
ct3

L)

©

o

©
d2

V

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

PERFORMANCE RELATED ISSUES IN
DISTRIBUTED DATABASE SYSTEMS

By

Eavi Mukkamala, Principal Investigator

Final Report
For the period ended May 15, 1991

Prepared for
National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-l-l154

Mr. Wayne H. Bryant, Technical Monitor

ISD-Systems Architecture Branch

July 1991

r.;o I -2 5; _'::'

-- T}_U--

NJi-2_"/:,_-

Uncl _s

https://ntrs.nasa.gov/search.jsp?R=19910016638 2020-03-19T18:06:25+00:00Z

Old Dominion University Research Foundation is a not-for-

profit corporation closely affiliated with Old Dominion

University and serves as the University's fiscal and

administrative agent for sponsored programs.

Any questions or comments concerning the material con-
tained in this report should be addressed to:

Executive Director

Old Dominion University Research Foundation
P. O. Box 6369

Norfolk, Virginia 23508-0369

Telephone: (804) 683-4293

Fax Number: (804) 683-5290

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

PERFORMANCE RELATED ISSUES IN

DISTRIBUTED DATABASE SYSTEMS

By

Ravi Mukkamala, Principal Investigator

Final Report

For the period ended May 15, 1991

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-I-11$4

Mr. Wayne H. Bryant, Technical Monitor

ISD-Systems Architecture Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

July 1991

Performance Related Issues in Distributed Database Systems

Ravi Mukkamala

A jay Gupta

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Final Report

Abstract

The key elements of research performed during the year long effort of

this project are:

• Investigate the effects of heterogeneity in distributed real-time sys-
tems.

• Study the requirements of TRAC towards building a heterogeneous

database system.

• Study the effects of performance modeling on distributed database

performance.

• Experiment with an ORACLE based heterogeneous system.

1 Introduction

The main motivation for this project has been to investigate performance

evaluation aspects of distributed systems with special focus on heterogeneous

systems. To this end, we have conducted severai studies to look at the

practical and theoretical aspects of heterogeneous systems.

As part of theoretical studies, we looked at the effects of heterogeneity on

scheduling in distributed systems. While simple randomized algorithms are

claimed to effective in homogeneous systems, we found them to be ineffective

in heterogeneous systems. To this end, we developed some new scheduling

algorithms and evaluated their performance through simulation.

As part of practical studies, we have evaluated the database requirements

of TRAC (TRADOC Analysis Command, U.S. Army). TRAC coordinates

activities of projects which axe geographically distributed throughout the

country. This appeared to be an appropriate candidate for studies in het-

erogeneous distributed databases. To this end, we have studied this system

and prepared a detailed proposal to that agency. This experience has high-

lighted several practical aspects of heterogeneous systems.

In addition, we have investigated low-cost schemes to build heteroge-

neous distributed systems. To this end, we experimented with PC-based

Oracle databases. The results are interesting, but need further investiga-

tions before any strong conclusions may be drawn about the utility of the
schemes.

We have also investigated some performance aspects of general dis-

tributed systems. More specifically, we have conducted a study to determine

the effects of static locking in replicated distributed database system. Even

though locking is less likely to occur in distributed systems, its effect on

performance is found to be significant. We have extended earlier work on

read-only transactions to update transactions.

Further, we have investigated the effect of distributed database model-

ing on transaction rollbacks in distributed systems. Whils uniform mod-

els seem to underplay the role of commutative transactions in improving

the performance, more realistic models indicate a prominent role for these

transactions.

In this report, we summarize our progress in these areas.

2 Scheduling in Heterogeneous Distributed Sys-

tems

In a distributed real-time system, jobs with deadlines are received at each

of the nodes in the system. Each node is generally capable of executing a

job completely. These jobs are scheduled for execution at the nodes by a
scheduler. A distributed scheduler is a distributed algorithm with cooperat-

ing agents at each node. Basically, the agents cooperate through exchange
of local load information. The decision for scheduling a job, however, is

taken by a local agent. Much of the current work in distributed scheduling

assumes identical scheduling algorithms, homogeneous processing capabili-

ties, and identical request arrival patterns at all nodes across the distributed

system.

As part of this work, we proposed a distributed algorithm to help sched-

ule jobs with time constraints over a network of heterogeneous nodes, each

of which could have its own processing speed and job-scheduling policy. We

conducted several parametric studies. From the results obtained we con-
clude that:

• the algorithm has a large improvement over the random selection in

terms of the percentage of discarded jobs;

• the performance of the algorithm tends to be invariant with respect

to node-speed heterogeneity;

• the algorithm efficiently utilizes the available information; this is evi-

dent from the sensitivity of our algorithm to the periodicity of update

information.

• the performance of the algorithm is robust to variations in in the clus-
ter size.

In summary, our algorithm is robust to several heterogeneities commonly

observed in distributed systems. Our other results (not presented here) also

indicate the robustness of this algorithm to heterogeneities in scheduling

algorithms at local nodes. In future, we propose to extend this work to

investigate the sensitivity of our algorithm to other heterogeneities in dis-

tributed systems. We also propose to test its viability in a non-real time

system where response time or throughput is the performance measure.

Theresultsfrom this workareto appearin LectureNotesin Computer
Science,publishedby Springer-Verlag,1991.Someof the resultsareto be
presentedat the 1991SummerSimulationConference at Baltimore, MD.

3 An Integrated Decision Support System for TRAC:

A Case Study

In order to understand the requirements of real heterogeneous database

needs of organizations, we studied the requirements of TRAC, an agency of

the U.S. Army located in Fort Monroe, VA. Even though the project deci-

sion and management control office of TRADOC is centrally located at Fort

Monroe, it interacts several agencies all over the country. Since each agency

maintains its own database, it becomes impossible to integrate all the infor-

mation. A heterogeneous database system seemed to be most appropriate
in this environment. For this reason, we studied their current system, and

proposed a cost-effective solution to build an integrated database system. A

summary of the proposal is enclosed in the report.

4 Experiments with Oracle and DEC Databases

As part of this study, we investigated the feasibility of developing cost-

effective schemes for heterogeneous database systems. In this context we

experimented with Oracle databases. We developed software which can

record all updates to a database externally in an ASCII file. Since on-line

updation of remote files is expensive, in applications that only need periodic

updates, we can easily send the ASCII files periodically to all relevant sites

from the original updating site. When remote sites receive the ASCII file,

they can execute our software which enforces the update at a remote site.

The problem becomes complex when we consider heterogeneous database

systems. But the proposed software solution with a standard format to

record the updates can simplify the problems with the aid of dictionary

mechanisms. In the report, we have enclosed the listings of this program.

We have also looked at a system employing two physically separate

databases, but maintaining similar information. This system currently ex-

ists at the Navy information center in Norfolk. We propose a simple solution

for maintaining consistency among the databases.

5 Reports and Publications

The results from this projected have so far resulted in the following publi-

cations:

R. Mukkamala, "Effects of Distributed Database Modeling on Evalu-

ation of Transaction Rollbacks," Proc. WSC'91, December 1990, pp.

839-845.

O. Zein E1Dine, M. E1-Toweissy, and R. Mukkamala, "A Distributed

scheduling algorithm for heterogeneous real-time systems," To appear
in Lecture Notes in Computer Science, Springer-Verlag Publications,

1991.

M. E1-Toweissy, O. Zein EIDine, and R. Mukkamala, "Measuring the

Effects Heterogeneity on Distributed Systems," To appear in Proc. of

SSC-1991, July, 1991, Baltimore, Maryland.

Y. Kuang and R. Mukkamala, "Performance analysis of static locking

in replicated distributed database systems," Proc. Southeastcon'91,

Williamsburg, VA, pp. 696-701.

N91-25953

MEASURING THE EFFECTS OF HETEROGENEITY ON

DISTRIBUTED SYSTEMS

Mohamed E1-Toweissy Osman ZeinEIDine Ravi blukkamala

Department of Computer Science

()ld I)onlillh,ll IIniv_,rsily

Norfolk, Virginia 2:L",29

ABSTRACT

Distributed computer systems in daily use are be-

coming more and more heterogeneous. Currently,

much of the design and analysis studies of such sys-

tems assume homogeneity. Tl,is assmnl)t, ion of ho-

mogeneity has been mainly driven by the resulting

simplicity in modeling and analysis. In this paper,

we present a simulation study to investigate the ef-

fects of heterogeneity on scheduling algorithms for

hard real-time distributed systems. In contra.st to

pervious results which indicate that random schedul-

ing may be as good as a more complex scheduler, our

algorithm is shown to be consistently better than a

random scheduler. This conclusion is more prevalent

at high workloads as well as at high levels of hetero-

geneity.

INTRODUCTION

With the adwmcing communication technologies

and the need for integration of global systems, het-

erogeneity is becoming a reality in distributed com-

puter systems. However, most existing performance

studies of such systems still assume homogeneity; be

it in hardware (e.g., node speed) or in software (e.g.,

scheduling algorithms). Generally, such homogeneity

assumptions are dictated by the resulting simplicity

in modeling and analysis.

Clearly, heterogeneous systems are less aualyti-

cally tractable than their homogeneous counterparts.

Typically, heterogeneity will result in increased num-

ber of variables in the context of analytical tech-

niques such ,as mathematical programming, prol)a-

bilistic analysis, and queuil,g theory. This is one re_L-

son for assuming homogeneity while using analyti-

cal techniques. In the case of simu]ation techniques,

however, it is possible for a modeler to introduce any

level of heterogeneity into the system. The problem

now lies in the complexity of interpretation of the

re_ult.s. If the simulator was written with the basic

ol)jective of testing a hypothesis or comparing tile

t)erformalwe of a s,-_. of algorithms, blt.,-oducing bet-

eroge,u'ity will sul)slald, ially increase efforts to sep-

aral.e its etfi,cl.s from those of the algorithm. Thus,

a modeler is _nore likely Io ;18Sllllle a holllOgelleous

syst.enl.

With (his in mind, we have been illvestigal.ing into

the elt',,cls of lu'lerogeueity on Ihe performance of

disl, ribul<'d sysl, etlls. ()lit bfitial efforts, r+*/)orl+_(I

in (Zeingll)iue et al. 1991) and this paper, focus

on scheduling iu hard real-time sysl+ems. For this

purpose, we have desigtmd a distril)uted scheduler

aimed at handling various heterogeneities; in partic-

ular, heterogeneities in nodes, node t.l'aflqc and local

scheduling algorithms.

In the rest of this pape," we present the system model.

Nexl,, we discuss some issues related to the el[ective-

ness of our algol'ithllL Major results with their re-

Sl)e('tiv," conclusions ar(' then i)Ol'traye(I, l"inally, w(,

highlight some recommendations for future work.

THE PROPOSED MODEL

For the purposes of scheduling, tile distril)uted sys-

tem is modeled as a tree of nodes as is shown iu Fig-

ure 1. The nodes al lhe Iowes! /ew?[(level 0) are

th,' I,n,cc._._il_9 .odvs while the Ilodes at the high,'r

levels I'el)resenl setters (or guardians). A process-

ing node is resl)ousil)le for executing arriving jobs

when they meet some specified criteria (e.g.. dead-

line). The processing nodes are g,'ouped into cbls-

tots, and ,,ach rhlsl.('r is assigned a ullique s,'rv,,r.

_/llt'li i! s,'l'Vl'r I'I'('CiVI'S ;I ,i(ll}, il. l.ri('s [o oil.her redi-

rect that .job to a processing node within its cluster

or to ils guardian. II is 1o be noted tllat this hier-

archical structure could be logical {i.e., some of the

processing nodes may themselves aSSllllle the role of

the servers).

Thesystemmodelhasfourcomponents:jobs,pro-
cessingnodes,servers,andthecommunicationsub-
system.A job is characterizedby its arrivaltime,
executiontime,deadline,andpriority(if any).The
specificationsof a processingnodeincludeits speed
factor,schedulingpolicy,externalarrivalrate (of
jobs),andjob mix(dueto heterogeneity).Aserveris
modeledbyitsspeedanditsnodeassignmentpolicy.
Finally,thecommunicationsubsystemisrepresented
bythespeedsof transmissionanddistancesbetween
differentnodes(processingandservers)in thesys-
tem.

Operation

Tile flow diagram of the scheduling algorithm is

shown in Figure 2. When a job with deadline arrives

(either from an external user or from a server) at

a processing node, the local scheduling algorithm at

the node decides whether or not to execute this job

locally. This decision is based on l)ending jobs i,a

the local queue (which are already guaranteed to be

executed within their deadlines), the requirements of

the new job, and the scheduling policies (e.g., FCFS,

SJF, SDF, SSFetc. (Zhaoet al. 1987)). In case the

local scheduler cannot execute the new job, it either

sends the job to its server (if there is a possibility of

coml)letiou), or discard the jol) (if there is no such

chance of completion).

The level-1 server maintains a copy of the latest

information provided by each of its child nodes in-

cluding the load at the node and its scheduling pol-

icy. Using this information, the server should be able

to decide which processing nodes are eligible for exe-

cuting a job and meet its deadline. When more than

one candidate node is available, a random selection

is carried out among these nodes. If a server can-

not find a candidate node for executing the job, it.

forwards the job to the level-2 server.

The information at the level-2 server consists of an

abstraction of the information available at each of the

level-1 servers. This server redirects an arriving job

to one of the level-1 servers. The choice of candidate

servers is dependent on the ability of these servers to

redirect a job to one of the processing nodes in their

cluster to meet the deadline of the job. (I"or more

details on operation and information contents at each

level, the reader is advised to refer to (ZeinEIDine et

al. 1991)).

F,XEg, KIMg,.N_I
In order to utilize the proposed scheduler ,_s a w.'-

hicle for our research on measuring the elfects of het-

erogeneity, first it has to be proven effective. Conse-

quently, we have conducted several parametric stud-

ies t,o determine the sensitivity of our algorithm to

various pa,'ameters: the cluster size, the frequency

of propagalion of load star istics (between levels), the

processing node scheduling policy (FCFS, SJF etc),

the communication delay (between nodes), and the

effects of information structures. For lack of space.

we present a sample of the results pertaining to the

first three of these parameters. Accordingly, all lhe

results reported here assume:

• the total number of processing nodes is 100;

• equal load at all nodes;

• c,llmm,lic:tti_,n ,h,lay hotw,,cll ally II()([,'_, is Ill,'

,-Gi I i11_,

"l']le perforlllailce of the sclleduler is ineasured hl

terms of the percentage of jobs discarded by the al-

got'ithlli (al levels 0, I ,k: 2) The rate of arrivals

of jobs illld lheir pro(-essing reqtlil'elllellts are COlll-

binedly represented throt,gh a load factor. This load

factor refers to the load ou the overall system. Our

load consists of jobs from three types of execution

time co,lstraints(lO. 50._ 100) with slack(25, 35&

300) respectively.

Discussion

W,' ,row (li.scuss _mr ,)hser_.ati..s r,,gar(ling the

characteristics of tll_' ,listrihmed scheduling algo-

rithm (DSA) in terms of the three selected param-

eters. In order to isolate the effect of one factor fi-om

others, the choice of I)arameters is lna(h' .imliciously.

For example, in studyiug the effects of cluster size

(Figure 3), the up(lation period is chosen to be a

mediuln value of 200 (stat=200). For each paramet-

ric study we have two sets of runs, they (lifter in the

local scheduling policy at the processing nodes; one

set. ,,ses F('I"S while the the other uses S.1F.

Clustm" size Cluster size imlicatos the Itulnl)er

of processing nodes heing assigned to a level-1 server.

