considered better when there is a significant decrease in deviance from the empty

model (tested with a v2-test). Almost all reported v2-values were significant (a\ 0.05) and,

therefore, the estimated parameters of these predictor variables (i.e., effects of condition)

were tested for significance. Since there were specific directions of the results expected all

analyses are one-tailed.

Results

Complex learning-task performance

First the effects of the four different conditions on the total score for team learning-task

performance were examined. Inspection of the means and standard deviations (see Table 7)

revealed differences between teams in the causal-only (M = 28.22, SD = 7.50), simula-

tion-only (M = 28.00, SD = 4.44), simulation-causal (M = 31.56, SD = 6.46), causal-

simulation (M = 39.14, SD = 1.22) conditions. One-way ANOVA revealed a significant

effect of condition on learning-task performance, F(3, 21.50) = 7.00, P \ 0.01, x2 = 0.33

(Brown-Forsythe because homogeneity of variance assumption was violated). Next,

the constructed planned orthogonal contrasts were carried out to compare the (1) single

tool partly matched conditions to the multi tool matched and mismatched conditions, (2)

matched condition (i.e., causal-simulation) to the mismatched condition (i.e., simulation-

causal), and (3) two partly-matched conditions (i.e., causal-only versus simulation-only).

Analysis revealed that teams in the multiple tool conditions significantly outperformed the

Table 6 Coding and category kappa’s (Jc) MEPA-filter of the discussion of the domain

Categories Discussion of the Jc

Concepts Business-economics concepts 0.70

Solutions Possible interventions 0.73

Relations Different kinds of interrelationships 0.65

Causal Causal relationship within/between concepts/solutions 0.69

Mathematical Quantitative relationships within/between concepts 0.57
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teams in the single tool conditions, t(21.61) = 3.97, P \ 0.01 (equal variances not

assumed), r = 0.65 and that teams in the matched condition significantly outperformed

teams in mismatched condition, t(15.40) = 7.24, P \ 0.01 (equal variances not assumed),

r = 0.88. No significant difference was found between teams in the causal-only and sim-

ulation-only conditions, t(30) = 1.50, P [ 0.05, r = 0.26. To examine the differences

between the mismatched condition and the partly matched conditions, post-hoc tests

(Games-Howell) were carried out. No significant differences were found (t(16) = 1.01,

P [ 0.05, r = 0.24, and t(16) = 1.36, P [ 0.05, r = 0.32 respectively), indicating that

learning-task performance in the mismatched condition did not differ from performance in

both partly matched conditions.

Overall, the results show that constructing different kinds of representations is beneficial

to constructing only one kind of representation, but that this advantage is only significant

when a tool’s representational guidance is matched to the task demands of each problem

phase (i.e., the matched, causal-simulation condition).

Constructed representations

Content analyses of the quality of the constructed representations in relation to the task

demands of the problem phases revealed several differences between conditions (see

Fig. 4).

Compared to teams in the simulation-only condition, teams in the causal-only condition

represented significantly more concepts (t(16) = 2.56, P = 0.02) and relationships

(t(16) = 4.24, P = 0.00). Also, teams in the matched and mismatched conditions had a

more diverse pattern in representing domain content. Those teams also adjusted their

domain representations more often when carrying out the part-tasks. Compared to teams in

the mismatched condition, teams in the matched condition significantly represented (1)

more relationships during the problem–solution phase (t(14) = 2.77, P = 0.03) but made

more errors representing them (t(14) = 4.18, P = 0.00), (2) fewer relationships during the

solution–evaluation phase (t(14) = -2.29, P = 0.05) but made fewer errors representing

them (t(14) = -3.59, P = 0.00).

Overall, these analyses show that teams using multiple representational tools, in contrast

to teams using a single tool, varied more in representing the domain content. This was,

Table 7 Means and standard deviations for differences between conditions concerning complex learning-
task performance

Criteria Causal-only
condition
(nteam = 9)

Simulation-only
condition
(nteam = 9)

Simulation-causal
condition
(nteam = 9)

Causal-simulation
condition
(nteam = 7)

M (SD) M (SD) M (SD) M (SD)

Suitability 9.89 (2.62) 9.89 (1.83) 10.00 (2.24) 12.00 (0.00)

Elaboration 6.22 (2.33) 6.33 (1.87) 7.22 (2.59) 9.00 (0.58)

Justification 3.00 (1.50) 3.11 (1.36) 4.00 (1.73) 5.14 (1.46)

Correctness 4.44 (1.67) 4.22 (1.20) 5.11 (1.54) 6.14 (0.38)

Continuity 1.44 (0.73) 1.56 (0.53) 1.56 (0.73) 2.00 (0.00)

Quality advice 3.22 (1.39) 2.89 (1.27) 3.67 (1.12) 4.86 (0.90)

Total score 28.22 (7.50) 28.00 (4.44) 31.56 (6.46) 39.14 (1.22)
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however, only beneficial for teams in the matched condition since they became more

selective in representing the concepts and in specifying their relationships as algebraic

equations.

