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Abstract: Although exposure-based treatments and anxiolytic medications are more effective than 

placebo for treating anxiety disorders, there is still considerable room for further improvement. 

Interestingly, combining these two modalities is usually not more effective than the monotherapies. 

Recent translational research has identified a number of novel approaches for treating anxiety 

disorders using agents that serve as neuroenhancers (also known as cognitive enhancers). Several of 

these agents have been studied to determine their efficacy at improving treatment outcome for 

patients with anxiety and other psychiatric disorders. In this review, we examine d-cycloserine, 

yohimbine, cortisol, catecholamines, oxytocin, modafinil, and nutrients such as caffeine and amino 

fatty acids as potential neuroenhancers. Of these agents, d-cycloserine shows the most promise as an 

effective neuroenhancer for extinction learning and exposure therapy. Yet, the optimal dosing and 

dose timing for drug administration remains uncertain. There is partial support for cortisol, 

catecholamines, yohimbine and oxytocin for improving extinction learning and exposure therapy. 

There is less evidence to indicate that modafinil and nutrients such as caffeine and amino fatty acids 

are effective neuroenhancers. More research is needed to determine their long term efficacy and 

clinical utility of these agents. 

Keywords: neuroenhancer; cognitive enhancer; exposure therapy; extinction; d-cycloserine; 

cognitive behavioral therapy; anxiety disorders 

 

1. Introduction  

Behavioral and exposure based treatments, such as cognitive behavioral therapy (CBT), are 

among the most efficacious for anxiety disorders [1,2]. The success of these interventions is, in part, 

a consequence of their targeting core mechanisms implicated in the genesis and maintenance of 
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pathological anxiety: maladaptive learning and fear conditioning. A standard course of exposure 

based treatment entails exposure to feared objects or situations and the elimination of safety 

behaviors (i.e., subtle avoidance behaviors that temporarily diminish distress in feared situations, but 

fail to result in long-term reductions in anxiety). Patients are encouraged to encounter feared objects 

without engaging in safety behaviors, and this exposure will continue until substantive reductions in 

fear occur. Exposure based treatments facilitate extinction learning such that associations between the 

initial situation and fear attenuate and novel learning about the true nature of the situation occurs [3,4].  

Notwithstanding the considerable body of literature substantiating CBT as a gold standard 

intervention for anxiety disorders, certain combination strategies may promote greater efficacy [5]. 

Recent research has attested to the potential utility of neuroenhancers—which has also referred to as 

cognitive enhancers—as a way to augment adaptive learning that occurs during treatment. Several 

studies have suggested that administering such neuroenhancers prior to successful exposures might 

enhance treatment outcome [6,7]. The current review examines the empirical basis of several 

neuroenhancers, including d-cycloserine, yohimbine, cortisol, catecholamines, oxytocin, modafinil, 

and selected nutrients.  

2. D-cycloserine 

The modulatory role of the glutamatergic N-Methyl-D-Aspartate (NMDA) receptor in 

extinction learning has received empirical support from an increasing body of animal literature. 

Recent research on D-cycloserine (DCS; d-4-amino-3-isoxazolidinone), a partial agonist of the 

NMDA receptor complex, has fostered interest in the role of glutamatergic transmission in anxiety 

disorders. DCS has been implicated in the consolidation of new learning during extinction and, 

thereby, memory enhancement by acting on the NMDA receptors in the amygdala [8,9]. Unlike 

SSRIs, this agent itself does not produce an anxiolytic effect, but rather enhances successful 

extinction learning, thereby augmenting the efficacy of exposure therapy [10]. The effects of DCS 

may be sensitive to contextual conditions, as there is evidence that suggests that the maintenance of 

extinction learning occurs only in the original learning context [10]. 

Prior to its recent use in memory enhancement, DCS had been administered as an antibiotic for 

tuberculosis. The first study to investigate its utility in augmenting exposure therapy assigned height 

phobic patients to receive either DCS or pill placebo prior to exposure [11]. Results suggested that 

DCS augmented therapy even with low dosages (i.e., 50 and 250 mg) when administered one hour 

prior to the exposure session. In fact, patients in the DCS condition showed maintenance of treatment 

gains post treatment over a three month follow-up period and willingly participated in self-exposure 

to heights more frequently than did those in the placebo condition. Because patients who received 

DCS experienced greater reductions in acrophobic symptoms relative to those who received pill 

placebo, this study provided initial support that DCS may augment memory consolidation of 

successful exposure experiences [11]. 