I,I o111' study, we have considered three cluster sizes:

100, 50, and 10. A clusler of 100 nodes indicates

a centralized server structure where all the p,'ocess-

ing nodes are uml('r one level-1 server. In this case,

level-2 s,'rver is al_sellt.. Silnila,'lv, in Ihe case of clus-

ter of 50 nodes, there are two level-I servers, and one

level-2server, l"or l()-nodecluster, we have lOlevel-I

servers. In addition, we consider a completely decen-

tralized (:;_se r,'l)resetlted hy the r'aT_dom policy. In

this case, each processing ilode acts as its own server

aml ran(Iotllly selects a (h,sl.ination node to ox,,cutq.

a joh which il ('almol locally guarantee.

The resulls are plotted in Figure 3. These results

show that our algorithm is rol)ust to variations in

cluster size. In addition, its performance is signifi-

cantly superior to a random policy.

Frequency of updations The currency of in-
formation at a node about the rest of the system

plays a major role in performance. Ilenee, if the

state of processing nodes varies rapidly, then tile fre-

quency of status information exchange between the

levels should also be high. In order to determine the
sensitivity of the proposed algorithm to the period of

updating statistics at the servers, we experimented

with four time periods: 25, 100, 200 and 500 units.

The results are summarized in Figure 4. From these

results, tile following observations are drawn:

• our algorithm is extremely sensitive to changes
in period of information exchanges between

servers and processing nodes;
• even in the worst case of 500 units, the per-

formance of our algorithm is significantly better

than the random policy.

Local scheduling policy Our third parametric

study is concerned with the effect of t.he scheduling
policy at the processing nodes. In this paper, we

report the results of the runs conducted with all the
processing nodes having the same scheduling policy;

either |"C'FS or SJl". l,ater in our work, w+, />l;m to

experiment with different mixes of local scheduling
policies. We would also give each node the freedom to

select its scheduling policy in order to determine the

impact of node autonomy on the overall performance

of the system. This issue is of crucial importance,

since there is no scheduling policy that best fits all
working environments.

Revisiting the results of Figures 3 and 4, we can

observe the following:

• both FCFS and SJF behave similarly at, light to
moderate loads, whiJe SJF is col_sistentJy better

than FCFS at high loads;

• the percentage of discarded jobs sharply in-
creases with the increase in the load factor for

both the Random a,ld FCFS policies, llowever,

for SJF the rate of increase in the percentage of

discarded jobs dramatically drops at high loads.

The reason for the above result is that, at. light to
moderate loads there, is 11o I>uihl up at the processillg

node queues, consequently, the dominant factor is the
jobs being processed at the node processors. This

behavior is the same for all policies, llowever, when

the queues start to build up, the respective queue

policy prevails. Hence, for the SJF, the short jobs
with their relatively small slack, will have a better

prol_ability of being executed.

EFFECTS OF HETEROGENEITY

%0 fi_r, our concentration has been on gaining bet-

ter insight i,lo the behavior of our algorithn, it, or-
der to assess its viability and suitability to he able

to conduct further research. Proven effi.'ctive, we re-

turn back to the objective for which the algorithm

has been developed. The main goal of the current

phase of our studies is measuring the effects of het-

erogetwity on sche(Itfling in hard real-time distributed

systems. For this purpose, we are pursuing multiple
experiments to measure tile effects of node hetero-

geu<'ity (simply repr,'s,,nt,'d I,y node speed), hetero-

gem.ity ill sch,'dulitDg nlg_)n'ilhltls, het,q'ogeumity in

loads as well as other system heterog,meities. In this
paper, we presoul the e[fi.cls of node heterogeneily.

(Hesults <m ()1.1|¢'1'types will I.' 1"4_l>ol'led ill it S,'qm:l

of |);tpors).
\Ve consider four di[re,'ent node sl)e,:d distributions

(hell, het2, her3, and horn). The ho,nogeueous case

(denoted by horn) represents a system with 100 nodes
having the sanu_ unit Sl_eeds. The three heteroge-

neous case are represented by hetl, her2, and hel3.
Each of these set are descrihed by a set of <# of

nodes, speed factors> pairs. The average speed fac-

tor for all distrihl,t.ion is 1.0, so the average syst.eln
Sln,Cd is the satl,.. 'l'hc lhrc_, h,qpl't,g,,ll,'OllS c;|sl, _iil'-

1;.'" in tlu.'ir sp,,:d I'_tct.or Val'i;tllC,., lillls Vil.l'ying t.li,: de-

gree of heterogeneity. While hel3 represents a seve,'e

case of heterogeneity, hetl is more biased towards

homogeneity.

The resnhs are included in Figure 5. From these
results, we observe theft :-

• with our algorithm, ewm though the increase in
degree of heterogen,'ily resulted in an increase of

discarded jobs, the iucrease is llot so siguilicaut

lhmce, our algorithln appea.rs to I., I'O])IlSl |,0

node hel,'rog,'m'il ies.
* the performance of the random policy is ex-

tremoly sensitive Io lhe node heterogeneity. As

the heterogeneity is increased, the number of dis-

carded jobs is also significantly increased.

With the increase in node heterogeneity, the nmnber

of nodes with slow sp,','d also iuc,'ease. Thus, t,sing
a i-andom policy, if a slow speed node is selected ran-

dontly, I h,'ll Ih,' .i',l_ i,_ ,,,,,',' lik,'ly I,) I-' discard,.,I, lit
our algorithm , since file s,'rver is aware of" the het-

erogeneities, it can suilably avoid a low speed node

wlmu necessary. Even in this case, there is a temloncy
for high-speed nodes to be overloaded and low speed
nodes to be under loaded, lleuce, the difference in

perfornlallce.

CONCLUSION

In this paper, we have presented a distributed
scheduling algorithm that can tolerate different types

of system heterogeneity. Following, we have con-

ducted several parametric studies with the objective

of evaluating the effectiveness of our algorithm. Ren-

dering its effectiveness, we have started pursuing our

studies toward our goal of determining the impact
of heterogeneity on the overall system performance.

Our initial step has been reported here, and it con-

centrates on the effect of node heterogeneity. Some

interesting results have been obtained. From these

results, we reach the following conclusions.

• Concerning the algorithm behavior: the algo-
rithm is robust to variations in the cluster size;

besides, it efficiently utilizes the available state
information; moreover, it is sensitive to tile local

scheduling policy at the processing nodes.

• Concerning the effect of heterogeneity: tile per-

formance of the algorithm tends to be invariant
with respect to node heterogeneity; ill addition,

the algorithm has a large improvement over the

random selection in terms of the percentage of
discarded jobs.

Currently, we are studying the effects of hetero-
geneity in local scheduling algorithms and hetero-

geneities in loads on the performance of the over-

all system. With heterogeneities in scheduling poli-
cies, each node may autonomously decide its own

scheduling policy (FCFS, SJF, etc.). Similarly, by
load heterogeneities we let the external load at a

node be independent of the other nodes. Similarly,
each node may autonomously decide its resources and

their speeds. We propose to measure the effects of

such heterogeneities in terms of the response time

and throughput. We conjecture that the performance
of Fandom policies will continue to deteriorate under

these heterogeneities as compared to even simple re-

source allocation or execution policies.

ACKNOWLEDGEMENT

This research was sponsored in part by the NASA

Langley Research Center under contracts NAG-I-
1114 and NAG-l-1154.

References

Biyabani, S.R.; J.A. Stankovic; and K. Ra-

mamritbam. 1988. "The integration of deadline

and criticalness in hard real-time scheduling."

Proc. Real-time Systems Symposium, (DEC.),
152-160.

[] Chuang, J .Y. and .I .W.S. Liu. 1988. "Algorithms

for scheduling periodic jobs to minimize aver-

age error." Proc. Real-lime Systems Symposium.
(DEC.), 142-151.

[-] Craig, I).W. and C.M. Woodside. 1990. "'The re-
jection rate for tasks with random arrivals, dea(l-

lines, and preemptive scheduling." IEEE Trans.

Software EngiT_eering SE-16, no. 10(OCT.),
1198-1208.

[] Eager D.L.; E.D. Lazowska; and J. Zahorjan.

1986. "Adaptive load sharing ill homogeneous

distributed systems." IEEE Trans. Sofia, are ET_-
gtl, eertT_g, SE-12(May), no. 5, 662-675.

[] Rajkmnar R.; I,. Sha; and J.P. I,(qloczky. 1'fl88.
"l_,ral-tim,' ._ynch,'¢mization pt'(_tocol.s for Illt|l-

t.iprocessors," Proc. Rcal-tune Systems Sympo-

szum. (I)1';('.), 259-269.

Shin, I(.G.; C.M. Krishna; and Y.tl. Lee. "Op-

timal resource control in periodic real-time en-
vironments." Proc. Real-time Systems Sympo-

szum. (DEC.), 33--11.

Stankovic J. and K. l_amamritham. 1986.

"Evaluation of a I')i(lding algorithnl for hard
real-time dislrihuted syslems." IL'EE 7)'an,_.

Computer._C-34, m). 12(Dec.), 1130-1143.

ZeinEIDine, O.; M. EI-Toweissy; and R. Mukka-

mala. 1991. _" A Distributed Scheduling Algo-

rilhm for [lelerogeneous Real-time Systems." To

appear in Lecturer Note.s tn Computer Scteuce,

Springer- Verlag.

0 Zhao, W.; K. Ramamritham; and ,I. Stankovic.

1987. "'Scheduling tasks with resource require-

ments in hard-real ti,ne systems." IEEE Trans.
Software Engn_eeriT_g SE-13, no. 5(May): 56-t-
577.

Level 2 server

Level 1 server

Level 0 •

Proc. node

Figure 1 • System Model

from other level 1
servers

I,.

from other child
nodes

Jobs f
from other servers I

discard

to a level 1 server

 ttoser er

discard

to a processing
node in this

cluster

m.i

mJ

!

Level 2 server

External jobs

Level 1 server

I Processing
I node

parture

guaranteed job processor l
queue J

I

I ,_ _ granted
!1 gateway_
I
I discard

Figure 2: Flow diagram of The Algorithm

%
J
O

b

3O

• cluster = 100 slat = 200

2s " cluster = 50 corn = 5cluster = 10 node: horn

20 "*random

10

5

0
0 0.1 0.2 03 0.4 0.5 06 07 08 0.9

load factor _ a
30

_o - slat = 25 cluster = 100

2s i stat = lO0 corn=5
o slat = 200 node: horn /3

slat = 500b 20

random /_

c

a

r

d o_
0 0.1 02 03 0.4 05 0.6 0.7 08 0.9

load factor _ a

% 3o

J 2s
o

b 20

= horn
• hell
÷ hel2
• her3

d 15

i
S 10

C

a 5

r

30

25

Figure 3: 20
Effect of cluster size 1s

10

/
• cluster = 1(30 slat = 200 /
• cluster = 50 com= 5 / .
• cluster = 10 node: homJ /,

• random ///

0
0 0.1 0,2 0.3 0.4 0,5 0.6 0.7 0.8 0.9

load factor _ b
30 --7-

• slat=25 cluster =1130 /)
25 J /

• slat= 1130 corn=5 f /
• slat = 200 node: hom_--/--]
• slat=500 / / /

Figure 4: 20 • random ////

Effect of updation period is " "'

5

0
0 0.1 0,2 03 0.4 0.5 0.6 0.7 0.8 0.9

load factor _ b
3O

• horn
25 * hell

• het2
20 * het3

°o o.1 o2 03 04 o.s 06 o.z 08 o o Figure5: °o

load factor _ a Effect of Node Heterogeneity '
% 30

J 2s
o

b
20

d 15
i

s 10

c

a 5

r

d o

= horn

: _e_ Random(SSF)_

0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

load factor _ c

10

5

o.1 0.2 0.3 o,4 o.s o.s 0.7 o,8

load factor --_ b

3O

hell : <50,1.0>, <25,1.5>,

<25,0.5> 2s

bet2 : <50,0.5>, <50,1.5> 2o

bet3 : <20,0.25>, <20,0.5> 'is
<20,1.0>, <20,1.5>,

<20,1.7 5> 10

hell Random (FCFS_/fhet2 J.,,,J_

0 0._ 0.2 0.3 0.4 o.s o.s 0.7 o.s 0.9

load factor _ d

N91-25954

A DISTRIBUTED SCHEDULING ALGORITHM FOR

HETEROGENEOUS REAL-TIME SYSTEMS

Osman ZeinE1Dine Mohamed Ei-Toweissy Ravi Mukkamala

Department of Computer Science, Old Dominion University

Norfolk, Virginia 23529.

Abstract

Much of the previous work on load balancing and scheduling in distributed environ-

ments was concerned with homogeneous systems and homogeneous loads. Several of

the results indicate that random policies are as effective as other more complex load al-

location policies. In this paper, we investigate the effects of heterogeneity on scheduling

algorithms for hard-real time systems. We propose a distributed scheduler specifically

to handle heterogeneities in both nodes and node traffic. The performance of this algo-

rithm is measured in terms of the percentage of jobs discarded. While a random task

allocation is very sensitive to heterogeneities, our algorithm is shown to be robust to

such non-uniformities in system components and load.

1. Introduction

Meeting deadline is of utmost importance for jobs in hard real-time systems. In these

systems, when a job cannot be executed to completion prior (o its deadline, it is either

considered as having a zero value or as a discarded jeb with possible disastrous side-

effects. Scheduling algorithms are assigned the responsibility of deriving job schedules

so as to maximize the number of jobs that meet their deadline.),.lost of the literature

in reM-time systems deals with periodic deterministic tasks which may be orescheduled

and executed cyclically [1,2,5,6]. The aperiodically arriving random tasks with deadlines

have not been thoroughly investigated [3]. In addition, much of the studies in this area

assume systems dedica;.ed to real-time applications and working at extremely small

loads (10% or less).

In a distributed real-time system, jebs with deadlines are received at each of the

nodes in the system. Each node is generally capable of executing a job completely.

These jobs are scheduled for execution at the nodes by a scheduler. A distributed

scheduler is a distributed algorithm with cooperating agents at each node. Basically,

the agents cooperate through exchange of local load information. The decision for

scheduling a job, however, is taken by a local agent. Much of the current work in

distributed scheduling assumes identical scheduling algorithms, homogeneous processing

capabilities, and identical request arrival patterns at all nodes across the distributed

system [7].

In this paper, we are interested in investigating the effects of heterogeneity and

aperiodicity in distributed real-time systems on the performance of the overall system.

We have designed a distributed scheduler specifically aimed at tolerating heterogeneities

in distributed systems. Our algorithm is basedon a tree-structured schedulerwhere
the leavesof the tree represent the processingnodesof the distributed system,.andthe
intermediate nodesrepresentcontrolling or servernodes. The servernode is a guardian
for nodesbelowit in the tree. The leafnodesattempt to keepits guardian nodeinformed
of their load status. When a leaf node cannot meet the deadlineof an arriving job, it
transfers the job to its guardian (or server). The guardian then sendsthis job either
to one of its other child nodesor to its guardian. We measurethe performanceof our
algorithm in terms of percentageof discardedjobs. (A job may be discardedeither by
a leaf node or by one of the servers.) Sincerandom scheduling is often hailed to be as
effectiveas someother algorithms with more intelligence,wecomparethe performance
of our algorithm with a randomscheduler[4]. Even though a random algorithm is often
effective in a homogeneousenvironment, our investigations found it to be unsuitable
for heterogeneousenvironments.

This paper is organized as follows. Section 2 presents the model of the system
adopted in this paper. Section3 describesthe proposedschedulingalgorithm. Section
4 summarizes the results obtained from simulations of our algorithm and a random
scheduleralgorithm. Finally. Section5 presentssomeconclusionsfrom this study and
proposessome future work.