Learner interaction

Cognitive, meta-cognitive and off-task activities

Inspection of the means and standard deviations (see Table 8) revealed differences

between conditions concerning the meta-cognitive and cognitive activities learners

exhibited. MLAs revealed that condition was a significant predictor for these differences

(see Tables 9, 10, 11). First, a category effect for meta-cognitive activities was found when

comparing learners in the matched condition to learners in both the simulation-only

(b = 5.37, P = 0.07) and mismatched conditions (b = 6.17, P \ 0.05). Learners in the

matched condition exhibited more meta-cognitive activities than learners in both other

conditions. This was mainly due to the fact that learners in that condition more often

discussed whether they had finished their part-tasks on time (i.e., monitoring) than learners

in the simulation-only (b = 3.96, P \ 0.05) and mismatched conditions (b = 4.17,

P \ 0.05). Also, learners in the matched condition more often discussed what the goal of

Fig. 4 Content analyses for effects of condition concerning learner tool use

Table 8 Means and standard deviations for differences between conditions concerning meta-cognitive,
cognitive and off-task activities

Causal-only
condition
(nlearner = 27)

Simulation-only
condition
(nlearner = 27)

Simulation-causal
condition
(nlearner = 27)

Causal-simulation
condition
(nlearner = 21)

M (SD) M (SD) M (SD) M (SD)

Meta-cognitive 17.55 (9.11) 14.78 (9.94) 13.85 (8.06) 20.14 (10.71)

Planning 5.14 (3.41) 3.81 (3.31) 3.46 (3.15) 4.62 (3.61)

Monitoring 10.50 (6.08) 9.19 (6.01) 8.92 (5.62) 13.14 (7.78)

Evaluating 1.91 (2.11) 1.78 (2.28) 1.46 (1.30) 2.38 (2.36)

Cognitive 15.36 (11.37) 17.63 (11.38) 14.23 (9.71) 20.52 (8.04)

Preparation 1.86 (1.94) 1.74 (1.70) 2.54 (2.23) 2.90 (1.70)

Executing 12.50 (9.62) 14.37 (9.93) 10.50 (7.69) 15.29 (7.96)

Ending 1.00 (1.16) 1.52 (1.55) 1.19 (1.47) 2.33 (2.20)

Off-task 11.00 (7.78) 11.89 (11.32) 7.77 (5.52) 9.62 (5.91)

Social 9.41 (7.16) 10.30 (10.16) 7.04 (5.75) 8.57 (5.96)

Technical 1.59 (1.84) 1.59 (2.37) 0.73 (1.49) 1.05 (1.50)
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the problem-solving task and the different part-tasks were (i.e., preparation) than learners

in both causal-only (b = 1.04, P \ 0.05) and simulation-only conditions (b = 1.16,

P \ 0.05). Finally, learners in the matched condition more often discussed whether they

should end a part-task (i.e., ending) than learners in the causal-only (b = 1.33, P \ 0.01),

simulation-only (b = 0.81, P = 0.05) and mismatched (b = 1.14, P \ 0.05) conditions.

Overall, these analyses show that learners in the matched condition exhibited more

meta-cognitive and cognitive activities than learners in the other conditions.

Concepts, solutions and relations

Differences were found for discussions of the domain between conditions (see Table 12).

MLAs revealed two category effects when comparing learners in the matched condition to

learners in the mismatched condition (see Table 13).

