271 research outputs found

    Building a generalized distributed system model

    Get PDF
    A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered

    Effects of distributed database modeling on evaluation of transaction rollbacks

    Get PDF
    Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. Here, researchers investigate the effect of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks in a partitioned distributed database system. The researchers developed six probabilistic models and expressions for the number of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results obtained are compared to results from simulation. It was concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughput is also grossly undermined when such models are employed

    Effects of distributed database modeling on evaluation of transaction rollbacks

    Get PDF
    Data distribution, degree of data replication, and transaction access patterns are key factors in determining the performance of distributed database systems. In order to simplify the evaluation of performance measures, database designers and researchers tend to make simplistic assumptions about the system. The effect is studied of modeling assumptions on the evaluation of one such measure, the number of transaction rollbacks, in a partitioned distributed database system. Six probabilistic models and expressions are developed for the numbers of rollbacks under each of these models. Essentially, the models differ in terms of the available system information. The analytical results so obtained are compared to results from simulation. From here, it is concluded that most of the probabilistic models yield overly conservative estimates of the number of rollbacks. The effect of transaction commutativity on system throughout is also grossly undermined when such models are employed

    Building a generalized distributed system model

    Get PDF
    A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant

    Performance related issues in distributed database systems

    Get PDF
    The key elements of research performed during the year long effort of this project are: Investigate the effects of heterogeneity in distributed real time systems; Study the requirements to TRAC towards building a heterogeneous database system; Study the effects of performance modeling on distributed database performance; and Experiment with an ORACLE based heterogeneous system

    Integrated analysis of error detection and recovery

    Get PDF
    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms

    Tuning the Level of Concurrency in Software Transactional Memory: An Overview of Recent Analytical, Machine Learning and Mixed Approaches

    Get PDF
    Synchronization transparency offered by Software Transactional Memory (STM) must not come at the expense of run-time efficiency, thus demanding from the STM-designer the inclusion of mechanisms properly oriented to performance and other quality indexes. Particularly, one core issue to cope with in STM is related to exploiting parallelism while also avoiding thrashing phenomena due to excessive transaction rollbacks, caused by excessively high levels of contention on logical resources, namely concurrently accessed data portions. A means to address run-time efficiency consists in dynamically determining the best-suited level of concurrency (number of threads) to be employed for running the application (or specific application phases) on top of the STM layer. For too low levels of concurrency, parallelism can be hampered. Conversely, over-dimensioning the concurrency level may give rise to the aforementioned thrashing phenomena caused by excessive data contention—an aspect which has reflections also on the side of reduced energy-efficiency. In this chapter we overview a set of recent techniques aimed at building “application-specific” performance models that can be exploited to dynamically tune the level of concurrency to the best-suited value. Although they share some base concepts while modeling the system performance vs the degree of concurrency, these techniques rely on disparate methods, such as machine learning or analytic methods (or combinations of the two), and achieve different tradeoffs in terms of the relation between the precision of the performance model and the latency for model instantiation. Implications of the different tradeoffs in real-life scenarios are also discussed

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    Simulation Software as a Service and Service-Oriented Simulation Experiment

    Get PDF
    Simulation software is being increasingly used in various domains for system analysis and/or behavior prediction. Traditionally, researchers and field experts need to have access to the computers that host the simulation software to do simulation experiments. With recent advances in cloud computing and Software as a Service (SaaS), a new paradigm is emerging where simulation software is used as services that are composed with others and dynamically influence each other for service-oriented simulation experiment on the Internet. The new service-oriented paradigm brings new research challenges in composing multiple simulation services in a meaningful and correct way for simulation experiments. To systematically support simulation software as a service (SimSaaS) and service-oriented simulation experiment, we propose a layered framework that includes five layers: an infrastructure layer, a simulation execution engine layer, a simulation service layer, a simulation experiment layer and finally a graphical user interface layer. Within this layered framework, we provide a specification for both simulation experiment and the involved individual simulation services. Such a formal specification is useful in order to support systematic compositions of simulation services as well as automatic deployment of composed services for carrying out simulation experiments. Built on this specification, we identify the issue of mismatch of time granularity and event granularity in composing simulation services at the pragmatic level, and develop four types of granularity handling agents to be associated with the couplings between services. The ultimate goal is to achieve standard and automated approaches for simulation service composition in the emerging service-oriented computing environment. Finally, to achieve more efficient service-oriented simulation, we develop a profile-based partitioning method that exploits a system’s dynamic behavior and uses it as a profile to guide the spatial partitioning for more efficient parallel simulation. We develop the work in this dissertation within the application context of wildfire spread simulation, and demonstrate the effectiveness of our work based on this application
    corecore