2. The System Model

For the purposesof scheduling, the distributed system is modeledas a treeof nodes
and is shown in Figure 1. (The choice of the hierarchical structure is influenced by
our scheduling algorithm which can handle a system with hundreds of nodes. The
choiceof three levels in this paper is for easeof illustration.) The nodesat the lowest
level (level 0) are t.heprocessin 9 nodes while the nodes at the higher levels represent

guardians or servers. A processing node is responsible for executing arriving jobs when

they meet some specified criteria. The processing nodes are grouped into clusters, and

each cluster is assigned a unique server. When a server receives a job, it tries to either

redirect that job to a processing node within its cluster or to its guardian. It is to be

noted that this hierarchical structure could be logical (i.e., some of the processing :lodes

may themselves assume the role of the servers).

In summary, there are four component3 in the system model: jobs, processing nodes,

servers, and the communication subsystem. A job is characterized by its arrival time,

execution time, deadline, and priority (if any). The specifications of a processing node

include its speed factor, scheduling policy, external arrival rate (of jobs), and job mix

(due to heterogeneity). A server is modeled by its speed and its node assignment policy.

Finally, the communication subsystem is represented by the speeds of transmission and

distances between different nodes (processing and servers) in the distributed system.

3. Proposed Scheduling Algorithm

We describe the algorithm in terms of the participation of the three major compo-

nents: the processing node, the sever at level 1, and the server at level 2. The major

execution steps involved at these three components are summarized in Figure 2.

3.1 General

First let us consider the actions at the processing node. When a job arrives (either

from an external user or from the server) at a processing node, it is tested at the gateway.

The local scheduling algorithm at the node decides whether or not to execute this job

locally. This decision is based on pending jobs in the local queue (which are already

guaranteed to be executed within their deadlines), the requirements of the new job, and

the scheduling policies (e.g., FCFS, SJF, SDF, SSF etc. [8]). In case the local scheduler

decides to execute it locally, it will insert it in the local processing queue, and thereby

guaranteeing to execute the new job within its deadline. By definition, no other jobs

already in the local queue will miss their deadlines after the new addition. In case the

local scheduler cannot make a guarantee to the new job, it either sends the job to its

server (if there is a possibility of completion), or discard the job (if there is no such

chance of completion).

Let us now consider the actions at level-1 server. Upon arriving at a server, a job

enters the server queue. First, the server attempts to choose a candidate processing node

(within its cluster) that is most likely to meet the deadline of this job. This decision is

based on the latest information provided by the processing node to the server regarding

its status. This information includes the scheduling algorithm, current load and other

status information at each of the processing nodes in its cluster. (The choice of the

information content as well as its currency are critical for efficient scheduling. For lack

ofspace, we omit this discussion here.) When more than one candidate node is available,

a random selection is carried out, among these nodes. (We found a substantial difference

in performance between choosing the first candidate and the random selection.) If a

server canr,ot find a candidate node for executing the job, it forwards the job to the

level-2 server.

The level-2 server (or top level server) maintains information about all level-1 servers.

Each server sends an abstract form of its information to the level-2 server. Once again,

the information content as weli as its currency are crucial for the performance of the

algorithm. This server redirects an arriving job to one of the level-l servers. The choice

of candidate servers is dependent on the ability of these servers to redirect, a job to ozle

of the pcocessing nodes in their cluster to meet the deadline of the job.

The rule for discarding a job is very sim_le. At any time, a job may he discarded

if the processing node or the server at which the job exists finds that if the job is sent

elsewhere it would never be executed before its deadline. This may be due to the jobs

already in the processing queue, and/or the communication delay for navigation along

the hierarchy.

3.2 Information Abstraction at Different Levels

The auxiliary information (about the load status) maintained at a processing node

or a server is crucial to the performance of the scheduling algorithm. Besides the infor-

mation content, its structure and its maintenance will dictate its utility and overhead on

the system. To maximize the benefit and minimize the overhead, every level is assigned

its own information structure. The information at the serversis periodically updated
by nodesat the lower level. (The time interval for propagating the information to the
serversis a parameter of the system.)

The jobs waiting to be executedat a processingnode areclassifiedaccordingto the
localscheduling algorithm (e.g., the classification would be on based priority if a priority

scheduler is used.). Due to this dependency on the scheduling algorithm, we allow each

processing node to choose its own local classification. Typically, the following attributes
are maintained for each class:

• the average response time; (used for performance statistics)

• the likely end of execution (time) of the last job, including the one currently being

served;

• the minimum slack among the jobs currently in the processing queue.

In addition, depending on the scheduling policy, we may have some other attributes.

The server maintains a copy of the information available at each of its child nodes

including the scheduling policy. Since the information at a child node is dependent on

the local scheduling policy, the server node should be capable of maintaining differ-

ent types of data. Using this information, the server should be able to decide which

processing nodes are eligible for executing a job and meet its deadline.

The information at level 2 server consists of an abstraction of the information

available at each of the level-1 servers. Since each level-1 server may contain nodes

with heterogeneous scheduling policies, level-2 server abstracts its information based on

scheduling policies for each server. Thus, for a FCFS scheduling policy, it will contain

abstracted status information from each of its child server3. This i3 repeated for other

scheduling policies. Thus, the information at this level does not represent information

at a processing node; rather it is a summary of information of a group of nodes in a

cluster with the same scheduling policy.

4. Results

In order to evaluate the effectiveness of our scheduling algorithm, we have built a

simulator and made a number of runs. The results presented in this paper concentrate

on the sensitivity of our algorithm to four different parameters: the cluster size, the

communication delay (between nodes), the frequency of propagation of load information

(between levels), and the node heterogeneity. For lack of space, we have omitted other

results such as the scheduler's sensitivity to heterogeneity in scheduling algorithms,

heterogeneity in loads, and the effects of information structures. Accordingly, all the

results reported here assume:

• FCFS scheduling policy at every node,

• the total number of processing nodes is 100,

• equal load at all nodes,

• communication delay between any nodes is the same.

The performance of the scheduleris measured in terms of the percentage of jobs dis-

carded by the algorithm (at levels 0,1, 2). The rate of arrivals of jobs and their process-

ing requirements are combinedly represented through a load factor. This load factor

refers to the load on the overall system. Our load consists of jobs from three types of

execution time constraints. The first type are short jobs with average execution of 10

units of time and with a slack of 25 units. (The actual values for a job are derived from

an exponential distribution.) The second type of jobs have an average execution time

of 50 units and a slack of 35 units. Long jobs have average execution times of 100 units

and slacks of 300 units. In all our experiments, all these types have equal contribution

to the overall load factor.

We now discuss our observations regarding the characteristics of the distributed

scheduler in terms of the four selected parameters. In order to isolate the effect of

one factor from others, the choice of parameters is made judiciously. For example,

in studying the effects of cluster size (Figure 3), the updation period is chosen to be

a medium value of 200 (stat=200), the communication delay is chosen to be small

(corn=5), and the nodes are assumed to be homogeneous (node: horn). Similarly, while

studying the effects of the updation period (Figure 4), the cluster size is chosen to be

100 (cluster =100). Similar choices are made in the study of other two factors.

4.1 Effect of Cluster Size

Cluster size indicates the number of processing nodes being assigned to a level-1

server. In our study, we have considered three cluster sizes: 100, 50, and 10. A cluster

of 100 nodes indicates a centralized server structure where all the processing nodes are

under one level-1 server. In this case, level-2 server is absent. Similarly, in the case of

cluster of 50 nodes, there are two level-I servers, and one level-2 server. For 10-node

cluster, we have l0 level-1 servers. In addition, we consider a completely decentralized

case represented by the random policy, in this case, each processing node acts a-: its

own server and randomly selects a destination node to execute a job which it cannot

locally guarantee. We make the following observatlons (Figure 3).

• Both cluster sizes of 1170 and 50 nodes have identical effect on performance.

• With cluster size of 10, the percentage of discarded jobs has increased. This

difference is apparent at high loads.

• The random policy results in a significantly higher percentage of jobs being dis-

carded.

From here, we conclude that our algorithm is robust to variations in cluster size. In

addition, its performance is significantly superior to a random policy.

4.2 Effect of The Frequency of Updations

As is the case for all distributed algorithms, the currency of information at a node

about the rest of the system plays a major role in performance. Hence, if the state

of processing nodes vary rapidly, then the frequency of status information exchanges

between the levels should also be high. In order to determine the sensitivity of the
proposedalgorithm to the period of updating statistics at the servers,weexperimented
with four time periods: 25, 100, 200 and 500 units. (These time units are the same as

the execution time units of jobs.) The results are summarized in Figure 4. From here

we make the following observations.

• Our algorithm is extremely sensitive to changes in period of information exchanges

between servers and processing nodes.

• Even in the worst case of 500 units, the performance of our algorithm is signifi-

cantly better than the random policy.

4.3 Effect of Communication Delay

Since processing nodes send jobs that cannot be executed locally to a server, com-

munication delay is a major factor in reducing the number of-jobs discarded due to

deadline limitations. Here, we present results for four vahles of of communication de-

lay: 0, 5, 10 and 20 units. (These units are the same as the execution time units of

jobs.) The results are summarized in Figure 5. The communication delay of zero rep-

resents a closely coupled system with insignificant time of inter-node or inter-process

communication. A higher communication delay implies lower slack for jobs that cannot

be executed locally. It may be observed that

When the communication delay is 0, 5, or 10, the number of discarded jobs with

our algorithm (DSA) is relatively small and independent of this delay. In all

these cases, the percentage of discarded jobs with DSA is much smaller than with

random policy.

When communication delay is 20, however, the percentage of discarded jobs is

much higher. In fact, in this case the random policy has a better performance

than our algorithm.

The performance difference between random policy and our algorithm reduces

with the increase in communication delay. When the communication delay is

higher, this difference has vanished, and in fact the random policy has displayed

better performance.

We attribute our observation to the selection of slacks for the input jobs. If a shortest

job could not be executed at the processing node at which it originated, it has to go

through two hops of communication (node to server, server to node), resulting in twice

the delay for a single hop. Since the maximum value of the slack for jobs with short

execution time has been taken to be 25 units of time (in our runs), any communication

delay above 12 units will result in a non-local job being discarded with certainty. Thus,

even though our algorithm is robust to variations in communication delay, there is

an inherent relationship between the slack of an incoming job and the communication

delay.

4.4 Effect of Node Heterogeneity

As mentioned in the introduction, a number of studies claim that sending a job
randomly over the network would be almost asgood asusing a complex load balancing
algorithm [4]. We conjecture that this claim is only valid under homogeneousnodes
assumption and jobs with no time constraints. Sinceone of our major objectives has
beento test this claim for jobs with time constraints overa set of heterogeneousnodes,
experimentshave beenconductedunder four conditions. For eachof these conditions,

we derive results for our algorithm (DSA) as well as the random policy. The results are

summarized in Figure 6. The homogeneous case (denoted by horn) represents a system

with all 100 nodes having tile same unit speeds. (Since a job is only distinguished by

its processing time requirements, we have considered only speed heterogeneities.) The

three heterogeneous cases are represented by hell, het2, bet3. The heterogeneities are

described through a set of <# of nodes, speed factor> pairs. For example, hell relates

to a system with 50 nodes with a speed factor of 0.5 and 50 nodes with a speed factor

of 1.5. Thus the average speed of a processing node is still 1.0, which is the same as

the homogeneous case. The other two heterogeneous cases may be similarly explaim:d.

Among the cases considered, the degree of heterogeneity is maximum for her3. From

our results it may be observed that:

With our algorithm, even though the increase in degree of heterogeneity resulted

in an increase of discarded jobs, the increase is not so significant. Hence, our

algorithm appears to be robust to node heterogeneities.

The performance of the random policy is extremely sensitive to the node hetero-

geneity. As the heterogeneity is increased, the number of discarded jobs is also

significantly increased.

With the increase in node heterogeneity, the number of nodes with slow speed also

increase. Thus, using a random policy, if a slow speed node is selected randomly, then

the job is more likely to be discarded. In our algorithm, since the server is aware of the

hcterogeneities, it can suitably avoid a low speed node when necessary. Even in this

case, there is a ;endency for high-speed nodes to be overloaded and low speed nodes to

be under loaded. Hence, the difference in performance.

5. Conclusions

In this paper, a distributed algorithm has been proposed to help schedule jobs wi/h

time constraints over a network of heterogeneous nodes, each of which could have its

own processing speed and job-scheduling policy. Several parametric studies have been

conducted. From the results obtained it can be concluded that:

• the algorithm has a large improvement over the random selection in terms of the

percentage of discarded jobs;

• the performance of the algorithm tends to be invariant with respect to node-speed

heterogeneity;

• the algorithm efficiently utilizes the available information; this is evident from the
sensitivity of our algorithm to the periodicity of update information.

• the performanceof the algorithm is robust to variations in in the cluster size.

In summary, our algorithm is robust to several heterogeneities commonly observed in

distributed systems. Our other results (not presented hcre) also indicate the robustness

of this algorithm to heterogeaeities in scheduling algorithms at local nodes. In future,

we propose to extend this work to investigate the sensitivity of our algorithm to other

heterogeneities in distributed systems. We also propose to test its viability in a non-real

time system where response time or throughput is the performance measure.

ACKNOWLEDGEMENT

This research was sponsored in part by the NASA Langley Research Center under

contracts NAG-l-Ill4 and NAG-l-1154.

References

[1] S.R. Biyabani, J.A. Stankovic, and K. Ramamritham, "The integration of deadline

and criticalness in hard real-time scheduling," Proc. Real-time Systems Symposium,

pp. 152-160, December 1988.

[2] J.-Y. Chuang and J.W.S. Liu, "Algorithms for scheduling periodic jobs to minimize

average error," Prec. Real-time Systems Symposium, pp. 142-151, December 1988.

[3] D.W. Craig and C.M. Woodside, "The rejection rate for tasks with random at'-

rivals, deadlines, and preemptive scheduling," IEEE Trans. Software Engineering,

Vol. 16, No. 10, pp. 1198-1208, Oct. 1990.

[4] D.L. Eager, E.D. Lazowska, and J. Zahorjan, "Adaptive load sharing in homoge-

neous distributed systems," IEEE Trans. Software Engineering, Vol. SE-12. No. 5,

pp. 662-675, May 1986.

[5] R. Rajkumar, L. Sha, and J.P. Lehoczky, "Real-time synchronization protocols

for multiprocessors," Proc. Real-time Systems Symposium, pp. 259-269, Dccember

1988.

[6] K.G. Shin, C.M. Krishna, and YI-H. Lee, "Optimal resource control in periodic

real-time environments," Proc. Real-time Systems Symposium, pp. 33-41, Decem-

ber 1988.

[7] J. Stankovic and K. Ramamritham, "Evaluation of a bidding algorithm for hard

real-time distributed systems," IEEE Trans. Computers, Vol. C-34, No. 12, pp.

1130-1143, Dec. 1986.

[8] W. Zhao, K. Ramamritham, and J. Stankovic, "Scheduling tasks with resource

requirements in hard-real time systems," IEEE Trans. Software Engineering, Vol.

SE-13, No. 5, pp. 564-577, May 1987.

(

Level 2 server

Level 1 server

Level 0 •

Proc. node

Figure 1 • System Model

from other level 1

servers

from other child

nodes

I.... u

L
Jobs t

from other servers i
I

I
I
I

Extemal jobs I
I...