Table 9 Estimates for random intercept model for differences between conditions concerning meta-cog-
nitive activities

Meta-
cognitive

Planning Monitoring Evaluating

b SE b SE b SE b SE

c00 = Intercept 19.63 2.29 4.59 0.75 12.30 1.40 2.74 0.60

b1 = causal-simulation vs. causal-only 2.39 3.59 -0.53 1.19 2.57 2.18 0.37 0.94

b2 = causal-simulation vs. simulation-only 5.37 3.45 0.80 1.14 3.96* 2.09 0.60 0.91

b3 = causal-simulation vs. simulation-causal 6.17* 3.47 1.15 1.15 4.17* 2.10 0.86 0.91

Variance

Group level 67.09 9.45 35.51 1.85

Individual level 24.51 2.00 5.31 2.63

Deviance 681.67 494.19 612.64 377.51

Decrease in deviance 16.17** 8.32* 14.02** 5.05

* P \ 0.05, ** P \ 0.01

Table 10 Estimates for random intercept model for differences between conditions concerning cognitive
activities

Cognitive Preparation Executing Ending

b SE b SE b SE b SE

c00 = Intercept 21.11 2.50 2.90 0.43 15.29 2.59 2.33 0.36

b1 = causal-simulation vs. causal-only 4.70 4.00 1.04* 0.61 2.34 3.57 1.33** 0.51

b2 = causal-simulation vs. simulation-only 2.89 3.85 1.16* 0.57 0.92 3.45 0.81 0.48

b3 = causal-simulation vs. simulation-causal 6.29 3.87 0.37 0.58 4.78 3.46 1.14* 0.49

Variance

Group level 76.53 3.55 52.92 2.56

Individual level 32.95 0.11 29.14 0.07

Deviance 696.33 392.88 666.55 362.49

Decrease in deviance 15.72** 6.82* 14.45** 8.17*

* P \ 0.05, ** P \ 0.01
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Table 11 Estimates for random intercept model for differences between conditions concerning off-task
activities

Off-task Social Technical

b SE b SE b SE

c00 = Intercept 9.62 2.18 8.57 2.16 1.05 0.45

b1 = causal-simulation vs. causal-only -1.47 3.03 -0.85 2.99 -0.58 0.63

b2 = causal-simulation vs. simulation-only -2.27 2.91 -1.72 2.88 -0.54 0.60

b3 = causal-simulation vs. simulation-causal 1.88 2.92 1.58 2.89 0.31 0.61

Variance

Group level 50.65 39.42 3.10

Individual level 16.46 19.56 0.39

Deviance 654.12 637.65 386.91

Decrease in deviance 17.76** 12.67** 5.04

* P \ 0.05, ** P \ 0.01

Table 12 Means and standard deviations for differences between conditions concerning the discussion of
the domain

Causal-only
condition
(nlearner = 27)

Simulation-only
condition
(nlearner = 27)

Simulation-causal
condition
(nlearner = 27)

Causal-simulation
condition
(nlearner = 21)

M (SD) M (SD) M (SD) M (SD)

Concepts 17.05 (18.66) 24.48 (20.29) 15.92 (11.76) 27.95 (20.69)

Solutions 14.55 (15.53) 16.41 (17.58) 12.27 (10.33) 20.43 (15.65)

Relations 22.18 (19.81) 26.00 (18.28) 17.58 (13.25) 34.14 (20.61)

Causal 14.05 (13.20) 15.15 (12.44) 10.58 (9.73) 20.71 (13.35)

Mathematical 8.14 (7.37) 10.85 (7.78) 7.00 (4.75) 13.43 (9.03)

Table 13 Estimates for random intercept model for differences between conditions concerning the dis-
cussion of the domain

Concepts Solutions Relations Causal Mathematical

b SE b SE b SE b SE b SE

c00 = Intercept 27.95 5.91 20.43 4.96 34.14 5.62 20.71 3.88 13.43 2.02

b1 = causal-simulation vs.
causal-only

9.60 8.14 4.97 6.82 10.66 7.75 5.80 5.35 4.96* 2.80

b2 = causal-simulation vs.
simulation-only

3.47 7.88 4.02 6.61 8.14 7.49 5.57 5.17 2.58 2.69

b3 = causal-simulation vs.
simulation-causal

11.91 7.90 8.22 6.62 16.47* 7.51 10.14* 5.19 6.36* 2.71

Variance

Group level 158.72 104.22 184.54 78.18 39.75

Individual level 191.87 137.25 159.45 79.35 15.30

Deviance 783.55 746.81 790.15 714.55 634.31

Decrease in deviance 20.33** 17.59** 21.68** 18.41** 16.85**

* P \ 0.05, ** P \ 0.01
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First, a marginally significant category effect for concepts (b = 11.91, P = 0.07) was

found; learners in the matched condition discussed more concepts than learners in the

mismatched condition.

Second, a significant category effect for relations (b = 16.47, P \ 0.05) was found;

learners in the matched condition discussed more and different kinds of relationships than

learners in the mismatched condition. MLAs also revealed that learners in the matched

condition discussed more mathematical relationships than learners in both the causal-only

(b = 4.96, P \ 0.05) and mismatched (b = 6.36, P \ 0.05) conditions.