The successful results of this trial encouraged later research to replicate and extend these results 

across other anxiety disorders. In a randomized, double-blind clinical trial, Hofmann et al. [6] 

examined the comparative efficacy of exposure therapy combined with either 50 mg DCS or pill 

placebo. In both conditions, patients with social anxiety disorder received the appropriate pill one 

hour prior to the exposure session for four of the five sessions in the protocol. The results of the 

current study substantiated those of Ressler and colleagues [11]. Patients who received exposure 
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therapy combined with DCS evidenced significantly greater reduction in social anxiety symptoms at 

post-treatment and one-month follow-up assessments Otto et al. [12] extended this research by 

examining the DCS augmented exposure for panic disorder. Patients were randomized to receive 

either DCS or pill placebo prior to three sessions of a five session exposure protocol, in which 

patients expose themselves to various interoceptive sensations. Compared to patients in the placebo 

condition, those treated with the combined DCS-exposure intervention achieved better treatment 

outcomes at both post-treatment and one month follow-up. Specifically, more individuals in the 

combined condition had clinically significant remission in symptoms (77% vs. 33%). 

An important consideration of DCS administration regards its timing. Because peak blood 

levels of DCS occur within a narrow time window (e.g., four to six hours after ingestion), judicious 

administration of this pharmacological agent entails matching timing of DCS with timing of 

extinction learning [13]. Results from our clinical trials suggest that exposure augmentation was 

accomplished with 50 mg of DCS one hour before each of 5 exposure sessions [6,12,14]. In addition, 

this administration schedule was associated with in a benign side effect profile, as patients could not 

distinguish 50 mg of DCS from pill placebo. Thus, extant literature suggests that optimizing DCS 

requires single, small doses one to two hours prior to exposure at one-week intervals.   

Another consideration relevant to the clinical utility of DCS is the success of the exposure. 

Because it functions as a memory enhancer, DCS augments the learning and reconsolidation of 

whatever experiences and memories become active during an exposure session. Lee et al. [15] have 

shown that reconsolidation processes dominate during briefer sessions, whereas extinction learning 

processes dominate during longer sessions. Little extinction occurs if stimulus re-exposure is brief, 

as the fear memory becomes dominant. This would indicate that administration of DCS would 

enhance reconsolidation of the fear memory and, thus, result in clinically contraindicated effects [13]. 

A reanalysis of a recent trial substantiated that administering DCS during insufficient extinction 

learning (e.g., very brief exposures, inadequate reduction of within session fear levels, etc.) 

compromises treatment outcome [16,17]. Results indicated that, although CBT with DCS did not 

outperform CBT with placebo, patients who both received DCS and experienced lower post-session 

fear levels accomplished better outcome than did those receiving pill placebo. Thus, it appears that 

several clinical factors must be considered, as exposure success moderates the overall benefit of 

adjuvant DCS. Future research could extend our knowledge by identifying the conditions under 

which DCS enhances treatment gains. 

3. Yohimbine 

Yohimbine hydrochloride (YOH) is a purified form of the African yohimbine bark and functions 

as a selective competitive alpha2-adrenergic receptor antagonist. YOH has received increased 

attention regarding its clinical utility because of recent studies examining its role as a potential 

augmentation strategy for extinction-based treatments. YOH increases extracellular norepinephrine 

by blocking autoreceptor inhibition of norepinephrine release, which could facilitate extinction 

learning in exposure therapies [18].  

Extant research has produced contradictory results regarding the role of YOH on extinction 

learning. Notwithstanding one early study, which suggested that YOH augmented the rate of 

extinction learning in rodents, subsequent research has yet to replicate these findings, and some 

studies have even found YOH to impair animal extinction learning [19]. O’Carroll et al. [20] 
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extended this research to human subjects and determined that the administration of 20 mg of YOH 

prior to observing emotionally provocative images augmented subsequent recall.  Furthermore, 

administering 50 mg of metaprolol (a noradrenaline blocker) in the same study eventuated in worse 

memory recall, suggesting that YOH’s stimulation of the noradrenergic system facilitated emotional 

learning.  