(

k

""-,--- discard

,y to alevel 1 server

to a processing
node in this

cluster

discard

mm.,I

Level 2 server

Level 1 server

1

to server I Processing
I node

I job departure

guaranteed job processor !
discard queue _al

gateway

Figure 2 • Flow diagram of The Algorithm

 °125
0

19 20

S

15

d

i

S 1o

C

a

r 5

d

e

d °o

25

b

d
i

S

C

a

r

d

e
d

• cluster = 100 stat = 200
• cluster = 50 corn = 5 ,f'
+ cluster = 10 node: hom/
, random /

0.1 0.2 0.3 0.4 0.5 0.6 0.7

load factor

Figure 3:Effect of cluster size

0.8

2s [= star = 25 cluster = 100

[• stat=lO0 com =5 ,o
I +star-200 noae:nom /

2o} , star2 500 /

is] • random

+o/
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

Figure 4: Effect of updation period

20

15

10

• corn = 10 nat- 200

÷

cluster = 100 j_5Corn

corn = 0 node: horn /_f"
Ill

A

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

40

35

30

25

20

15

!0

, corn = 20(DSA)
• corn = 20(random) /

stat= 200 /
cluster= 100 DSA// /Ak

s _/ random+

0
0 O.1 O.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

Figure 5:Effect of communication delay

O

b 2o

S

15
d
i

S 1o

C

a

r 5

d

e

d o

horn

• hetl Random
+het2
, her3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

25

20

15

10

51

x hom

Ahetl DSA
÷her2
, her3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load factor

Figure 6: Effect of Node Heterogeneity

hetl • <50,1.0>, <25,1.5>, <25,0.5>
het2 • _50.0.5>, <50,1.5>
het3 • <20,0.25>, <20,0.5>, <20,1.0>, <20,1.5>, <20,1.75>

IEEE PROCEEDINGS OF THE

UTH TCON '91

Volume2

91 CH2998-3 NASA

N91-25955
Performance Analysis of Static Locking in Replicated Distributed Database Systems

Yi,lgilong Kuang
Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Abstract

Data replications and transaction deadlocks can severely af-

fect the performance of distributed database systems. Many

current evaluation techniques ignore these aspects, because it

is difficult to evaluate through analysis and time-consuming to

evaluate through simulation. In this paper, we use a technique

that combines simulation and analysis to closely illustrate the

impact of deadlock and evaluate performance of replicated dis-
tributed database with both shared and exclusive locks.

1. Introduction.

A distributed database system (DDS) is a collection of co-

operating nodes each containing a set of data items. A vser

transactltm can ent,'r such a ._yste,u at ally _1"tl,'s,' nodes. Th4'

receiving node, ofte,_ referred to as the coordi,_lmg node, un-

dertakes the task of locating the nodes that contaiu the data

items required by a transaction.

In order to maintain database consistency and correctness

in the presence of concurrent transactions, several concurrency

control protocols have bc_n proposed [1]. Of these, the most

commonly used are time-stamping and locking protocols. Lock-

ing protocols have been widely used in both commercial and

research environments. In static locking, prior to start of exe-

cution, a transaction needs to acquire either a shared-lock (for

read operations) or an exclusive lock (for update operations) on

each of the relevant data items.

Data replication is used to improve the performance of local

transactions and the availability of databases, h| replicated

databases, one data item may have more than one copy iu

the system. Replica control algorithms are used to maintain

the consistency among these copies. One of these is the read-

one/write-all protocol. With this protocol a,_ exclusive lock
need to acquire an exclusive lock from every copy of the data

item . For a shared lock to succeed, any o,e cop)' of the data

item has to be share locked. When transactions with conflicting

lock requests are initiated concurrently, they could be possibly

blocked due to a deadlock.

There are two major ways to evaluate the performance of

distributed systems: simulatiou and analysis. Simulation is a

conceptually tractable technique, but requires large computa-

tion time. On the other hand, analysis is computationally faster

but may not be tractable for all problems. In [4], Shyu and Li

proposed an elegant analysis model to evaluate the response

time and throughput of transactions in a non-replicated DDS.

Assuming ezclusive locking (i.e., only write operations), they

model the queue of lock requests at an object as an M/M/I

queue [3]. This results in a closed-form for the waiting time

distribution at a node, expressed in terms of the average rates

of arrivals of requests and the average lock-holding time. With

shared lock and replications added into the picture, it is very
difficult to have a close model for it. Because of the limita-

tions of simulation and analysis, we develop a technique that

combines simulation and analysis.

This paper is organized as the follows. In Section 2, we de-

scribe the model used in our performance evaluation. In Section

3, we propose an evaluation technique. In Section 4, we illus-

trate the results. Finally, Section 5 has the conclusions.

2. Model

Our model has the following parameters:

• There are n nodes.

• There are d data items in a DDS.

• A data item may be located at exactly e number of nodes.

The dc data copies are uniformly distributed across the n'

nodes.

* Each transaction accesses k data items.

• r is the read ratio. So among k data items to be accessed,

rk are accessed only for read operations, and the rest
are for read-write operations. Due to the read-one/write.

all replica control policy, a transaction must procure r/_

shared locks for rk read operations and (l -r)kc exclusive

locks for the (1 - r)k read-write operations.

Each data item is equally likely to be accessed by a trans-

action.

Transaction arrivals into the system is a Poisson process

with rate A.

The communication delay between any two nodes is ex-

ponentially distributed with mean /.

The average execution time of a transaction, once the

locks are obtained, is ,L

The deadlock mechanism is invoked every r seconds.

After an abortion of a transaction, it takes an average 0(
w seconds for this transaction to be restarted.

a # is the service rate of transactions.

XThis research was supported in part by the NASA Langley Research
Center under contracts NAG-I-1114 and NAG-I-1154

• b is the lock-holding time.

• ,_c is the arrival rate at each data copy.

CH2998-3/91 K)C£}0-0698.$01.000199IIEEE

3. PerformanceEvaluationTechnique
Our technique consists of two stages. In the first stage, the

average transaction response time and throughput are c_lcu-

lated by ignoring the deadlock. This is an iterative step involv-

ing simulation anti analysis. In tile secoml _t_lge, Ihe l)rol,a -
bilities of transaction conflicts and deadlocks are computed by

probability models. These probabilities are used, in turn, to

compute the response time and throughput iu the pr_'seuc_ of
deadlocks.

Stage 1:
Initially, we assume that there are no lock couflicts hetwceu

transactions. Each transaction has to procure rk shawd lock

on data copies and (1 - r)kc exclusive locks on data copi¢-s.

When a transaction has got all the lock grams from these data

objects, it can go ahead with execution.

This procedure is summarized in the following 13steps.

1. Initialize lock-holding time(b) to be |/It.

2. Given the total rate of transaction arrival(A), tile shared

lock ratio(r), the number of data items{d), the number of

data items requlr(.d by each transactio.(k) al,I Ih_. nlllll.

ber of replications(c), derive the arrival ratl, at t.ach data

copy(Ac).

3. With the arrival rate at each data copy(Ae), Ihe average

lock-holding time(b), and the transmission time'(t) we can

simulate the queue at a data copy to arrive wait.time(w)

distribution. With this distribution we can calculate the

response time of transactions.

4. With the average service time of trausactious(I/t_), aud

the transmission time, we can derive a new Iock.holdi,g

time(e).

5. Set b to this new lock-holding time//.

6. If the old and new lock-holding time are sult'lci_.utly close..

stop tile iteration. Otherwise, go back to stvp 3.

At the end of stage 1 the response time without the considera-

tion of transaction deadlocks is obtained.

Stage 2:

This stage considers transaction conflicts and computes the

deadlock probability. Here the probabilities of transaction dead-

lock and restart are computed. These are then used to compute

response time and throughput in the presence of deadlocks.
Assume there are two transactions TI and '1"2. Let RS, WS

be the read and write sets of transactions resj_ectivdy.

Let fs, be the probability that the readset of T 1 has i data

items overlapping with the writeset of T2, i.e. IRS(TI) n

WS(T2)I = i.

Let feii be the probability that given]IIS(TI)OIVS(T2)I =

i, the writeset of T1 has j data items overlaping wilh

the readset and write,set of T2, i.e. the i_rohahility that

IWS(TI) n (I¢s('/"_,) u Ivs(7'2))l = j.

Clearly,

699

(_-'_ t'_-*+'q
fS t

(:,)
k k-,'_-j /

f '"' = (d-,t,'_

_t-rkl

It can also be note_t that f.s,feli is tile probability that:

[Read-set(Tl)nWrlte-set(T2)l=i

^ IWrite-set(Tl)n(Write-set(T2)URead-set(T2))l=j.

If PIV, i is the probability that T1 waits for T2,

PIV,_ = pl +p2-pl *p2

pl = 1-[I -(I/2)' I'

p2 = (1-(1/2)*,)

l)

(2)

(3)

(4)

(5)

where pl is the probability that TI waits for T2 for shared locks
in readset

and p2 is tile probability that TI waits for T2. for exclusive locks

in writeset.

Probability that T1 waits for T2 is now given by

m11ill(/',lt-r) ndtl(Ik-r,k- Q}

t',,, = _ _ f_,l_,,Pw,, It,)
i=O I_-O

With this prohahility of waiting and the formulas in [4] we can

calculate tl,e probability of a transaction deadlock, the prob-

ability of a tra,lsaction restart and the probability of a trans-

action to be blocked by other transactions. And with these

probabilities and the time between deadlock detection(r), we
can calculate the response time with consideration of deadlock.

(Details are omett_rd here.)

4. Results

Usiug this tcchniq,e, we obtained a number of interesting

results that ilh,strate the effect of deadlocks and number of

replications on database performance. These are summarized

in Figures 1-.5. We make tile following observations.

• Transaction response times are quite sensitive to the ratio

of shared locks (Figt, re 1 and 2). tlere, we compare the re-

sponse times when deadlocks are ignored (DI, computed in

Stage 1) with those obtained when deadlocks are consid-

ered (DC, computed in Stage 2). The effect of deadlocks

is more predominant at higher transaction loads and with

smaller vahues of r. When r = 2/:!, the effect of deadlocks

is not significant on response time.

• If w," COml_ar, ° I"igur, I and 2 witl, Figure 3 and 4, it cau

bc ol,m.rved that tlw incrca.se in replications results in tile

larger response time when read ratio is smaller than 1/3.

• Fig. 5 shows the response times with different replication

numbers, llere we can see that with both cases when

read ratio is 2/3 and 1/3, the response time increases as

the number of replications increases. But with read ratio

equals 1/3, tile increasing rate is much smaller than that

with i-_.:td ratio vqnals 2/:|.

5. Conclusions

In [4], Shyu and Li presented an elegant technique to eval-

uate the performance of distributed database systems in the

presence of deadlocks. Their technique assumed only exclusive

locks anld thus representing the worst-case effects of deadlocks.

response
Lime

(so:)

rcsponsc
time

(so:)

rcsponse
time

(scc)

2

18

16

14

12

1

08

06

-7
c=2 _ ur= 1.00

k= 3 / Ar = 0.67d = 200 +r = 0.33

r =20 / *r = 0.00

0 2 4 6

arrival ratc(trans/sec) 2

Figure. 1 Comparison of response time with different

read ratio when deadlock is ignored.

2

18

16

14

12

1

08

06

k=3

d= 200

r = 20

m =2

t_-=0.2

ntr= 1.00

• • = 0.67

÷• = 0.33
or = 0.130

0 2 4 6

arrival ratc(tran_scc) _.

Figure.2 Comparison of rcspon_ time with different
read ratio when deadlock is considered.

2

C =3

18 k= 3

d=200

16 r = 20

m -2

14 i'=0.2
_= 0.01

1.2

I _ tr= 1.00

• r = 0.67
o,a +r = 0.33

*r = 0.00

0.6
o 2 4 6

amval ratc(trans/sec) ,I.

Figure.3 Comparison of response time with different
read ratio when deadlock is ignored.

response
time

(see)

c=3

k=3

d=200

l 6 r = 20

a_ =2
t= 0.2

I 4 s= 0.01

12

t Zr= 1.00

• • = 0.67

0a +r = 0.33
er =0.00

06 --
2 4 6

arrival rate(trans/sec) 3.

Figure.4 Comparison of response time with different

read ratio when deadlock is ignored.

response
time

(see)

2.2

2

1.8

1,6

1.4

12

1

08

k,-6 /[DC ,r = 0.67
d= 1000 /[,r = 0.33

=20 //4 DI
__.2 //
t-0.2 //
i.00_ //

,1.-4 //

D!

3 5

replication number c

Figure. 5 Comparison of res]xms¢ time with dilTeml
read ratio with and without deadlocL

DC: Deadlock Considered.

Dh Deadlock Ignored.

In this paper, we have extended their technique to combi_,e

ulation and analysis. And with this extended technique*e "_"

both shared and exclusive locking and also replications il_ll

model. We evaluated the the effect of number of data item_lb

number of data items accessed by each transaction, the r_

read operations on transaction response Lime and the nu_

replications. These results show the importance of cons/dull

both shared and exclusive lock requests, the deadlock

bilities as well as the number of replications of datalurll_

response time evah,ations.

700

References

N

N

P. A. Bernstein, V. Hadzflacos, and N. Goodman, Concur-

etlcy Control and Recovery in Database Systems, Addison-

It'e,ley, 1987.

A. llac, "A decomposition solution to a queueing network

model of a distribt, ted file system with dynamic locking,"

IEEI'_ Trans. Software Eng. , vol. SE-12, no. 4, pp. 521-530,

Apr. 1986.

L. Kleinrock, Queuein 9 S_lstems, Vol. [, New York: Wiley.

[nterscience, 1975.

S.-C. Shyu and V. O. h:. [,i, "Performance analysis of.static

locking in distributed database systems," IEI:'E "]'rttns.

Computers, vol. 39, no. 6, pp. 7,tl-751, June 1990.

._1.Singhal and A. K. Agrawala, "Performance analysis of

aa algorithm for concurrency control in replicated database

,yslems," Proe. ACM SIGMETRICS Conf. Measurement

Modelin 9 Comput. Syst., 1986, pp. 159-169.

Y. C. "ray, R. Suri, antt N. Goodman, "A mean value per-

formance model for Iockivg in databases: The no-waiti,g

case," J. ACM, vol. 32, no. 3, pp. 618-651, July 1985.

701

Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

N91-25956

EFFECTS OF DISTRIBUTED DATABASE MODELING ON EVALUATION OF
TRANSACTION ROLLBACKS

Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529-0162.

ABSTRACT

Data distribution, degree of data replication, and transaction
access patterns are key factors in determining the performance
of distributed database systems. In order to simplify the evalua.
tion of performance measures, database designers and researchers
tend to make simplistic assumptions about the system. In this
paper, we investigate the effect of modeling assumptions on the
evaluation of one such measure, the number of transaction roll.
backs, in a partitioned distributed database system. We develop
six probabilistic models and develop expressions for the number
of rollbacks under each of these models. Essentially, the models
differ in terms of the available system information. The analyti-
cal results so obtained are compared to results from simulation.
From here, we conclude that most of the probabilistic modeh
yield overly conservative estimates of the number of rollbacks.
The effect of transaction commutativity on system throughput is

also grossly undermined when such models are employed.

1. INTRODUCTION

A distributed database system is a collection of cooperating
nodes each containing a set of data items (In this paper, the
basic unit of access in a database is referred to as a data item.).
A user transaction can enter such a system at any of these nodes.
The receiving node, sometimes referred to as the coordinating or
initiating node, undertakes the task of locating tile nodes that
contain the data items required by a transaction.