Overall, these analyses show that teams in the matched condition had more elaborate

discussions about the domain than teams in the mismatched condition.

Discussion

This study examined how and why scripting the use of representational tools (i.e., repre-

sentational scripting) in a CSCL-environment affects a team’s performance of a complex

business-economics task. To examine the effects of this approach, a combined effect and

process oriented research approach on collaborative learning was used (Janssen et al.

2010b).

The effect oriented view revealed that teams of learners receiving representational tools

that were completely matched to the part-task demands of the problem phases, (i.e., a

causal representation followed by a simulation representation) performed better on the

complex learning task. That is, those teams formulated better decisions with respect to the

part-tasks and came up with better definitive solutions to the problem than teams in

the partly matched (i.e., causal-only, simulation-only) and mismatched (i.e., a simulation

representation followed by a causal one) conditions. No significant difference between the

partly matched and mismatched conditions was found.

To explain how and why representational scripting affected the learning process, a

process oriented approach was used. Three differences concerning the quality of the

learning process were found.

First, teams in the both the matched and mismatched conditions adjusted their domain

representations to the part-task demands of the problem phases. However, this was only

beneficial for teams in the matched condition since they started with the construction of a

broad representation and gradually became more selective in representing the concepts and

specifying their relationships as algebraic equations. This is the way that solving such a

problem should theoretically be carried out (Van Merriënboer and Kirschner 2007). In

contrast, teams who had access to only one of the representational tools (i.e., the partly

matched conditions) showed a stable representation pattern of the domain content. Those

teams either represented many concepts and relationships (i.e., causal-only) or did not (i.e.,

simulation-only) and were, thus, less occupied with fine-tuning their representations to the

different part-task demands.

Second, teams in the matched condition carried out more cognitive and meta-cognitive

activities than teams in the other conditions. They more often discussed (1) whether they

had finished their part-tasks on time (i.e., monitoring), (2) what the goal of the problem-

solving task and the different part-tasks were (i.e., preparing), and (3) whether they should

end a part-task (i.e., ending). Carrying out those meta-cognitive and cognitive activities is

often regarded as beneficial to collaborative problem-solving (Hmelo-Silver et al. 2007).

Third, teams in the matched condition had more elaborate discussions of the domain

content than teams in the mismatched condition. The representational scripting shaped the
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use of the representational tools and guided learners’ content-related interaction towards

acquiring and applying suitable qualitative and quantitative problem representations.

Although the results indicate that scripting learners’ tool use seems beneficial for

solving complex problems, some of the findings require further discussion. Unexpectedly,

almost no differences for learners’ discussion of the domain content were found in com-

parisons of teams in the matched condition to those in the partly matched conditions. The

role of scripting might account for this. Structuring the problem-solving process into

phases, each focusing on one of the part-tasks, could have affected the content related

interaction in a phase-equivalent manner (Dillenbourg 2002). That is, all teams were

instructed to construct a domain representation for each part-task and were, thereby,

stimulated to discuss the domain content. This explanation is consistent other research on

CSCL showing that collaborative construction of representations stimulates learners’

cognitive activities (De Simone et al. 2001; Janssen et al. 2010a). This line of reasoning

might seem to contradict the result that teams in the mismatched condition had fewer

discussions about the content of the domain than teams in the matched condition. However,

when the instructions for problem-solving are not completely congruent with the repre-

sentational tools used, the scripting might negatively affects learners’ discussions. Another

limitation may lie in the measurement of the quality of the learning process. Solely coding

and counting the number of concepts and relationships discussed and represented, though

useful, might not lead to full understanding of the dynamics of collaborative learning

(Hmelo-Silver et al. 2008). It does not, for example, provide insight into (1) the evolution

of understanding and the correctness of the content-related interaction and (2) how learners

translate information from and coordinate information between their constructed repre-

sentations. One way to address this, is to determine how many errors learners make when

interrelating the concepts per problem phase. Insight into the quality can be gained by

comparing the number and kinds of errors made in each phase.

