1,578 research outputs found

    Improvement of strength and water absorption of Interlocking Compressed Earth Bricks (ICEB) with addition of Ureolytic Bacteria (UB)

    Get PDF
    Interlocking Compressed Earth Brick (ICEB) are cement stabilized soil bricks that allow for dry stacked construction. This characteristic resulted to faster the process of building walls and requires less skilled labour as the bricks are laid dry and lock into place. However there is plenty room for improving the interlocking bricks by increase its durability. Many studies have been conducted in order to improve the durability of bricks by using environmentally method. One of the methods is by introducing bacteria into bricks. Bacteria in brick induced calcite precipitation (calcite crystals) to cover the voids continuously. Ureolytic Bacteria (UB) was used in this study as a partial replacement of limestone water with percentage of 1%, 3% and 5%. Enrichment process was done in soil condition to ensure the survivability of UB in ICEB environment. This paper evaluates the effect of UB in improving the strength and water absorption properties of ICEB and microstructure analysis. The results show that addition of 5% UB in ICEB indicated positive results in improving the ICEB properties by 15.25% in strength, 14.72% in initial water absorption and 14.68% reduction in water absorption. Precipitation of calcium carbonate (CaCo3) in form of calcite can be distinguish clearly in microstructure analysis

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Experimental study of on-body radio channel performance of a compact ultra wideband antenna

    Get PDF
    In this paper, on-body radio channel performance of a compact ultra wideband (UWB) antenna is investigated for body-centric wireless communications. Measurement campaigns were first done in the chamber and then repeated in an indoor environment for comparison. The path loss parameter for eight different on-body radio channels has been characterized and analyzed. In addition, the path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. Results and analysis show that, compared with anechoic chamber, a reduction of 16.34% path loss exponent is noticed in indoor environment. The antenna shows very good on-body radio channel performance and will be a suitable candidate for future efficient and reliable body-centric wireless communications

    Wireless Alliance for Testing Experiment and Research (WALTER) Experts Workshop

    Get PDF
    The purpose of the publication is to describe the WALTER experts workshop and related results and findings. The workshop was conducted in Ispra, Varese, Italy from the 2nd to the 3rd of July 2008 at the European Commission JRC facilities. The workshop was organized as part of the FP7 WALTER project, which has the objective of define a networked test bed laboratory to evaluate UltraWideBand (UWB) technology and equipment. The purpose of WALTER workshop was to present and discuss the current regulatory, standardization and research status of UltraWideBand (UWB) technology with special focus on the definition of requirements, methodologies and tools for UWB measurements and testing. The WALTER workshop had the following main objectives: - Identify the main regulatory and standardization challenges for the adoption of UWB in Europe and the world. Support the identification and resolution of conflicting requirements. - Identify the main challenges in the UWB testing and measurements. Describe how the current industrial and research activity could support the resolution of these challenges. - Discuss the future developments like UWB at 60 GHz and innovative interference and mitigation techniques including Detect And Avoid (DAA). A number of international experts in the UltraWideBand field have been invited to participate to this workshop, to encourage bi-directional communication: in one direction to disseminate the information on WALTER project and its activities, in the other direction to collect the input and feedback on the regulatory and standardization work, industrial activity and research studies.JRC.G.6-Sensors, radar technologies and cybersecurit

    Ultra Wideband Preliminaries

    Get PDF
    Non

    High-Speed Wireless Personal Area Networks: An Application of UWB Technologies

    Get PDF

    Study and miniaturisation of antennas for ultra wideband communication systems

    Get PDF
    PhDWireless communications have been growing with an astonishing rate over the past few years and wireless terminals for future applications are required to provide diverse services. This rising demand prompts the needs for antennas able to cover multiple bandwidths or an ultrawide bandwidth for various systems. Since the release by the Federal Communications Commission (FCC) of a bandwidth of 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra wideband (UWB) wireless communications, UWB has been rapidly evolving as a potential wireless technology and UWB antennas have consequently drawn more and more attention from both academia and industries worldwide. Unlike traditional narrow band antennas, design and analysis of UWB antennas are facing more challenges and difficulties. A competent UWB antenna should be capable of operating over an ultra wide bandwidth as assigned by the FCC. At the same time, a small and compact antenna size is highly desired, due to the integration requirement of entire UWB systems. Another key requirement of UWB antennas is the good time domain behaviour, i.e. a good impulse response with minimal distortion. This thesis focuses on UWB antenna miniaturisation and analysis. Studies have been undertaken to cover the aspects of UWB fundamentals and antenna theory. Extensive investigations are also conducted on three different types of miniaturised UWB antennas. 5 The first type of miniaturised UWB antenna studied in this thesis is the loaded orthogonal half disc monopole antenna. An inductive load is introduced to broaden the impedance bandwidth as well as the pattern bandwidth, in other words, an equivalent size reduction is realised. The second type of miniaturised UWB antenna is the printed half disc monopole antenna. By simply halving the original antenna and tuning the width of the coplanar ground plane, a significant more than 50% size reduction is achieved. The third type of miniaturised UWB antenna is the printed quasi-self-complementary antenna. By exploiting a quasi-self-complementary structure and a built-in matching section, a small and compact antenna dimension is achieved. The performances and characteristics of the three types of miniaturised UWB antennas are studied both numerically and experimentally and the design parameters for achieving optimal operation of the antennas are also analysed extensively in order to understand the antenna operations. Also, time domain performance of the Coplanar Waveguide (CPW)-fed disc monopole antenna is examined in this thesis to demonstrate the importance of time domain study on UWB antennas. Over the past few years of my PhD study, I feel honoured and lucky to work with some of the most prestigious researchers in the Department of Electronic Engineering, Queen Mary, University of London. I would like to show my most cordial gratitude to those who have been helping me during the past few years. There would be no any progress without their generous and sincere support. First of all, I would like to thank my supervisors Professor Clive Parini and Professor Xiaodong Chen, for their kind supervision and encouragement. I am impressed by their notable academic background and profound understanding of the subjects, which have proved to be immense benefits to me. It has been my great pleasure and honour to be under their supervision and work with them. Second of all, I would like to thank Mr John Dupuy for his help in the fabrication and measurement of antennas I have designed during my PhD study. Also, a special acknowledgement goes to all of the staff for all the assistance throughout my graduate program

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01
    • 

    corecore