A partitioning of a distributed database (DDB) occurs when
the nodes in the network split into groups of communicating
nodes due to node or communication link failures. The nodes

in each group can communicate with each other, but no node in
one group is able to communicate with nodes in other groups. We
refer to each such group as a partition. The algorithms which al-
low a partitioned DDB to continue functioning generally fall into
one of two classes [Davidson et al. 1985]. Those in the first class
take a pessimislic approach and process only those transactions
in a partition which do not conflict with transactions in other par-
titions, assuring mutual consistency of data when partitions are
reunited. The algorithms in the second class allow every group
of nodes in a partitioned DDB to perform new updates. Since
this may result in independent updates to items in different par-
titions, conflicts among transactions are bound to occur, and the
databases of the partitions will clearly diverge. Therefore, they

require a strategy for conflict detection a.d resolution. Usually,
rollbacks are used as a means for preserving consistency; con-
flicting transactions are rolled back when partitions are reunited.
Since coordinating the undoing of transactions is a very difficult
task, these methods are called optimistic siaDce they are useful
primarily in a situation where the number of items in a par-
ticular database is large and the probability of conflicts among
transactions is small.

In general, determining if a transaction that successfully ex-
ecuted in a partition is rolled back at the time the database
is merged depends on a number of factors. Data items in the
read-set and the write-set of the transaction, the distribution of
these data items among the other partitions, access patterns of
transactions in other partitions, data dependencies a,nong the
transactions, and semantic relation (if al,y) between these trans.
actions are some examples of these factors. Exact evah*eLtion of

rollback probability for all transactions i, a database (and hence
the evaluation of the number of rolled back transactions) gen-
erally involves both analysis and simulation, and requires large
execution times [Davidson 1982; Davidson 198,1]. To overcome
the computational complexities of evaluatio,, dcsig,ers and re-
searchers generally resort to approximation tech.iques [David-
son 1982; Davidson 1986; Wright 1983a; Wright 1983b. These
techniques reduce the computation time by making simp ifying
assumptions to represent the underlying distributed system. The
time complexity of the resulting techniques greatly depends on
tim assumed model as well an eval.atio. I_.ch.lqm.s.

In this paper we are islterested i. d_.tel'nfinl.g the effect of the
distributed database models on the computational complexity
and accuracy of the rollback statistics in a parlil ioned database.

The balance of this paper is outlined as follows. Section 2 for-
really defines the problem under consi(lcralio.. In Section 3, we
discuss the data distribution, replicatio., and tra.saction model-
ing. Section 4 derives the rollback statistics for one distribution
model. In Sectio,i 5, we compare the _.laly._is methods for six
models and simulation method for one model based on computa-
tional complexity, space complexity, and accuracy of the measure.
Finally, in Section 6, we summarize the obtained results.

2. PROBLEM DESCRIPTION

Even though a transaction 7'j in partitio. P, may be rolled
back (at merging time) by another tr_._sa('titm 7_ in partition 1_
due to a number of reaso,ls, the followi.e, two cases are found to

be the major contributors {Davidson 19821.

i. PI _ P2, and there is at least one data item which is up-
dated by both Tt and T_. This is referred to as a unite-write
conflict.

ii. Pt = P2, T2 is rolled back, and it is a dependency parent of
Ti (i.e., Tt has read at least one data item updated by T_,
and T2 occurs prior to Tt in the serialization sequence).

The above discussion on reasons for rollback only considers
the syntax of transactions (i.e. read- and write-sets) and does
not recognize any semantic relation between them. To be more
specific,let us consider transactions TI and T2 executed in two
different partitions PI and P2 respectively. Let us also assume
that the intersection between the write-sets of Tt and T2 is non-

empty. Clearly, by the above definition, there is a write-write
conflict and one of the two trathsactions has to be roiled back.
However, if Tt and T2 commute with each other, then there is no
need to rollback either of the transactions at the time of partition
merge [Garcia-Molina 1983; Jajodia and Speckman 1985; Jajodia
and Mukkamala 1990]. Instead, Tt needs to be executed in P2
and T2 needs to be executed in P,. The analysis in this paper
take this property into account.

In order to compute the number of rollbacks, it is also nec-
essary to define some ordering (O(P)) on the partitions. For
example, if 7'1 and T2 correspond to case (i) above, and do not
commute, it is necessary to determine which of these two are
rolled back at the time of merging. Partition ordering resolves
this ambiguity by the following rule: Whenever two conflicting
but non-commuting transactions are executed in two different
partitions, then the transaction executed in the lower order par-
tition is rolled back.

R. Mukkamala

Since a transaction may be rolled back due to either (1) or
(ii), we classify the rollbacks into two classes: Class 1 and Class
2 respectively. The problem of estimating the number of roll-
backs at the time of partition merging in a partially replicated
distributed database system may be formulated as follows.

Given the following parameters, determine the number of
rolled back transactions in class I (RI) and class 2 (Ra).

• n, the number of nodes in the database;

• d, the number of data items in the database;

• p, the number of partitions in the distributed system (prior
to merge);

• t, the number of transaction types;

• GD, the global data directory that contains the location of
each of the d data items; the GD matrix has d rows and n
columns, each of which is either 0 or I;

• NSk, the set of nodes in partition k, Vk = 1,2,... ,p;

• RSi, the read-set of transaction type j, j = 1,2,...,t;

• WSj, the write.set of transaction type j, j = 1,2, t;

• Nj,, the number of transactions of type j received in par-
tition k (prior to merge), j - 1,2 ,t, k = 1,2,...,p.

• CM, the commutativity matrix that defines transaction
commutativity. If CMj,., 7 = true then transaction types Jl
and j_ commute. Otherwise they do not commute.

The average number of total rollbacks is now expressed as R =
RI + R2.

3. MODEL DESCRIPTION

As stated in tile introductio,,, the primary objective of this
paper is to investigate the effect of data distribution, replication,
and transaction models on esti,l,atio, of the number of rollbacks

in a distributed database system.
To describe a data distribution-transaction model, we char-

acterize it with three orthogonal parameters:

1. Degree of data item replication (or the number of copies).

2. Distribution of data item copies.

3. Transaction characterization

We now discuss each of these parameters in detail.
For simplicity, several analysis techniques assume that each

data item has the same number of copies (or degree of replica-
tion) in the database system [Coffman et al. 1981]. Some other
techniques characterize the degree of replication of a database by
the average degree of replication of data items in that database

ldDaVidson 1986]. Others treat the degree of replication of each
ata item independently.

Some designers and analysts assume some specific allocation
schemes for data item {or group) copies (e.g., [Mukkamala 1987_.
Assuming complete knowledge of data copy distribution (Gu)
is one such assumption. Depending on the type of allocation,
such assumptions may simplify the performance analysis. Others
assume that each data item copy is randomly distributed among
the nodes in the distributed system [Davidson 19861.

Many database analysts characterize a transaction by the size
of its read-set and its write-set. Since different transactions may
have different sizes, these are either classified based on the sizes,
or an average read-set size and average write-set size are used to
represent a transaction. Others, however, classify transactions
based on the data items that they access (and not necessarily on

their size). In this case, transaction types are identified with their
expected sizes and the group of data items from which these are
accessed. An extreme example is a case where each transaction in

the system is identified completely by its read-set and its write-

set.
With these three parameters, we can describe a number of

models. Due to the limitedspace,we choseto presentthe results
forsixof theSemodels in thispaper.

We chose the following sixmodels based on their applicability
in the current literature, and tlteir close resemblance to practical
systems. In all these models, the rate of arrival of transactions
at each of the nodes is assumed to be completely known a priori.
We also assume complete knowledge of the partitions (i.e. which
nodes are in which partitions) in all the models.

Model 1: Among the six chosen models, this has the max-
imum information about data distribution, replication, and
transactions in the system. It captures the following infor-
mation.

• Replicalion: Data replication is specified for each data
item.

• Data distribulion: The distribution of data items among
the nodes in the system is represented as a distribution
matrix (as described in Section 2).

• Transactions:Alldistincttransactionsexecuted ina
system are represented by their read-sets and write-
sets. Thus, for a given transaction, the model knows
which data items are read, and which data items are

updated. The commutativity information is also com-
pletely known and is expressed as a matrix (as de.
scribedin Section2).

Model 2: This model reducesthe number oftransactions

by combining them intoa setoftrans_ctiontypesb_sed on
commutativity,commonalitiesindata accesspatterns,etc.
Sincethe transactionsare now grouped, some of the indi-
vidualcharacteristicsof transactions(e.g.the exact read-
setand writes-set)are lost.This model has the following
information.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution: Since the read- and write-set infor-
mation is not retained for each transaction type, the
data distribution information is also summarized in

terms of average data items. It is assumed that the
data copies are allocated randomly to the nodes in the
system.

• Transactions:A transactiontype is representedby
itsread-setsize,write-setsize,and the number of
data items from which selcctionfor read and write
ismade. Sincetwo transactiontypesmight accessthe
same data item, it also stores this overlap information
for every pair of transaction types. The commutativ-
ity information is stored for each pair of transaction
types.

Model 3: This model furtherreducethe transactiontypes
by grouping them based onlyon commutativlty character.
istics. No consideration is given to commonalities in data
access pattern or differing read-set and write.set sizes. It
has the following information.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution:As in model 2, itisassumed that
the data copiesare allocatedrandomly to the nodes
in the system.

• Transactions:A transactiontype is representedby
the average read-setsizeand average write-setsize.
The commutativity informationisstoredforallpairs
of transactiontypes.

Model 4: This model clauiflestransactionsinto three

types:read-only,read-write,and others.Read-only trarm.

840

EffectsofDistributedDatabaseModeling

actionscommute among themselves.Read-write transac-
tionsneithercommute among themselvesnor commute with
others,The othersclasscorrespondsto update transactions
that may or may not commute with transactions in their
own class. This fact is represented by a commute probabil-
ity assigned to it.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

• Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented
by average read-set and write-set sizes. The others
class is represented by the averase read-set size, aver-
age write.set size and the probability of commutation.

Model 5: This model reduces the transactions to two

classes: read-only and read-write. Read-only transactions
commute among themselves. The read-write transactions
corresponds to update transactions that may or may not
commute with transactions in their own class. This fact is
represented by a commute probability assigned to it.

• Replication: Average degree of replication is specified
at the system level.

• Data distri6ution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

• Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented

by avera,_e read-set and write-set sizes, and the prob-
ability of commutation.

Model 6: This model identifies read-only transactions and
other update transactions. But these two types have the
same average read-set size. Update transactions may or
may not commute with other update transactions.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution:As in model 2, itisassumed that
tiledata copiesare allocatedrandomly to tilenodes
in tile system.

• Transactions: The read-set size of a transaction is de-
noted by its average. For update transactions, we also
associate an average write-set size and the probability
of commutation.

Among these, model I is very general, and assumes complete
information of data distribution (GD), replication, and transac-
tions. Other models assume only partial (or average) information
about data distribution and replication. Model 1 has the most
information and model 6 has the least.

4,. COMPUTATION OF THE AVERAGES

Several approaches offer potential for computing the average
number of rollbacks for a given system environment; the most
prominent methods are simulation and probabilistic analysis.

Using simulation, one can ,_enerate the data distribution ma-
trix (GD) based on the data distribution and replication policies
of the given model. Similarly, one can generate different trans-
actions (of different types) that can be received at the nodes in
the network. Since the partition information is completely spec-
ified, by searching the relevant columns of the GD matrix, it is
possible to determine whether a given transaction has been suc-
cessfully executed in a given partition. Once all the successful
transactions have been identified, and their data dependencies
are identified, it is possible to identify the transactions that need
to be rolled back at the time of merging. The generation and
evaluation process may have to be repeated enough number of
times to get the required confidence in the final result.

on Evaluation of Transaction Rollbacks

Probabilistic analysis is especially useful when interest is Con-
fined to deriving the average behavior of a system from a given
model. Generally, it requires less computation time. In this pa-
per, we present detailed analysis for model 6, and a summary of
the analysis for models !.-5.

4.1 Derivations for Model 6

This model considers only two transaction types: read-only
(Type 1) and read-write (Type "2). Both have the same average
read-set size of r. A read-write transaction updates to of the data
items that it reads. Nl_ and N2_ represent the rate of arrival of

types 1 and 2 respectively at partition k. The average degree
of replication of a data item is given as c. The system has n
nodes and d data items. Tile probability that two read-write
transaction commute is m.

Let us consider an arbitrary transaction 7"1 received at one
of the nodes in partition k with n_ nodes. Since the copies of
a data item are randomly distributed among the n nodes, the
probability that a single data item is accessible in partition k is
given by

o,__, ('-:')

Since each data item is independently allocated, the expected
number of data items available in this partition is da_. Similarly,
since Tt accesses r data items (on the average}, tile probability
that it will be successfully executed is c_[,. From here, tile number
of successful transactions in k is estimated as o[,NI, and crgN2,
for types 1 and respectively.

In computing the probability of rollback of Ti due to case (i),
we are only interested in transactions that update a data item in
the write-set of T, and not commt,ting with Ti. The probability
that a given data item (updated by Tl) is not updated in another
partition k' by a non-commuting transaction (with respect to Ti)
is given by

file= (I - w '_O-")¢'_''N,''dak, / (2)

Given that a data item is available in k, probability that it is
not available in k' is give. as

,Ik,h:')= ('-:'"))
o,(:)

From here, the probability that a data item available in k is not
updated any other transaction in higher order partitions is given
as

6_ = I-[{-r(k,k') + (x - -_(k,_:'))/_,,l (4)
v_-,,of_,)>o(k)

The probability that transaction Ti is not in write-write con-
flict with any other non-commuting transaction of higher-order
partitions is now given as

(s)

From here, the number of transactions rolled back due to category
(i) may be expressed as RI = _=1(1 - gk)c_,N2h

To compute the rollbacks of category (ii), we need to deter-
mine the probability that T_ is rolled back due to the rollback of
a dependency parent in the same partition. If T; is a read-write
transaction in partition k, then the probability that Ti depends
on T2 (i,e. read-write conflict) is given by:

841

R. Mukkamala

(,°;--)
x, _-1- (,:.) /6)

The probability that 7: is IIot rolled back due to tile roll back of
any of its dependency parents is now given by:

,;N, (A_j,, + I - A,)"'
x* = E .i_v _ ('r)

where N_ = N1_ + N2k and u = N_k/(Nls, + N'aJ,).

The total number of rolled back transact!ons due to category
(ii) is now estimated as R_ = E_=t(I - X_)o_(Ntk-t- #_N:tk). The
total number of rolled back transactions is R = R_ + R2.

5. COMPARISON OF THE MODELS

As mentioned in the introduction, the main objective of this
paper is to determine the effect of data distribution, replication,
and transaction models on the estimation of rollbacks. To achieve

this, we evaluate the desired measure using six different data
distribution and replication models. The comparison of these
evaluations is based on computational time, storage requirement,
and the average values obtained.

Due to the limited space, we coul(l not present the detailed
derivations for the average values for models 2-6. The final ex-
pressions, however, are presented in [Mukkamala 1990].

$.1 Computational Complexity

We now analyze each of the evaluation methods (for models
1-6) for their computational complexity.

s In model 1, all l transactions are completely specified, and
the data distribution matrix is also known. To determine
if a transaction is successful, we need to the scan the dis-
tribution matrix. Similarly, determining if a transaction in
a lower order partition is to be rolled back due to a write-
write conflict with a transaction of higher order partition
requires comparison of write-sets of the two transactions.
Determining if a transaction needs to be rolled back due to
the rollback of a dependency parent also requires a search.
All this requires O(ndt + p_t _ + l_l_N), where t is the num-
ber of transaction types and N is the maximum number of
transactions executed in a partition prior to the merge.

s Models 2-6 have a similar computation structure. The num-
ber of transaction types (I) is high for model 2 and low for
model 6. Each of these models require O(p_t3e + pt2N)
time. As before, I is the number of transaction types and
N is the maximum number of transactions executed in a

partition prior to the merge.