Implications and future research

Representational scripting appears to have positive effects on learning. When properly

matched to part-task demands, a representation’s specific ontology can evoke elaborate and

meaningful discussion of the domain and foster complex learning-task performance

(Ainsworth 2006; Slof et al. 2010a). These results are in line with those of others who

stress the importance of creating and interrelating qualitative and quantitative represen-

tations of the domain for learning (Frederiksen and White 2002; Löhner et al. 2003). Those

studies, however, do not provide guidelines for designing learning-environments (e.g.,

CSCL-environments) aimed at fostering complex learning-task performance. In this

respect, the present study yields two important principles. First, to support the acquisition

of a well-developed understanding of a domain, instruction should gradually increase the

complexity of the domain; introducing qualitative representations before quantitative ones

(Mulder et al. 2011). Second, to support application of that understanding, instruction

should allow for constructing representations congruent with the tasks to be carried out

(Schnotz and Kürschner 2008).

There are, however, multiple reasons to assume that these design principles do not

automatically apply to other domains, learning tasks and settings. To address this, several

remarks and suggestions for future research are provided.

First, whereas many domains (e.g., business-economics, meteorology, physics) require

multiple problem representations, the effects of a particular design depend on the
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characteristics of the learning task and the involved knowledge domains (Elen and

Clarebout 2007). When designing tools and/or learning environments, one should take this

carefully into account. To address this, educators and instructional designers should gain

insight into the specifics of the learning tasks by conducting a learning-task analysis

(Anderson and Krathwohl 2001). If analysis reveals that the entire task needs to be

sequenced in part-tasks, their required domain-specific perspectives need to be determined.

Based on these insights, the sequence and the demands of the part-tasks can specified and

part-task congruent tools can be developed.

Second, the effects of the design principles were studied in a collaborative leaning

setting. This strategy makes it hard to determine what actually caused the beneficial effect:

constructing part-task congruent representations and/or discussing them with team mem-

bers? Thus, from this study it may be concluded only that representing the domain in a

part-task congruent manner and discussing those representations can foster complex

learning. Since other studies have shown that individual learning-task performance can

also be guided by providing representations or letting students construct their own (Larkin

and Simon 1987; Vekiri 2002), it might be the case that the design principles can also be

beneficially applied in this setting. Future research might address this by examining

whether individual learners can also be guided when carrying out complex learning tasks.

Finally, guiding complex learning within a specific course may be beneficial, but is this

also the case when the same design principles are employed throughout the whole cur-

riculum? In other words, how much should learners’ cognitive behavior be structured and

when should this be more problematized (Reiser 2004)? There seems to be a delicate

balance between the two since learners (i.e., novices) encounter difficulties when carrying

out complex tasks without guidance when on a curricular level they should be able to

perform such tasks on their own. Perhaps educators and instructional designers can address

this by gradually diminishing the amount of instructional support (fading; Kollar et al.

2007). With regard to representational scripting, this might be achieved by letting learners

carry out multiple but comparable tasks and decreasing the amount of guidance step-by-

step. It would be interesting to study which aspect of representational scripting should be

decreased first, sequencing the part-task and their task demands or part-task congruent

support?

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representa-
tions. Learning and Instruction, 16, 183–198.

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision
of Bloom’s taxonomy of educational objectives. New York: Longman.

Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide. Journal of the
Learning Sciences, 6, 271–315.

Cicchetti, D. V., Lee, C., Fontana, A. F., & Dowds, B. N. (1978). A computer program for assessing specific
category rater agreement for qualitative data. Educational and Psychological Measurement, 38,
805–813.
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Löhner, S., Van Joolingen, W. R., & Savelsbergh, E. R. (2003). The effect of external representations on
constructing computer models of complex phenomena. Instructional Science, 31, 395–418.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psy-
chologist, 59(1), 14–19.

Mercer, N., Littleton, K., & Wegerif, R. (2004). Methods for studying the processes of interaction and
collaborative activity in computer-based educational activities. Technology, Pedagogy and Education,
13, 195–212.

Moos, D. C., & Azevedo, R. (2008). Monitoring, planning, and self-efficacy during learning with hyper-
media: The impact of conceptual scaffolds. Computers in Human Behavior, 24, 1686–1706.

Mulder, Y. G., Lazonder, A. W., & De Jong, T. (2011). Comparing two types of model progression in an
inquiry learning environment with modelling facilities. Learning and Instruction, 21, 614–624.

Ploetzner, R., Fehse, E., Kneser, C., & Spada, H. (1999). Learning to relate qualitative and quantitative
problem representations in a model-based setting for collaborative problem solving. Journal of the
Learning Sciences, 8, 177–214.

642 B. Slof et al.

123



Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing
student work. Journal of the Learning Sciences, 13, 273–304.

Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International
Journal of Human-Computer Studies, 45, 185–213.
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