Despite the paucity of literature examining the YOH in the context of extinction learning, some 

recent studies have supported its use in clinical settings as an adjunct treatment to exposure therapy. 

Powers et al. [21] conducted a trial in which participants with claustrophobia were randomized to 

receive either 10.8 mg of YOH or pill placebo one hour prior to two 60-minute sessions of in-vivo 

exposure therapy consisting of sitting in a closed, dark chamber. Those receiving YOH evidenced 

more robust reductions in claustrophobia symptoms. A more recent treatment outcome study has 

replicated the clinical utility of adjuvant YOH for individuals with social anxiety disorder [7]. 

Patients received either 10.8 mg of YOH or pill placebo prior to each of four exposure sessions. 

Results suggested that YOH augmentation, relative to placebo augmentation, expedited treatment 

improvement and entailed lower levels of social anxiety symptoms. Though further research is 

warranted, these initial studies provide tentative support for the utility of YOH in augmenting 

exposure therapy. The collective results demonstrate initial promise for YOH’s utility in augmenting 

exposure therapy. 

4. Cortisol 

Stress activates the hypothalamic pituitary adrenal axis (HPA), which causes the adrenal cortex 

to release glucocorticoids such as cortisol [22]. The ability of the HPA axis to react to stress is 

dependent on how well glucocorticoids control the release of adrenocorticotrophic hormone (ACTH) 

and corticotropin releasing hormone (CRH). Glucocorticoids exert this control by binding to the 

glucocorticoid receptors (GR) and the mineralocorticoid receptors (MR) located throughout the brain [22]. 

Specifically, the basolateral complex of the amygdala may play an important role in memory 

consolidation [23]. If GR agonists are administered to this area of the amygdala post-training in an 

inhibitory avoidance task, there is an enhanced memory consolidation effect, which is blocked with 

GR antagonists [24]. In addition to cortisol being released in response to stress, there is a diurnal 

level of cortisol which is present and follows a circadian rhythm pattern. A high level of cortisol is 

released in the waking hours of the morning and a low level is released in the evening [25]. 

Chronic elevations of cortisol have been shown to impair memory, however, short-term 

increases in cortisol may increase emotional consolidation and extinction learning [22,26]. The 

relationship between acute stress, glucocorticoid levels and cognition follows the pattern of an 

inverted U-shaped curve with mid-range doses improving memory consolidation and high or low 

doses not improving and possibly impairing memory [27,28]. In addition, experimental animal 

research has found that glucocorticoids impair the reconsolidation of existing memories [29,30] and 

aid in the consolidation of extinction memory, whereas decreasing or eliminating glucocorticoid 

function impairs this extinction learning [29,31,32,33]. The enhancing effect of glucocorticoids on 

memory consolidation has been related only to emotionally arousing experiences and not neutral 

information [23]. Thus, utilizing cortisol during extinction learning in clinical trials could be very 

effective since physiological arousal is paramount to effective exposure and extinction.  

Research has shown that endogenous and exogenous cortisol levels enhance extinction learning 
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during behavioral exposure treatment for anxiety disorders. Because cortisol follows a circadian 

rhythm pattern, Lass-Hennemann and Michael [34] examined whether conducting exposure sessions 

in the early morning compared to the later evening could be enhanced by the endogenous high levels 

of cortisol in the morning. In fact, they demonstrated that subjects who received the exposure session 

in the morning showed greater reduction of fear of spiders than those who had the session in the 

evening. In a second study of specific phobia, Soravia et al. [35] administered cortisol or placebo to 

subjects one hour before exposure to a spider photograph over 6 trials in the span of two weeks. 