Thus, model 1 is the most complex (computationally) and model
G is the least complex.

5.2 Space Complexity

We now discuss the space complexity of the six evaluation
methods:

, Model 1 requires O(dn) to store the data distribution ma-
trix, O(n) to store the partition information, O(dt)to store
the data access information, and O(nt) to store the trans-

action arrival information. It also requires O(t 2) to store
the commutativity information. Thus, it requires O(dn +

dt+ nt + t _) space to store model information.

• Models 4-6 require similar information: 0(1) to store the
average size of read- and write- sets of transaction types,
O(nt) for transaction arrival, O(n) for partition informa-
tion, and O(t) for commute information. Thus they require
O(nt) space.

• Model 3, in addition to the space required by models 4-
6, also requires O(L a) for commutativity matrix. Thus it

requires O(nt + t _) space.

• Model 2, in addition to the space required by model 3,
also requires 1_ space to store the data overalp information.
Thus, it requires O(nt + t _) storage.

Thus, model 1 has the largest storage requirement and model 6
has the least.

5.3 Evaluation of the Averages

In order to compare the effect of each of these models on
the evaluation of the average rollbacks, we have run a number of
experiments. In addition to the analytical evaluations for models
1-6, we have also run simulations with Model 1. The results
from these runs are summarized in Tables 1-7. Basically these
tables describe the number of transactions successfully executed
before partition merge (Before Merge), number of rollbacks due
to class 1 (RI), rollbacks due to class 2 (R2), and transactions

considered to be successful at the completion ?rfommetr_ee (a_erMerge). Obviously, the last term is computed earlier
three terms. In all these tables, the total number of transaction
arrivals into the system during partitioning is taken to be 65000.
Also, each node is assumed to receive equal share of the incoming
transactions.

• Table 1 summarizes the effect of number of partitions as
measured with Models 1-6. Here, it is assumed that each
of the data items in the system h_ exactly c = 3 copies.
The other assumptions in models 1-6 are as follows:

1. Model 1 considers 130 transaction types in the sys-
tem. Each is described by its read- and write-sets and
whether it commutes with the other transactions. 90

of the 130 are read-only transactions. The rest of the
40 are read-write. Among the read-write, 15 commute
with each other, another 10 commute with each other,
and the rest of the 15 do not commute at all. The sim-

ulation run takes the same inputs but evaluates the
averages by simulation.

2. Model 2 maps the 130 transaction types into 4 classes.
To make the comparisons simple, the above four classes
(90+15+10+15) are taken as four types. The data

overlap is computed from the information provided in
model 1.

3. Model 3, to facilitate comparison of results, considers
the above 4 classes. This model, however, does not
capture the data overlap information.

4. Model 4 considers three types: read-only, read-write
that commute among themselves with some probabil-
ity, and read-write that do not commute at all.

5. Model ,5considers read-only transactions with read-set
size of 3 and read-write transactions with read-set size
of 6. Read-write transactions commute with a given
probability.

6. Model 6 only considers the average read-set size (com-
puted as 4 in our case), the portion of read-write trans-
actions (:45/130), and the average write-set size for
a read-write (= 2). Probability that any two transac-
tions commute is taken to be 0.4.

From Table 1 it may be observed that:

• The analytical results from analysis of Model 1 is a
close approximation of the ones from simulation.

• The evaluation of number of successful transactions
prior to the merge is well approximated by all the
models. Model 6 deviated the most.

• The difference in estimations of RI and R_ is signif-
icant across the models. Model 1 is closest to the

842

EffectsofDisn-ibuledDatabaseModeling on EvaluationofTransactionRollbacks

simulation. Model 6 has the worst accuracy. Model

5, surprisingly, is somewhat better than Models 2,3,4,
and 6.

• The estimation of Ra from models 2-6 is about 50
times of the estimation from Model 1. The estima-

tions from Model 1 and the simulation are quite close.
From here, we can see that, Models 2-6 yield overly
conservative estimates of the number of roilbacks at

the time of partition merge. While Model 1.estimated
the rollbacks as 1200, Model 2-6 have approximated
them as about 13000.

• This difference in estimations seems to exist even when
the number of partitions is increased.

* Table 2 summarizes the effect of nualber of copies on the
evaluation accur_ies of the models. It may be observed
that

• The difference between evaluations from Model 1 and

the others is significant at low (c = 3) as well as high
(c = 8) values of c. Clearly, the difference is more
significant at high degrees of replication.

• The case Pl = 4, P2 = 6, c = 8 corresponds to a case
where each of the 500 data items is available in both

the partitions. This is also evident from the fact that
all the 65000 input transactions are successful prior to
the merge.

• The results from the analysis and simulation of Model
1 are close to those from simulation.

• Table 3 shows the effect of increasing the number of nodes
from 10 (in Table 1) to 20. For large values of n, all the six
models result in good approximations of successful trans-
actions prior to merge. The differences in estimations of R_
and R2 still persist.

• Table 4 compares models 5 and 6. While model 6 only re-
tains average read-set size information for any transaction,
model 6 keeps this information for read-only and read-write
transactions separately. This additional information en-
abled model 5 to arrive at better approximations for Ri
and R2. In addition, the effect of commutativity on Rl and
R_ is not evident until m >_ 0.99. This is counterintuitive.
The simplistic nature of the models is the real cause of this
observation. Thus, even though these models have resulted
in conservative estimates of Rl and R3, we can't draw any
positive conclusions about the effect of commutativity on
tilesystem throt,ghput.

• Tile comments that were made about the conservative na-

ture of the estimates from models 5 and 6 also applies to
model 2. These results are snmmarized in Table 5. Even

though this model has much more system information than
models 5 and 6, the re'suits (Ri and R2) are not very differ-
ent. However, the effect of commutativity can now be seen
at m _>0.95.

• Having observed that the effect of commutativity is almost
lost for smaller values of m in models 2-6, we will now look
at its effect with model 1. These results are summarized
in Table 6. Even at small values of m, the effect of com-
mutativity on the throughput is evident. In addition, it
increases with m. This observation holds at both small
and large values of c.

• In Table 7, we summarize the effect of variations in num-
ber of copies. In Tables 1-6, we assumed that each data
item has exactly the same number of copies. This is more
relevant to Model 1. Thus we only consider this model in
determining the effect of copy variations on evaluation of Ri
and R_. As shown in this table, the effect is significant. As
the variation in number of copies is increased, the number
of successful transactions prior to merge decreases. Hence,
the number of conflicts are also reduced. This results in

a recluctmn of Ri and R2. AS long as the variations are
not very significant, the differences are also not significant.

6. CONCLUSIONS

In this paper, we have introduced the problem of estimating
the number of rollbacks in a partitioned distributed database sys-
tem. We have also introduced the concept of transaction commu-

tativity and described its effect on transaction rollbacks. For this
purpose, the data distribution, replication, and transaction char-
acterization aspects of distributed database systems have been
modeled with three parameters. We have investigated the effect
of six distinct models on the evaluation of the chosen metric.

These investigations have resulted in some very interesting ob-
servations. This study involved developing analytical equations
for the averages, and evaluating them for a range of parameters.
We aho used simulation for one of these models. Due to lack
of space, we to,hi not present all tbe obtained results in this
paper. In this section, we will summarize our conclusions from
these investigatio,s.

We now summarize these conclusions.

• Random data models that assume only average information
about the system result in very conservative estimates of
system throughput. One has to be very cautious in inter-
preting these results.

• Adding more system information does not necessarily lead
to better approximations. In this paper, the system infor-
mation is increased from model 6 to model 2. Even though
this increases the computational complexity, it does not
result in any significant improvement in the estimation of
number of rollbacks.

• Model 1 represents a specific system. Here, we define the
transactions completely. Thus it is closer to a real-life sit-
uation. Results (analytical or simulation) obtained from
this model represent actual behavior of the specified sys-
tem. However, results obtained from such a model are too
specific, and can't be extended for other systems.

• Transaction commutativity appears to significantly reduce
transaction rollbacks in a partitioned distributed database
system. This factisonlyevidentfrom theanalysisof model
I. On the other hand, when we look at models 2-6,it is
possibleto conclude thatcommutativity isnot helpfulun-
lessit isvery very high. Thus, conclusionsfrom model 1
and models 2-6 appear to be contradictory.Since mod-
els3-6 assume average transactionsthatcan randomly se-
lectany data item to read (orwrite),the evaluationsfrom
these Inodels _re likely to predict highcr conflicts and hence
more rollbacks. The benefits d,le to commutativity seem to
disappear in the average behavior. Model 1, on the other

hand, describes a specific system, and hence can accurately
compute the rollbacks. It is also able to predict the benefits
due to commutativity more accurately.

• The distribution of number of copies seems to affect the
evaluations significantly. Thus, accurate modeling of this
distribution is vital to evaluation of rollbacks.

In addition to developing several system models and evalua-
tion techniques for these models, this paper has one significant
contribution to the modeling, simulation, and performance anal-
ysis community.

If an abstract system model with average information is
employed to evaluate the effectiveness of a new technique
or a new concept, then we should only expect conservative
estimates of tile effects. In other words, if the results from
the average models are positive, then accept the results.
If these are negative, then repeat the analysis with a less
abstracted model. Concepts/techniques that are not ap-
propriate for an average system may still be applicable for
some specific systems.

843

Model

#
Sill|.

1

2

3

4

5

6

Model

#
Sire.

1

2

3

4

5

6

R. Mukkamala

Table I. Effect of Number of Partitions on Rollhacks

Pl = 4.p_ =6, c=3 Pl =4,p2 = P3 = 3, c=3

R,lh'forc 1,'_ /i' a After

M,'rgr Me'rE,'

51)20(I 1Oll(I 2115 .18995

50200 IOUO 199 49001

48315 3597 10322 34397

48315 3464 10194 34657

48618 3667 10243 34708

47276 2679 10238 34360

46593 3852 8570 34171

Before 117 ARer

Me,.g,. M,'rge

:11450 '0 0 31450

31450 0 0 31450

27069 3460 8945 14664

27069 2798 9410 14861

27657 3255 9444 14958

24207 1507 9106 13594

22356 2937 6673 12747

Table 2. Effcct of Number of Copies on Rollbacks

Pt --4, P2 = 6,c= 2

Before R, R_ 'After

Merge Merge

34600 200 15 34385

34600 200 0 34400

31069 1998 5119 23952

31069 t601 5334 24134

31595 1798 5420 24377

23203 1568 2326 19309

27138 3413 1701 22024

Pl = 4,/_= 6, c = 8

Before Rt R2 Aftei

Merge Merge

65000 4000 4970 56030

65000 4000 4981 56019

65000 8000 17777 39223

65000 8000 17786 '39214

65000 8000 17786 39214

65000 8000 17875 39125

65000 8000 17860 39140

Table 3. Effect of Number of Nodes on Rollbacks

Model

#
Sire.

1

2

3

4

5

6

Pt = 10,p, = 10, c = 5

Before II, It_ After

Merge Merge

61250 4000 6240 51010

61250 4000 6231 51019

61024 9090 21183 30751

61024 8992 21286 30746

61100 9031 21326 30743

60968 906,1 21292 30613

i 60876 9363 20936 30577

p, 10,p2 = 10, c = 12

Before R, R2 After

Met e Met •

65000 5000 6231 53769

65000 5000 6231 53769

65000 I0000 22277 32723

65000 I0000 22286 32714

65000 tO000 22286 32714

65000 I0000 22375 32625

65000 I0000 22360 32640

ACKNOWLEDGEMENT

This research was sponsored in part by the NASA Langley
Research Center under contract NAG.I-1154.

Garcia-Molina, H. (1983), "Using semantic knowledge for trans-
ition processing in a distributed system,* ACM Trans. on
Uotabase Sgstems 8, 2, 186-213.

Jajodia, S. and P. Speckman (1985), "Reduction of conflicts in
partitioned databases," In Proe_dings of the 19th Annual

REFERENCES Conference on Information Sciences and S_terns, 349-355.

Coffman, E. G., B. Gelenbe, and B. Plateau (1981), _Optimiza- Jajodia, S. and R. Muk'ksmala (1990), Mensuring the Effect of
tion of Number of Copies in a Distributed Database,* IEEE Commutative Transactions On Distributed Database Per-

Transactions on Soflwa,_ Engineering 7, 1, 78-84. fortunate, To appear in Computer Journal.

Davidson, S.B. {1982}, "An optimistic protocol for_partitioned Mukkamala, R. (1987), _DesignofPartiallyReplicated Distributed
distributed database systems," Ph.D. thesis, Department Database Systems," TechnieJd Report 87-04, Department

of EECS, Princeton University. of Uomputer Science, University of Iowa.

Davidson, S.B. (1984), _Optimism and consistency in partiti?necl Mukkamala, R. (1990), "Measuring the Effects of distributed
distributed database systems," A CM Transactions on data_ database models on transaction rollback measures," Tech-

nical Report 90-38, Department of Computer Science, Olds31sterr_ 9, 3, 456-481.

Davidson, S.B., H. Garcia-Molina, and D. Skeen (1985), "Consis-

tency in partitioned networks, _ ACM Computing Survegs

17, 3, 341-370.

Davidson, S.B. (1986), "Analyzlng partition failure protocols,*
Technical Report MS-CIS-86-05, Department of Computer

and Info. Sci., Univ. of Pennsylvania.

Dominion University.

Wright, D. D. (1983a), _Managing distributed databases in par-
titioned networks, Ph.D. thesis, Department of Computer
Science, Cornell University, (also TR 83-572).

Wright, D. D. (1983b), _On merging partitioned databases," ACM
SIGMOD Rccord 13, 4, 6-14.

