7,115 research outputs found

    Neuroenhancement of exposure therapy in anxiety disorders

    Get PDF
    Although exposure-based treatments and anxiolytic medications are more effective than placebo for treating anxiety disorders, there is still considerable room for further improvement. Interestingly, combining these two modalities is usually not more effective than the monotherapies. Recent translational research has identified a number of novel approaches for treating anxiety disorders using agents that serve as neuroenhancers (also known as cognitive enhancers). Several of these agents have been studied to determine their efficacy at improving treatment outcome for patients with anxiety and other psychiatric disorders. In this review, we examine d-cycloserine, yohimbine, cortisol, catecholamines, oxytocin, modafinil, and nutrients such as caffeine and amino fatty acids as potential neuroenhancers. Of these agents, d-cycloserine shows the most promise as an effective neuroenhancer for extinction learning and exposure therapy. Yet, the optimal dosing and dose timing for drug administration remains uncertain. There is partial support for cortisol, catecholamines, yohimbine and oxytocin for improving extinction learning and exposure therapy. There is less evidence to indicate that modafinil and nutrients such as caffeine and amino fatty acids are effective neuroenhancers. More research is needed to determine their long term efficacy and clinical utility of these agents.R34 MH086668 - NIMH NIH HHS; R01 AT007257 - NCCIH NIH HHS; R21 MH101567 - NIMH NIH HHS; R34 MH099311 - NIMH NIH HHS; R21 MH102646 - NIMH NIH HHS; K23 MH100259 - NIMH NIH HHS; R01 MH099021 - NIMH NIH HH

    Neural correlates of outcome of the psychotherapy compared to antidepressant therapy in anxiety and depression disorders: a meta-analysis

    Get PDF
    The most prevalent mental disorders, anxiety and depression, are commonly associated with structural and functional changes in the fronto-limbic brain areas. The clinical trials investigating patients with affective disorders showed different outcome to different treatments such as psychotherapy or pharmacotherapy. It is, however, still unexplored how these interventions approach affect the functional brain. This meta-analysis aims to compare the effects of psychotherapy compared to antidepressant therapy on functional brain activity in anxiety and depression disorders. Twenty-one samples with psychotherapy and seventeen samples with antidepressant therapy were included. The main finding showed an inverse effect of the two treatments on the right paracingulate activity. The patients undergoing psychotherapy showed an increase in the right paracingulate activity while pharmacological treatment led to a decrease of activation of this area. This finding seems to support the recent studies that hypothesize how psychotherapy, through the self-knowledge and the meaning processing, involves a top-down emotional regulation

    D-Cycloserine as an augmentation strategy for cognitive behavioral therapy of anxiety disorders.

    Get PDF
    The goal of this review is to examine the clinical studies on d-cycloserine, a partial glutamatergic N-methyl-D-aspartate agonist, as an augmentation strategy for exposure procedures during cognitive behavioral therapy for anxiety disorders. Although cognitive behavioral therapy and anxiolytic medications are more effective than placebo for treating anxiety disorders, there is still considerable room for further improvement. Traditional combination strategies typically yield disappointing results. However, recent studies based on translational research have shown promise to augment the neural circuitry underlying fear extinction with pharmacological means. We discuss the current state of the literature, including inconsistencies of findings and issues concerning the drug mechanism, dosing, and dose timing. D-cycloserine is a promising combination strategy for cognitive behavioral therapy of anxiety disorders by augmenting extinction learning. However, there is also evidence to suggest that d-cycloserine can facilitate reconsolidation of fear memory when exposure procedures are unsuccessful

    Enhancement of psychosocial treatment with D-cycloserine: models, moderators, and future directions

    Full text link
    Advances in the understanding of the neurobiology of fear extinction have resulted in the development of d-cycloserine (DCS), a partial glutamatergic N-methyl-D-aspartate agonist, as an augmentation strategy for exposure treatment. We review a decade of research that has focused on the efficacy of DCS for augmenting the mechanisms (e.g., fear extinction) and outcome of exposure treatment across the anxiety disorders. Following a series of small-scale studies offering strong support for this clinical application, more recent larger-scale studies have yielded mixed results, with some showing weak or no effects. We discuss possible explanations for the mixed findings, pointing to both patient and session (i.e., learning experiences) characteristics as possible moderators of efficacy, and offer directions for future research in this area. We also review recent studies that have aimed to extend the work on DCS augmentation of exposure therapy for the anxiety disorders to DCS enhancement of learning-based interventions for addiction, anorexia nervosa, schizophrenia, and depression. Here, we attend to both DCS effects on facilitating therapeutic outcomes and additional therapeutic mechanisms beyond fear extinction (e.g., appetitive extinction, hippocampal-dependent learning).F31 MH103969 - NIMH NIH HHS; K24 DA030443 - NIDA NIH HHS; R34 MH099309 - NIMH NIH HHS; R34 MH086668 - NIMH NIH HHS; R21 MH102646 - NIMH NIH HHS; R34 MH099318 - NIMH NIH HH