Subjects who received cortisol showed a greater reduction of fear compared to those who received 

placebo. More recently, these authors [36] replicated the study using two sessions of in vivo exposure 

to live spiders and found that those subjects who received cortisol reported fewer specific phobia 

symptoms and less subjective fear and physical distress at the one month follow-up compared to 

those who received placebo. In a randomized control trial (RCT) of specific phobia of heights, 

subjects were given cortisol or placebo one hour prior to exposure therapy [37]. The subjects who 

received the cortisol were significantly less symptomatic during post-treatment and one-month 

follow-up assessments compared to those who received placebo. This experimental RCT provides 

strong support for the role of cortisol in enhancing extinction learning for specific phobia. Finally, 

for subjects who had panic disorder and agoraphobia, higher levels of endogenous cortisol were 

linked to enhanced extinction learning, which was demonstrated by faster rates of clinical 

improvement [38]. In another study, the panic disorder subjects with the lowest levels of cortisol 

during the exposures evidenced the poorest treatment outcome [39]. In summary, this research shows 

that cortisol can function as an enhancer for exposure therapy for specific phobia and panic disorder 

possibly by increasing the ability of subjects to retain the newly acquired extinction memory after the 

exposure trials. 

Glucocorticoids have also been shown to enhance encoding of extinction for those with PTSD.  

In a double blind placebo control trial, Suris et al. [40] administered glucocorticoid or placebo after 

one traumatic memory exposure trial and found that those subjects who received the glucocorticoid 

after exposure showed decreased numbing and avoidance symptoms of PTSD compared to those 

who received the placebo. Glucocorticoids have also been shown to decrease the ability to retrieve a 

previously partially encoded traumatic memory. Aerni et al. [41] administered low doses of cortisol 

daily for one month to three subjects with PTSD and found that they had a significant reduction of 

intensity related to flashbacks, physiological distress, and nightmares. Taken together, these findings 

suggest that cortisol may play an important role in the facilitation of new extinction learning and also 

inhibit retrieval of a previously encoded traumatic memory. 

When considering the clinical utility of cortisol in improving treatment outcome, the interfering 

role of anxiolytic medications in extinction learning should be highlighted. Research shows that 

anxiolytic medications suppress glucocorticoids [42,43]. This mechanism of cortisol suppression may 

explain why combining exposure based CBT and anxiolytic medications is not effective [26]. Future 

clinical trials should measure and statistically control for anxiolytic use when examining the efficacy 

of cortisol in enhancing extinction learning during exposure. Finally, De Quervain et al. [23] state 

that because glucocorticoids impair memory retrieval and increase new extinction learning for 

emotional memories, they may be very beneficial in augmenting treatment for anxiety, trauma and 

stress related disorders. 
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5. Catecholamines 

Catecholamines are secreted by the adrenal glands in response to stress. These hormones 

include dopamine, epinephrine, and norepinephrine. High concentrations of dopamine have been 

found in the dorsolateral prefrontal cortex (PFC) [44], playing a role in representational or working 

memory [45]. In nonhuman primates, deficits in dopamine in the dorsolateral PFC produced a 

decline in working memory [46]. Specifically, injecting a dopamine antagonist at the D1 receptor site 

in the dorsolateral PFC was related to a response latency and decreased accuracy for a spatial 

learning task in rhesus monkeys, showing that the dorsolateral PFC and dopamine play an important 

role in working memory [46]. Research shows that D1 receptor activation in the PFC can positively 

or negatively affect working memory depending on the level of stimulation. The relationship 

between cognitive performance and D1 stimulation levels follows an inverted U based curve, 

suggesting that too much or too little D1 agonist stimulation disrupts performance [47]. In addition, 

D1 receptor stimulation increases the strength of the mental representations in working memory by 

shutting off weak inputs on the PFC and strongly stabilizing one or a small set of representations.  

This allows the organism to pursue one goal over others [47]. 

Dopamine is also linked to motivation and reward seeking [48], which has implications for 

substance use disorders. In addition, a high level of dopamine activation is associated with low levels 

of serotonin or GABA in areas of the brain associated with the pathophysiology of anxiety disorders [49]. 

Specifically, dopamine receptors that have a higher binding potential in the striatal and mesolimbic 

areas of the brain are related to an increased risk of obsessive compulsive disorder (OCD) and 

anxiety disorders [50,51]. 