844

Effects of Distributed Database Modeling on Evaluation of Transaction Rollbacks

Table 4. Effect ofm on Rollbacks (Models 5 and 6: Pl = 4,p2 = _i,c= 3

Model 5 Model 6

m Before 171 R2 After Before 1ll R_ After

Merge Merge Merge Merge

0.00

0.50

0.80

0.90

0.95

0.99

1.00

47276 2679 10238 34360

47276 2679 10238 34360

47276 2679 10238 34360

47276 2679 10238 34360

47276 2678 10239 34360

47276 2208 10665 34403

46726 0 0 46726

46593 3852 8570 34171

46593 3852 8570 34171

46593 3852 8570 34171

46593 3848 8574 34171

46593 3774 8774 34175

46593 2182 10109 34301

46593 0 0 46593

Table 5. Effect of m o,t Rolll)acks (Model 2: p, = 4,1,2 = 6)

m Before Rt R_ After Before Rt R_ After

Merge Merge Merge Merge

0.0

0.27

0.40

0.77

0.95

0.99

1.0

48315 3597 10322 34397

48315 3597 10322 34397

48315 3597 10322 34397

48315 3597 10322 3,1397

48315 3205 10708 34402

48315 986 12882 34447

48315 0 0 48315

65000 8000 17973 39027

65000 8000 17973 39027

65000 8000 17973 39027

65000 8000 17973 39027

65000 7660 18312 39028

65000 4321 21642 39037

65000 0 0 65000

Table 6. Effect of ,i, o,, Rolll)acks (Model 1: p, = 4,p2 = 6)

c=3 c=8

m Before Rt R2 After Before Rl R_ After

Merge Merge Merge Merge

0.0 50200 4000 1199 45001 65000 8000 6379 50621

0.27 50200 1000 199 49001 65000 4000 4981 56019

0.40 50200 800 190 49201 65000 1800 2793 60407

0.77 50200 0 0 50200 65000 0 0 65000

1.0 50200 0 0 50200 65000 0 0 65000

Table 7. Effect of Va,'iatio,s i,, # of Copies o,I Rollbacks

(Model 1: p, = 4,p7 = 6, w/c: m = 0.27, wo/c : m = 0.0)

pj = 4,p_ = 6, t?= 3

Copy Before Rl R_ After

Distribution Merge Merge

da = 500 w/c 50200 1000 199 49001

wo/c 50200 4000 1199 45001

d2 = d4 = 100, da = 300 w/c 48300 1000 997 46303

wo/c 48300 4_00 1793 42307

d2 = da = 167, d_ = 166 w/c 41400 200 0 41200

wo/c 41400 2000 597 38803

dl =d_=da=d4 =ds= 100

d, = ds = 250

w/c 40400 200 0 40200

wo/c 40,100 1600 797 38003

w/c 28700 0 0 28700

wo/c 28700 1200 199 27301

845

/* This program creates a menu and facilitates updates, inserts and

deletes of records in a database. EMPP is an employee database and

the program assumes it to be already created with the following
fields:

EMPNO (employee number) of type numeric

ENAME (employee name) of type character

SAL (salary) of type numeric with provision for 2 places after

decimal

DEPTNO (department number) of type numeric

JOB (job name) of type character

*/

#include <stdio.h>

#include <ctype.h>

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR uid[80]; /* variable for user id */

VARCHAR pwd[20]; /* variable for password */

int empno; /* host variable for primary key - employee number */

VARCHAR ename[15]; /* host variable for employee name */

int deptno; /* department number */

VARCHAR job[15]; /* host variable for job */

int sal; /* host variable for salary */

int 1 = 0; /* host variable to hold the length of the srting - a

value returned by the asks() function. */

int count; /* a variable to obtain number of records in the

database with the same primary key value */

int reply = 0; /* variable to obtain the whether a new value exists

*/

int choice = 0; /* variable defined to obtain value for the menu */

int code; /* variable to print to the ascii file to indicate wether

the record was updated (value=l), inserted (value=2) and deleted

(value=3) */

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

FILE *fp;

main()

{
/* open ascii file in append mode */

fp = fopen("outfile", "a") ;
/* give the login and password to logon to the database */

strcpy (uid. arr, "rsp") ;

uid.len = strlen(uid.arr) ;

strcpy (pwd. arr, "prs") ;

pwd.len = strlen(pwd.arr) ;

/* exit in case of an unauthorized accessor to the database */

EXEC SQL WHENEVER SQLERROR GOTO errexit;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

for (;;)

{ /* infinite loop begins */

/* menu for selecting update, insert, and delete options */

printf("\n \n I. Update a record \n");

printf("\n \n 2. Insert a record \n");

printf("\n \n 3. Delete a record \n");

printf("\n \n Select an option 1/2/3 ? \n");

choice = getche();

if (choice == 'i') goto update;

else if (choice == '2') goto insert;

else if (choice =='3') goto delete;

else { printf("invalid selection");

exit(l);}

update: /* label for the update option */

{
/* To ensure that the employee with the given employee number

exists, before update could be made. */

code = i;

printf(" \n count is %d \n", count);

askn("Enter employee number to be updated: ", &empno);

/* using the COUNT supported by oracle, the number of records

having the desired employee number is assigned the variable count

*/

EXEC SQL SELECT COUNT(EMPNO) INTO :count

FROM EMPP

WHERE EMPNO = :empno;

printf ("count is %d \n", count) ;

if (count == 0)

{ printf("Employee with employee number %d does not exist \n",

empno);

exit(l); }

/* retrieve the information from the database whose employee-number

has been requested for, and place the contents of the fields into

C variables for update purposes. */

EXEC SQL SELECT ENAME, SAL, DEPTNO, JOB

INTO :ename, :sal, :deptno, :job
FROMEMPP
WHEREEMPNO= :empno;

/* displays the already existing value for employee name */

/* assign the new employee name if it should be updated */

printf ("ename is %s \n", ename.arr) ;

printf("Do you want to update ENAME: (y/n)?");

reply = getche() ;

if (reply == 'n'){

ename = ename;

printf("\n ename is %s \n", ename.arr);}

if (reply == 'y') {

1 = asks("\n enter employee name : ", ename.arr);

printf("new ename is %s \n", ename.arr);}

/* displays the already existing value for job name */

/* assign the new job if it should be updated */

printf("do you want to update job-name:(y/n)?");

reply = getche();

if (reply == 'n'){

job = job;

printf("\n job-name is %s \n", job.arr);}

if (reply == 'y'){

job.len = asks("\n enter employee's job -"

printf("new job-name is %s \n", job.arr);}

, job.arr);

/* displays the already existing value for salary */

/* assign new salary if it should be updated */

printf("Do you want to update salary:(y/n)");

reply = getche();

if (reply == 'n'){

sal = sal ;

printf("\n salary is %d \n", sal);}

if (reply == 'y'){

askn("\n enter employee's salary: ",

printf("new salary is %d \n", sal);}

&sal);

/* displays the already existing value for department number */

/* assign the new department number if it should be updated */

printf("Do you want to update deptno :(y/n)");

reply = getche();

if (reply == 'n'){

deptno = deptno;

printf("\n deptno is %d \n", deptno);}

if (reply == 'y'){

askn("\n Enter employee dept : ", &deptno) ;
printf("new deptno is %d \n", deptno) ; }

/* update the database with the new values */

EXEC SQL UPDATE EMPP

SET ENAME = :ename, SAL = :sal, DEPTNO = :deptno, JOB = :job

WHERE EMPNO = :empno;

printf("\n %s with employee number %d has been updated\n",

ename.arr,empno);

fprintf(fp,"%lOd %id %15s", empno, code, ename.arr);

fprintf(fp,"%6d %3d %4s\n", sal, deptno, job.arr);

printf("%10d %15s %6d", empno, ename.arr, sal);

printf("%3d %4s\n", deptno, job.arr) ;

insert: /* label for insertion of record based on the employee

number */

{
code = 2 ;

/* To prevent insertion of a record whose primary key is the same

as the primary key of an already existing record */

askn("\n Enter employee number to be inserted:", &empno);

EXEC SQL SELECT COUNT(EMPNO) INTO :count

FROM EMPP

WHERE EMPNO = :empno;

printf("count is %d \n", count);

if (count > 0){

printf ("Employee with %d employee number already exists \n",

empno) ;

exit(l) ; }

else { /* obtain values for various fields to be inserted */

1 = asks ("Enter employee name : ", ename.arr) ;

job. len = asks ("Enter employee job :", job.arr) ;

askn("Enter employee salary :", &sal);

askn("Enter employee dept number :", deptno);

/* insert the values obtained into the database */

EXEC SQL INSERT INTO EMPP(EMPNO,ENAME,JOB,SAL,DEPTNO)

VALUES (:empno, :ename, :job, :sal, :deptno);

/* append the insert into the ascii file */

fprintf(fp,"%10d %id %15s ", empno, code, ename.arr);

fprintf(fp,"%6d %3d %4s \n", sal, deptno, job.arr) ;

printf("%10d %15s %6d", empno, ename.arr, sal);
printf("%3d %4s", deptno,job.arr) ; }

delete:
*/

/* label for deletion of records based on employee number

{
int code = 3;

/* obtain the employee number of the employee to be deleted */

askn("Enter employee number to be deleted :", &empno);

EXEC SQL SELECT COUNT(EMPNO) INTO :count

FROM EMPP

WHERE EMPNO = :empno;

if (count > 0){ /* delete record if it exists */

EXEC SQL DELETE FROM EMPP WHERE EMPNO = :empno;

printf("Employee number %d deleted \n",empno);

fprintf(fp, "%10d %id\n", empno, code) ;}

else {

printf("Employee with number %d does not exist \n", empno);

exit (I) ; }

}

EXEC SQL COMMIT WORK RELEASE; /* make the changes permanent */

printf ("\n End of the C/ORACLE example program.\n") ;

return;

fclose(fp);

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL ROLLBACK WORK RELEASE; /* in case of inconsistency */

return;

errexit:

errrpt();

}
} /* infinite loop ends */

/* function takes the text to be printed and accepts a srting

variable from standard input and converts it into numeric - hence

is used to obtain values for numeric fields */

int askn(text,variable)

char text[];

int *variable;

{
char s[20];

printf(text);

fflush (stdout) ;
if (gets(s) == (char *)0)

return (EOF) ;

*variable = atoi(s);
return(l);
}

/* function takes the text to be printed and prints it, accepts

string values for character variables and is thus used to obtain

values for fields of type character. It returns the length of the

string value */

int asks(text,variable)

char text[],variable[];

{
printf (text) ;

fflush (stdout) ;

return (gets(variable)

strlen(variable));

}

== (char *) 0 ? EOF :

errrpt ()

{
printf ("%. 70s

-sqlca. sqlcode) ;

return(0) ;

}

(%d) \n", sqlca, sqlerrm, sqlerrmc,

N91-25957

HETEROGENEOUS DISTRIBUTED

DATABASES: A CASE STUDY

Tracy R. Stewart
Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

1 INTRODUCTION

The purpose of this case study is to review alternatives for accessing dis-

tributed heterogeneous databases and propose a recommended solution. Our

current study is limited to the Automated Information Systems Center at

the Naval Sea Combat Systems Engineering Station at Norfolk, VA. This

center maintains two databases located on Digital Equipment Corporation's

VAX computers running under the VMS operating system. The first data

base, ICMS, resides on a VAX 11/780 and has been implemented using VAX

DBMS, a CODASYL based system. The second database, CSA, resides

on a VAX 6460 and has been implemented using the ORACLE relational

database management system (RDBMS).

Both databases are used for configuration management within the U.S.

Navy. Different customer bases are supported by each database. ICMS

tracks U.S. Navy ships and major systems (anti- air, weapons launch, etc.)

located on the ships. CSA tracks U.S. Navy submarines and the major

systems located on the submarines (anti-sub, sonar, etc.). Even though

the major systems on ships and submarines have totally different functions,

some of the equipment within the major systems are common to both ships

and submarines.

2 PROBLEM STATEMENT

Even though the two databases are physically distinct, there a number of

external actions which affect the data in both databases. Keeping the data

consistent across these databases is a major problem. For example, the

same computer is used within many major systems on ships and submarines.

Thus, both CSA and ICMS maintain this information about this computer in

their respective databases. If the U.S. Navy decides to stop buying parts for

this computer from the existing supplier and start buying from an alternate

supplier, this information needs to be updated in both databases. It should
be noted that the two VAX's communicate via DECNET and that critical

data must be updated in real-time up to 2 hours; all other data must be

updated on a daily basis.

3 PROPOSED ALTERNATIVES

We propose two alteranatives.

(1) A global data manager (GDM) resides on one machine and all update

transactions (to either of the systems) are routed through this cen-

tral location. Any transaction that affects only one database is sent

directly to the affected database. Since non-critical updates may be

propagated on a daily basis, it is possible to send them directly to the

affected database.

(2) Require each system to log all local transactions. Each system would

have a local agent GDM that would regularly review each local database

log and determine if a remote database transaction should be gener-

ated. The GDM would also report in the database log, the status of

any transactions issued remotely. This alternative is the most viable

for this environment. The GDM is primarily an initiator of transac-

tions to keep the databases synchronized. The GDM also monitors
the results of the initiated transactions and records the results in the

originating database log. The local data managers (LDM) would be

solely responsible for local transactions and local concurrency control.

The latter alternative appears to be more suitable for the current environ-

ment.

2

4 Sample Data

The ICMS database consists of records, data items and sets. An example of

affected records sets and data items is given below.

SCHEMA NAME IS ICMS_SCHEMA

RECORD NAME IS SITE_DESCRIPTION

WITHIN SITE_INFO

ITEM SITE_IDENTIFICATION TYPE IS CHARACTER 15

RECORD NAME IS SYSTEM_DESCRIPTION

WITHIN SYSTEM_INFO

ITEM SYSTEM_NAME TYPE IS CHARACTER 26

ITEM SYSTEM_AINAC TYPE IS CHARACTER 2

ITEM SYSTEM_FSCM TYPE IS CHARACTER 5

ITEM SYSTEM_PART_NO TYPE IS CHARACTER 26

ITEM SYSTEM_STOCK_NO TYPE IS CHARACTER 26

ITEM SYSTEM_CATEGORY TYPE IS CHARACTER 5

RECORD NAME IS SYSTEM_INSTALLATION_STATUS

WITHIN INST_AREA

ITEM SYSINST_STATUS TYPE IS CHARACTER 1

ITEM SYSINST_SITE_ID TYPE IS CHARACTER 15

ITEM SYSINST_SYSTEM_NAME TYPE IS CHARACTER 26

ITEM SYSINST_SERIAL_NUMBER TYPE IS CHARACTER 15

SET NAME IS ALL_SITES

OWNER IS SYSTEM

MEMBER IS SITE.DESCRIPTION

INSERTION IS AUTOMATIC RETENTION IS FIXED

ORDER IS SORTED BY

ASCENDING SITE_IDENTIFICATION

DUPLICATES ARE NOT ALLOWED

SET NAME IS SITE_SYSTEM_INST_STAT

OWNER IS SITE_DESCRIPTION

MEMBER IS SYSTEM_INSTALLATION_STATUS

INSERTION IS AUTOMATIC RETENTION IS FIXED

ORDERIS FIRST

SETNAMEIS SYSTEM_SITE_INST_STAT
OWNERIS SYSTEM_DESCRIPTION
MEMBERIS SYSTEM_INSTALLATION_STATUS
INSERTIONIS AUTOMATICRETENTIONIS FIXED
ORDERIS SORTEDBY

ASCENDINGSYSINST_SERIAL_LETTEI_
SYSINST_SERIAL_NOS

DUPLICATESARELAST

SET NAME IS ALL_SYSTEMS

OWNER IS SYSTEM

MEMBER IS SYSTEM_DESCRIPTION

INSERTION IS AUTOMATIC RETENTION IS FIXED

ORDER IS SORTED BY

ASCENDING SYSTEM_NAME

DUPLICATES ARE LAST

The CSA database consists of tables and data items. Examples of tables

and data items are given below.

TABLE: SITE

Name Null? Type

SITE_IDENTIFIER CHAR(15)

SQUADRON CHAR(30)

CONFIG_DATA_MANAGER CHAR(20)

TYPE_COMMANDER CHAR(14)

FLEET_CODE CHAR(1)

STD_NAVY_DIST_LIST CHAR(8)

LOCATION CHAR(30)

TABLE: NOMEN_ITEM

Name Null? Type

CATEGORY_TYPE_CODE
PROGRAM_MANAGER

TECHNICAL_MANAGER

SYSTEM_INTEGRATION_AGENT

DESIGN_AGENT

ACQUISITION_ENG_AGENT

TECHNICAL_DIRECTION_AGENT

IN_SERVICE_ENG_AGENT_CODE

IN_SERVICE_ENG_AGENT_PHONE_NUM

IN_SERVICE_ENG_AGENT

SPCC_ITEM_MANAGER_PHONE_NUMBER

SPCC_ITEM_MANAGER

DATE_UNDER_CONFIG_CONTROL

DATE_OF_LAST_UPDATE

TEST_AND_EVALUATION

BRIEF_NAME

FULL_NAME

NOMEN

TABLE: SITE_INSTALLATION

Name

BELONGS_TO_SITE_ID

SERIAL_NBR

SERIAL_NUMBER

SERVICE_APPLIC_CODE

NOMEN

NOT NULL CHAR(5)

cRAR(14)

CHAR(14)

CHAR(14)

CHAR(14)

CHAR(14)

CHAR(14)

CHAR(14)

CHAR(12)
CHAR(14)

CHAR(12)

C_AR(40)
DATE

DATE

CHAR(14)

CHAR(S0)

CHAR(70)

NOT NULL CHAR(26)

Null? Type

NOT NULL CHAR(14)

CHAR(15)

CHAR(15)

CHAR(IO)

CHAR(26)

5 IMPLEMENTATION

The following implementation scheme is proposed to implement the second

method.