    CBT Reduces CBF

    Get PDF
    Background: Imaging studies have provided evidence that cognitive‐behavioral therapy (CBT ) is able to change brain activation in phobic patients in response to threatening stimuli. The changes occurred in both emotion‐generating and modulatory regions. In this study, we use a data‐driven approach to explore resting state cerebral blood flow (CBF ) measured by arterial spin labeling (ASL ), before and after CBT. Methods: Eight female patients with spider phobia were scanned before and 1 month after an exposure‐based group therapy for spider phobia. Each MRI session consisted of an ASL resting state measurement acquired before and after a symptom provocation task involving the showing of spider pictures in the scanner. The first ASL acquisition measured anticipatory anxiety and the second measured postprocessing of phobia‐relevant stimuli. Results: Cognitive‐behavioral therapy significantly reduced spider phobic symptoms in all patients. Symptom reduction during anticipatory anxiety was accompanied by reduced bilateral CBF in the parahippocampal gyrus, ventral anterior thalamus, Brodmann area 8, and the anterior cingulate cortex. During postprocessing of phobia‐relevant stimuli, patients showed reduced CBF in the bilateral insula, components of the motor cortex, and areas associated with language functions. Conclusions: Longitudinal CBF dynamics following CBT were in concordance with results from several studies using BOLD fMRI to investigate the effects of psychotherapy on brain activity. CBF can be quantified by ASL , with the principal advantage of sensitivity to slow variations in neural activity and task independence. Therefore, ASL may be a suitable method for monitoring and evaluating the efficacy of psychotherapy or pharmacotherapy approaches

    From extinction learning to anxiety treatment: mind the gap

    Get PDF
    Laboratory models of extinction learning in animals and humans have the potential to illuminate methods for improving clinical treatment of fear-based clinical disorders. However, such translational research often neglects important differences between threat responses in animals and fear learning in humans, particularly as it relates to the treatment of clinical disorders. Specifically, the conscious experience of fear and anxiety, along with the capacity to deliberately engage top-down cognitive processes to modulate that experience, involves distinct brain circuitry and is measured and manipulated using different methods than typically used in laboratory research. This paper will identify how translational research that investigates methods of enhancing extinction learning can more effectively model such elements of human fear learning, and how doing so will enhance the relevance of this research to the treatment of fear-based psychological disorders.Published versio

    Understanding vulnerability for depression from a cognitive neuroscience perspective: a reappraisal of attentional factors and a new conceptual framework

    Get PDF
    We propose a framework to understand increases in vulnerability for depression after recurrent episodes that links attention processes and schema activation to negative mood states, by integrating cognitive and neurobiological findings. Depression is characterized by a mood-congruent attentional bias at later stages of information processing. The basic idea of our framework is that decreased activity in prefrontal areas, mediated by the serotonin metabolism which the HPA axis controls, is associated with an impaired attenuation of subcortical regions, resulting in prolonged activation of the amygdala in response to stressors in the environment. Reduced prefrontal control in interaction with depressogenic schemas leads to impaired ability to exert attentional inhibitory control over negative elaborative processes such as rumination, leading in turn to sustained negative affect. These elaborative processes are triggered by the activation of negative schemas after confrontation with stressors. In our framework, attentional impairments are postulated as a crucial process in explaining the increasing vulnerability after depressive episodes, linking cognitive and biological vulnerability factors. We review the empirical data on the biological factors associated with the attentional impairments and detail how they are associated with rumination and mood regulation. The aim of our framework is to stimulate translational research

    Predicting Treatment Response in Social Anxiety Disorder From Functional Magnetic Resonance Imaging

    Get PDF
    Context: Current behavioral measures poorly predict treatment outcome in social anxiety disorder (SAD). To our knowledge, this is the first study to examine neuroimaging-based treatment prediction in SAD. Objective: To measure brain activation in patients with SAD as a biomarker to predict subsequent response to cognitive behavioral therapy (CBT). Design: Functional magnetic resonance imaging (fMRI) data were collected prior to CBT intervention. Changes in clinical status were regressed on brain responses and tested for selectivity for social stimuli. Setting: Patients were treated with protocol-based CBT at anxiety disorder programs at Boston University or Massachusetts General Hospital and underwent neuroimaging data collection at Massachusetts Institute of Technology. Patients: Thirty-nine medication-free patients meeting DSM-IV criteria for the generalized subtype of SAD. Interventions: Brain responses to angry vs neutral faces or emotional vs neutral scenes were examined with fMRI prior to initiation of CBT. Main Outcome Measures: Whole-brain regression analyses with differential fMRI responses for angry vs neutral faces and changes in Liebowitz Social Anxiety Scale score as the treatment outcome measure. Results: Pretreatment responses significantly predicted subsequent treatment outcome of patients selectively for social stimuli and particularly in regions of higher-order visual cortex. Combining the brain measures with information on clinical severity accounted for more than 40% of the variance in treatment response and substantially exceeded predictions based on clinical measures at baseline. Prediction success was unaffected by testing for potential confounding factors such as depression severity at baseline. Conclusions: The results suggest that brain imaging can provide biomarkers that substantially improve predictions for the success of cognitive behavioral interventions and more generally suggest that such biomarkers may offer evidence-based, personalized medicine approaches for optimally selecting among treatment options for a patient

    Neuroimaging studies of psychological interventions for mood and anxiety disorders: empirical and methodological review.

    Get PDF
    This article reviews the methods and results of published neuroimaging studies of the effects of structured psychological interventions for mood and anxiety disorders. The results are consistent with neural models of improved affective- and self-regulation, as evidenced by psychotherapeutic modulation of brain metabolic activity within the dorsolateral, ventrolateral, and medial prefrontal cortices, the anterior cingulate, the posterior cingulate/precuneus, and the insular cortices. Specific recommendations for future studies are outlined, and the clinical and theoretical significance of this research is discussed

    Fear Processing in Dental Phobia during Crossmodal Symptom Provocation: An fMRI Study

    Get PDF
    corecore