Because catecholamines such as epinephrine and norepinephrine are associated with anxiety 

symptoms, researchers have tried to manipulate the availability of dopamine by using selective 

serotonin reuptake inhibitors (SSRIs) [52]. SSRIs increase the availability of serotonin in the synapse 

and this increased serontonin inhibits the release of dopamine. However, for patients with OCD, 

these medications are not effective alone and research indicates that approximately half of patients 

are resistant to this psychotropic treatment [52]. Because there is a higher binding potential for 

dopamine at its receptor sites in the striatal region, future research could be conducted to examine the 

efficacy of dopamine antagonists to decrease physical symptoms of anxiety in OCD. 

6. Oxytocin 

Oxytocin is a neuropeptide, which plays an important role in social cognition and behavior [53–55]. 

Social cognition involves psychological processes that underlie the ability of people to take 

advantage of being part of a social group [56]. Also, social cognition is essential to maintaining 

interpersonal relationships [57]. Oxytocin is synthesized by neurons in the paraventricular and 

supraoptic nuclei of the hypothalamus. It predominates in the posterior lobe of the pituitary gland, 

where it is released into peripheral circulation. It is also released from neuronal dendrites into 

extracellular space where it can reach local and far-reaching targets. Finally, oxytocinergic neurons 

project to other areas in the brain such as the amygdala, hippocampus, striatum, suprachiasmatic 

nucleus, bed nucleus of the stria terminalis and brainstem [58]. 

Researchers who have examined the relationship between oxytocin and human behavior have 

measured it in blood plasma to investigate its peripheral actions as a neuropeptide. They have also 
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measured it in cerebrospinal fluid (CSF) to see its central nervous system (CNS) effects as a 

neuromodulator and neurotransmitter. Research examining oxytocin as a neuropeptide has 

demonstrated that a higher level of plasma oxytocin is associated with increased trust and 

trustworthiness [59], increased levels of partner support based on subject ratings [60], and decreased 

ratings of anxiety and depression [61]. In contrast, low plasma levels of oxytocin have been 

associated with schizophrenia, autism spectrum disorders and depression compared to normal 

controls [62,63]. Nevertheless, the picture of the relationship between oxytocin on social behavior 

and psychopathology is not uniform. Some researchers found that high plasma levels of oxytocin 

were associated with relationship stress in women [65], and increased levels of social anxiety [66]. 

Also, it is uncertain whether these findings of plasma levels of oxytocin acting as a neuropeptide 

mirror the neuromodulatory and neurotransmitter action of oxytocin in the CNS. Future experimental 

research is needed to examine whether the form of oxytocin administration (i.e., intranasal versus 

systemic) affects reuptake by the CNS and bloodstream in different ways [67]. 

In experimental research, oxytocin given to subjects intranasally is related to an increase in 

prosocial behavior, and improves emotion recognition and social memory [55]. In one seminal study, 

researchers tested the effect of intranasal oxytocin administration on the willingness of people to 

exchange money with one other [54]. They found that those subject investors who received oxytocin 

gave significantly more money to the subject trustees, compared to those who received the placebo. 

The trust and risk portion of the study referred to the ignorance of the subject investors regarding 

whether the subject trustees would share their money after the transaction. The overarching results 

indicate that oxytocin may be related to increased trust in others. In fact, further research shows that 

subjects who were given oxytocin trusted others more than those in the placebo group and the effect 

of oxytocin on willingness to take risks was moderated by whether the subject’s interaction was in a 

social context [68,69]. In another study, researchers found that when a breach of trust was made 

during a game involving trust, those subjects who received oxytocin still made choices showing that 

they trusted others on future trials. This relationship was not found for those who received the 

placebo, who changed their behavior based on the breach of trust [70]. 