A. Log all local transactions that relate to both databases. There will be

one log per database and the log contains a timestamp of when the

local transaction was committed, the node name, transactions (add,

update, delete) and records/tables affected and data items affected.

The key to all transactions is the system/unit nomenclature.

5

B. Modify each application program, that alters data, to log each trans-
action after it is committed. Sub-transactions must be entered into

the log in the order they were executed on the local machine.

C. Generate list of system/equipment nomenclatures that are common
between each database. The list would reside in a centralized loca-

tion that would contain nomenclatures that are shared between each

database. The Database Administrator (DBA) would maintain the

nomenclature list.

D. Develop GDM to review the log files and search for transactions against
common nomenclatures. After the GDM determines the transaction

must be issued globally, it generates a remote transaction to be exe-
cuted on the remote machine. GDM must know how to translate a

transaction to be executed on another database.

E. The GDM must formulate the transaction in the appropriate data

manipulation language so it can be executed on the affected database.

F. The GDM must send through DECNET a transaction package that

will execute on the remote machine as a batch job. Set up account

on each system for remote system to use to go into and submit batch

jobs from.

G. The LDM will execute the transaction package as if it were generated

locally.

H. When the transaction completes, the batch program will send a mes-

sage back to the originating machine signifying that the transaction

has completed. Once the message is received, the transaction is re-

moved from the log. Generate a process to run on the other machine

to update the log file.

I. Crash Recovery Procedures - As soon as a system recovers from a

crash, a message will be sent to the other system to signal that pro-

cessing can continue. The GDM will resend any transactions packages

that it did not receive a completion on. If database commits and then

crashes before sending a message, need to determine what to do.

6

6 RECOMMENDATIONS

The situation exists that two data bases that have multiple occurrences of

the same data must learn to co-exist and keep each other informed of any

changes to their duplicate data by keeping a log file, the internal database

processing software is not affected. The application programs are responsible

for logging the affects of the program.

N91-25958

AN INTEGRATED DECISION SUPPORT

SYSTEM FOR TRAC: A PROPOSAL

Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia.

ORGANIZATION

• INTRODUCTION

• EXISTING SYSTEM ARCHITECTURE

• PROPOSED SYSTEM

- ARCHITECTURE

- FEATURES

- DEVELOPMENT PLAN

• PHASE I

- OVERVIEW

- BENEFITS

- MAJOR TASKS

- SCHEDULE

- FEASIBILITY

- EXTENSIBILITY AND MAINTAINABILITY

- COST AND BENEFITS

• PHASE II - INCLUDE WORK PROGRAM AND

MURS

• PHASE III- INTEGRATION OF DATA, MODELS,

ETC.

INTRODUCTION

• Optimal allocation and usage of resources is a key to

effective management.

• Resources of concern to TRAC are: Manpower (PSY),

Money (Travel, contracts), Computing, Data, Mod-

els, etc.

• Management activities of TRAC include: Planning,

Programming, Tasking, Monitoring, Updating, and

Coordinating.

• Existing systems are insufficient; not completely au-

tomated; manpower intensive; potential for data in-

consistency exists.

• Proposed system provides a means to integrate all

project management activities of TRAC through the

development of a sophisticated software and by uti-

lizing the existing computing systems and network
resources.

EXISTING SYSTEM ARCHITECTURE

• Independent systems for Study Program, Work Pro-

gram, Manpower Utilization Reporting, Taskers, and

Tracking Data Requests.

• Study Program:

1. The system is developed using DBASE-3 on IBM-
PC.

2. This database only resides at RPD and is also

accessed by RPD only.

3. The system does not store the history of a study
over its life time. It can only store information on

three consecutive fiscal years (past, current, and

next) at any given point.

4. RPD mails the software on a floppy to TRADOC

agencies. Users enter study request information

using this software and send this information elec-

tronically or by US mail to RPD.

5. RPD merges the requests and arrives at a consol-
idated list.

6. No history of changes to the study program is

maintained. The original information is itself changed

to reflect any new changes.

7. Status of the Studies in the program are printed

once in a quarter and disseminated.

• Work Program:

1. No automatic linkage between the study program

and work program exists at present.

2. Changes in the study program are not automat-

ically reflected in the work program. Manual in-

tervention is necessary to make these changes.

• Manpower Utilization Reporting:

1. An independent system, MURS, maintains man-

power utilization information.

2. MURS is developed on DBASE-3 to run on a PC.

It is being ported to run on Foxbase on Intel.

3. Each agency enters its manpower usage informa-

tion and mails the floppy to TRAC RPD. RPD

consolidates the information.

4. There is no automatic linkage between MURS and

Work Program.

• Taskers:

1. DBASE-3 based system is used to track status of
taskers. There is no automatic link between the

study program database and this system.

2. Only RPD maintains it and uses it.

PROPOSED SYSTEM ARCHITECTURE

• A distributed database system - the TRAC agencies

are the processing sites connected through a network.

• TRAC RPD at Fort Monroe is the principal site and
contains additional software to maintain global con-

sistency of data.

• The communication system consists of the Ethernets

at the local sites, the IBM/SNA network, MILNET,

and the networking through the Tracer.

• Each TRAC site contains a copy of the entire database.

• Non-TRAC sites will continue to interact with RPD

by exchanging information non-interactively (e.g. Mail

floppies).

• A site may contain either ORACLE software or DBASE-

3 software.

• Each site functions autonomously for both data access

and updates. In addition, a user at a site needs to

access only the local copy of the database.

• The failure or unavailability of a site or communica-

tion channel will not affect the functionality of other
available sites.

• The access rights to the data elements are clearly de-

fined on a need-to-know basis. This will be imple-

mented using the security features of the database

software (ORACLE or DBASE-3) augmented with

additional software developed by us.

• The distribution of data will be transparent to the

TRAC users. That is, users need not be concerned

about the data distribution.

PROPOSED SYSTEM FEATURES

1. The database is an integrated TRAC decision support

system.

2. Updations made at a local site are automatically prop-

agated to all relevant sites. To minimize network us-

age, updates will be propagated once or twice in a

day.

3. In case a local site is down, it may be possible for

users at that site to access database at other sites (or

at least at the principal site).

4. Fast (local) access to data at any of the TRAC agen-
cies.

5. A user friendly interface.

6. Multi-level security to the information in the database.

7. Fast and easy dissemination of information. E.g. Changes

in Study Program.

8. Insure consistency within TRAC data.

9. Minimize duplication of efforts.

10. Ability to compare the actual versus planned utiliza-
tion of resources.

11. On-line access to results (intermediate/final) from a

study.

SUMMARY OF PLAN

• PHASE I: Since Study Program is the basis for a

majority of TRAC activities, this will be taken up

in this phase. In addition, this phase will solve the

major problems related to distribution of data and
communication between the sites. It will extend the

existing Study Program information by adding Tasker

scheduling information.

• PHASE II: This will extend the database to include

Work Program and Manpower Utilization informa-
tion.

• PHASE III: This extends the system to include data

request tracking, model requests, monitoring of sched-

ules, etc.

PHASE I - DEVELOPMENT

STUDY PROGRAM

• Guidance for AR 5-5 Study programs for next fiscal

year.

• Requests for new or continuing studies for next fiscal

year.

• Assign priorities.

• Authorize studies.

• Allocate resources.

• Tasker scheduling information.

• Update the program: termination, deletion, addition,

updation, or completion.

• Past history to guide future programs.

• Handle arbitrary queries on the past, current, and

next study programs.

PHASE I BENEFITS

• The latest guidelines are available on-line at the users'
site.

• Possible to implement a complex priority scheme. This

procedure can also be made available to the agencies.

• Since the study requests made so far are available at
the RPD and other sites, it is possible to eliminate

duplications at an early stage.

• By automatic linking of study authorization with re-
source allocation, speed and consistency can be achieved.

• Since agencies can update the status of a study lo-

cally, this information is more likely to be up-to-date.

• Since the status of a study is available to all agencies,

other agencies can easily use this information for their

planning.

• If reports, results etc. coming out of a study are made

available at the agency's site, they can be easily re-

trieved by other agencies.

• Ability to access the data on previous programs in-

creases the efficiency of future programs.

• Ability to handle arbitrary queries improves turn-

around time of responses.

• It is possible not only to update a program, but also
include comments indicating the reasons for the changes.

MAJOR TASKS IN PHASE I

1. System Requirements: An in-depth study of the

Study Program and Taskers. It is also necessary to

study how the decisions in this phase will influence

development of other phases.

2. ORACLE Database: Study and experiment with

the ORACLE software to determine its features, cost

of these features, and its limitations.

3. DBASE-3 Database: Study and experiment with

the DBASE-3 software to determine its features, cost

of these features, and its limitations.

4. Security: Study and test the security features of-

fered by ORACLE and DBASE-3. Check if these

satisfy the TRAC's requirements. If not, determine

ways to provide the additional security.

5. Communications: Study and experiment with the

available communication facilities at TRAC. If the

existing communication software cannot be directly

used by the distributed database system, then some

additional communication software may need to be

developed to achieve the desired functionality: secu-

rity, efficiency, and ease of use.

6. Heterogeneity: Since we are dealing with two dif-

ferent database software systems, we need to deal

with the problems of heterogeneity. This requires the

study of interoperability issues.

7. Update Protocols: Since the updates are made lo-

cally (at the sites) and sent to the primary site (RPD)

at designated times, we need to develop a special mon-

itor process that can accumulate the updates within

a period and forward it to the primary site. Similarly,

we need to develop a process at the primary site that

can reliably propagate updates to all the TRAC sites.

Reliability is the key. Issues such as the unavailabil-

ity of a site, unavailability of a communication chan-

nel, and faulty communication channels need to be

considered here.

. Consistency Checks: In addition to the update

protocols, it may be necessary to run some global

consistency check protocols, probably run once in a

week, to check the consistency of the global database.

1 Communication Security: Depending on TRAC's

requirements, if the security offered by the existing

communication systems for data transmission is insuf-

ficient, additional methods such as encoding or data

compression may need to be developed and tested.

10. Database Design: Having studied the users' re-

quirements, a database system needs to be designed.

This requires the definition of the fields and their

type, design of the relations, deciding the type of in-

dexing, selection of additional secondary index tables,

etc. To keep the data meaningful, we also need to

arrive at some integrity constraints defined on the re-

lations.

11. Query and Form Design: Write code (for ORA-

CLE and DBASE-3) to execute the desired queries

and print reports. This should be done at least for

the existing reports and some known types of queries.

However, a user may have to develop code for any

special queries not covered in this phase.

12. User Interface: Depending on the facilities offered

by ORACLE and DBASE-3 and depending on the so-

phistication of the TRAC's requirements, additional

efforts may have to be expended to design a user in-

terface to the decision support system.

13. Implementation: The system needs to be imple-

mented on ORAACLE and DBASE-3. It also needs

to be rigorously tested.

14. Actual Data: Once the testing phase is completed,

the system is ready to be used. The actual data may

now be placed into the system.

15. User Training: All TRAC users (or their represen-

tatives) need to be trained on system usage.

16. Complaints/Comments: We should Mso provide

an automatic system to register any problems or im-

provements needed by the database system users. These

should be looked into by the RPD personnel.

SCHEDULE FOR PHASE I

Activity

System Requirements: Development
ORACLE Software: Study & experiment

DBASE-3 Software: Study & experiment

Database Security: Study & Develop

Communications: Study & Develop

Update Protocols

Communication Security

Database design

Consistency and Integrity

Query and Form Design
User Interface

Implement and Test

Incorporation of Actual data

Complaint/Comment Software
Documentation and User Training

Time

(in Weeks)

4

3

2

6

5

4

4
4

4

4

6
4

2

3

4

Period

May'90

May'90

May'90

June-July'90

June-July'90

June-July'90

Aug'90

Aug'90

Sept'90

Sep'90
Sep-Oct'90
Oct'90

Nov'90

Nov-Dec'90

Dec'90

FEASIBILITY

• ORACLE and DBASE-3 are two well estabhshed and

proven database software systems. Since the pro-
posed system is based on these, the chances of success

are very high.

• A communication network system already exists be-

tween all TRAC sites. Even though it is only being

used for Email, it should not be difficult to develop

the required communication software on top of the ex-

isting system. The expertise of Mr. Hugh Dempsey,

CIO, will be sought in developing this software.

• The staff at RPD are well versed with the existing

systems. They are also clear on the inclusions to be
made in the proposed system. This would make the

system requirement development an easy task.

• The principal investigator, Ravi Mukkamala, is well

versed with the issues and problems that arise in a

distributed database system. Thus, protocol devel-

opment for propagation of updates, data consistency,

and handling site/link failures should not be difficult.
Issues that require complete knowledge of ORACLE

and DBASE-3 can be solved once these two systems

are studied and experimented with.

• Implementing data security and communication se-
curity may be the most difficult tasks. Once again,

we need to study the two database softwares and the

communication systems to arrive at concrete code.

• Query and form design is not difficult. Both the ODU

students that are committed (if paid) to this project

are familiar with SQL. They have extensive experi-

ence in programming on DBASE-3. In addition, RPD

staff currently handling the databases, are also very

well versed with DBASE-3 programming.

EXTENSIBILITY AND MAINTAINABILITY

• Since the proposed system is based on a commercial

database product, it should be easy to modify the
database. The current RPD staff will be able to make

changes related to: adding fields, creating additional

relations, adding more queries, modifying the existing

queries, etc.

• The problems in communications systems are more

severe. They require the expertise of RPD staff such

as Mr. Hugh Dempsey. If the communication sys-

tem between the TRAC agencies is changed, then the
communication software of this system also needs to

be changed.

• Modifying the user-interface, once developed, may be

more involved. The degree of difficulty will depend
on its structure and the familiarity of the RPD staff

with this software. Training one or two staff members

at RPD may solve this problem.

• Extending the system from Phase-I to other phases
should not be difficult due to the extensibility of re-

lational database structures.

COST AND BENEFITS

• The ODU team will consist of the principal investiga-

tor and two graduate students. Each of the graduate
students should be paid about $8,000 for the dura-

tion of the project. The principal investigator should

be paid $15,000 as a summer salary and some release

time during the Fall semester. Total: $31,000

• The ODU Research Foundation charges an overhead
of 45%. In this case it would be $13,950. The overall

cost up to Phase I is approximately $45,000.

• As a result of implementing the proposed system,

TRAC can reduce duplication of efforts in maintain-

ing different databases, achieve data consistency, and

establish a strong base for an effective decision sup-

port system.

PHASE II - EXPANSION

INTEGRATION OF STUDY PROGRAM WITH WORK

PROGRAM AND MURS.

PHASE III - FURTHER INTEGRATION

INTEGRATION OF DATA TRACKING, MODELS,
AND SCENARIOS.

SUMMARY OF PLAN

• PHASE I: Since Study Program is the basis for a

majority of TRAC activities, this will be taken up
in this phase. In addition, this phase will solve the

major problems related to distribution of data and
communication between the sites. It will extend the

existing Study Program information by adding Tasker

scheduling information.

• PHASE II: This will extend the database to include

Work Program and Manpower Utilization informa-

tion.

• PHASE III: This extends the system to include data

request tracking, model requests, monitoring of sched-

ules, etc.