Due to oxytocin’s effect on increasing trust within the social relationship context, researchers 

have examined whether oxytocin can benefit patients who suffer from disorders involving 

impairment in social interactions, such as social anxiety disorder, autism spectrum disorders and 

schizophrenia [71]. In one study, researchers tested whether administering oxytocin as an 

augmentation to a 5-weeks cognitive behavioral therapy (CBT) exposure treatment for social anxiety 

disorder would improve treatment outcome [72]. Subjects in the oxytocin group did better on speech 

performance and appearance compared to those in the placebo group, however, the severity of social 

anxiety symptoms did not differ between the two groups. The explanation for this null finding on 

social anxiety symptoms remains unanswered, but one reason could be that the best dose response 

amount and timing of administration has not been established across multiple research labs. Most 

studies examining intranasal oxytocin administration on social behavior in humans have used one 

dose of 24 international units (IU) of oxytocin [73], but it is uncertain as to whether this is the 

optimal dose for anxiety disorders. To determine whether oxytocin can be used clinically, additional 

research should be conducted to examine how oxytocin affects fear related circuitry and the best 

timing and amount of oxytocin to be used to decrease anxiety symptoms.  

Research on brain reactivity during an emotional face matching task, has shown that subjects 

with social anxiety disorder showed heightened reactivity in the amygdala in response to fearful 
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faces compared to healthy control subjects. However, when social anxiety disorder subjects were 

given oxytocin, the presentation of fearful faces did not evoke the same amygdala reactivity that was 

present at baseline [74]. In a second study these researchers examined brain reactivity in response to 

sad faces for subjects with social anxiety disorder. They found that oxytocin decreased hyperactivity 

in the medial PFC and anterior cingulate cortex (ACC) in response to sad faces for those with social 

anxiety disorder to the extent that the activation did not significantly differ from the healthy controls [75]. 

Moreover, it appears that the effect of oxytocin is specific to particular subgroups of individuals [76]. In 

summary, the research indicates that oxytocin could increase treatment efficacy for patients with 

social anxiety disorder by decreasing activation of the amygdala, medial PFC and ACC in response 

to fearful or sad faces.  

7. Modafinil 

Modafinil is a psychostimulant approved by the FDA to treat extreme sleepiness, which is 

present in shift work, narcolepsy, and obstructive sleep apnea [77]. Modafinil binds to and obstructs 

the dopamine transporter and norepinephrine transporter, causing significant increases of dopamine [78] 

and norepinephrine in the extracellular space [79]. In addition research shows that it decreases levels 

of GABA and increases levels of histamine, orexin, glutamate and serotonin [77]. Also, modafinil has 

been used off label to treat the cognitive impairment present in psychiatric disorders such as attention 

deficit hyperactivity disorder, depression, and schizophrenia [77]. 

Research on modafinil’s effect on memory and cognitive functioning has been conducted on 

samples of healthy humans, those with psychiatric disorders and animals [80–82]. Modafinil has been 

shown to improve spatial working memory in rats [84]. The improvement in memory performance is 

dependent on dose and timing, with stronger effects shown with sustained doses of modafinil [77]. In 

humans, modafinil exerts its effects by improving working memory, memory recognition, and 

attention and increasing ability on cognitive control tasks. For patients diagnosed with attention 

deficit hyperactivity disorder, depression and schizophrenia, modafinil may enhance executive 

functioning and other PFC functioning [77]. 

Studies of the relationship between modafinil and anxiety have shown mixed results. In healthy 

human subjects, modafinil reduced amygdala response to emotionally salient information, such as 

fearful stimuli [85]. In animal research with monkeys, modafinil was found to heighten nocturnal 

activity following multiple or single doses, but it did not result in decreased anxiety [80]. In human 

research the effect of modafinil on anxiety may be contingent on the amount of drug used.  

Modafinil in doses of 200–800 mg was related to increased anxiety in healthy adults [83]. In a 

second study researchers found that that 100 mg of modafinil given in one dose was related to a 

greater level of anxiety compared to placebo, yet, 200 mg of modafinil did not result in an increase in 

anxiety [82]. In clinical RCTs, repeated doses of modafinil were linked to higher levels of anxiety in 

patients who had obstructive sleep apnea [86] and patients diagnosed with multiple sclerosis [87]. In 

summary, modafinil has few side effects in humans but is associated with increased anxiety in 

healthy and clinical populations, thus, its efficacy as a neuroenhancer for increasing new habituation 

learning is uncertain. 
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8. Nutrients: Caffeine and Omega-3 Fatty Acids 

Several studies have explored the effects of naturally occurring substances such as omega-3 

fatty acids and caffeine on anxiety symptoms [88–95]. In a study investigating the effect of the 

caffeine challenge test on panic induction tasks (e.g., CO2 inhalation, breath holding and 

hyperventilation), results indicated that caffeine influences fear circuitry [93]. Specifically, the 

unpleasant physical symptoms generated by caffeine consumption were less well tolerated among 

individuals with panic disorder. Culver et al. [93] demonstrated that caffeine administration may 

enhance relapse prevention after individuals achieve successful extinction learning. Some research 

has indicated that the extinction effects of caffeine might be state-dependent. When caffeine was 

administered as an adjunct to exposure therapy for spider phobia [94], those who experienced 

congruent drug states, (i.e. consuming the same agent (caffeine or pill placebo) at both test and 

follow-up periods), evidenced reduced return of fear compared with individuals who experienced 

incongruent drug states, (i.e. consuming different drugs at both time-points).  

Omega-3 fatty acids, which compose mammalian brain tissue, can be easily synthesized from 

foods such as canola, flaxseed, and soy. Constituting approximately 10−20% of brain fatty tissue, 

docosahexaenoic acid and other forms of fatty acids are not easily synthesized from those foods and 

are often consumed from natural sources such as fatty fish (e.g., tuna and salmon) [97]. Animal 

models suggest that insufficient fatty acids are related to neurocognitive deficits, greater levels of 

aggression, anxiety, and depression. Moreover, human research has indicated that deficits in omega-3 

fatty acids are associated with psychopathologies, such as attention deficit hyperactivity disorder [89], 

depression [98] and schizophrenia [99]. 

Despite the dearth of evidence supporting the efficacy of omega-3 fatty acid supplements, 

several studies have investigated them as an adjunct to pharmacological treatment for depression, 

bipolar disorder, and attention deficit hyperactivity disorder, revealing modest findings [88,89,91,92]. 

Continued research on omega-3 supplements’ benefits for anxiety treatment could be useful, given 

the connection between omega-3 deficits and elevated anxiety 

9. Conclusion 

In this review the efficacy of DCS, yohimbine, cortisol, catecholamines, oxytocin, modafinil, 

and selected nutrients as neuroenhancers for extinction learning for anxiety was examined. Overall, 

DCS was shown to have the most empirical support, yet the timing of the optimal DCS 

administration remains uncertain [17]. There is partial evidence that cortisol, catecholamines, 

yohimbine and oxytocin could also act as neuroenhancers but further research must be conducted to 

discern the relationship between these agents and enhanced extinction learning. Finally, there was 

less evidence to support modafinil, nutrients and botanicals as strong neuroenhancers for learning.   

Some of these neuroenhancers, especially DCS, are promising for treating anxiety disorders 

because these agents improve the efficacy of extinction learning, which is integral in exposure 

treatment for anxiety disorders. They facilitate learning new memories through habituation and 

extinction, and these safe memories will override the previous fear memories. Also, some of these 

agents such as DCS target the NMDA receptors in the amygdala, which underlies the 

pathophysiology and maintenance of anxiety disorders. Thus, utilizing neuroenhancers as an adjunct 

to CBT represents a promising translational effort, by taking the experimental learning bench 
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research to clinical practice. In contrast, using combination anxiolytic and CBT treatments did not 

come from a theoretical understanding of the mechanism of action, and has been proven less 

effective [100]. If the clinical utility of this treatment is demonstrated by multiple labs and research 

groups, effectiveness research trials can be conducted to disseminate this treatment to community run 

clinics. Disseminating this treatment to more patients in the real world will decrease the number of 

patients suffering from the consequences of pathological anxiety (e.g., loss of work, poor job 

performance, disability, etc.). Further research must be conducted to examine the long-term efficacy 

of neuroenhancers with CBT for anxiety disorders. Yet, based on short-term follow up findings it is 

promising. Finally, the tolerability of neuroenhancers in this review is very good with few side 

effects, which decreases patient burden compared to anxiolytic medications which have more side 

effects. Future research with human RCTs is needed to test long-term effects of neuroenhancers with 

CBT and to examine whether these agents can be effectively administered after a treatment session to 

tailor the drug administration, such that the neuroenhancer is only given after adaptive learning has 

occurred. 
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