2,066 research outputs found

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour

    Compositionality, stochasticity and cooperativity in dynamic models of gene regulation

    Full text link
    We present an approach for constructing dynamic models for the simulation of gene regulatory networks from simple computational elements. Each element is called a ``gene gate'' and defines an input/output-relationship corresponding to the binding and production of transcription factors. The proposed reaction kinetics of the gene gates can be mapped onto stochastic processes and the standard ode-description. While the ode-approach requires fixing the system's topology before its correct implementation, expressing them in stochastic pi-calculus leads to a fully compositional scheme: network elements become autonomous and only the input/output relationships fix their wiring. The modularity of our approach allows to pass easily from a basic first-level description to refined models which capture more details of the biological system. As an illustrative application we present the stochastic repressilator, an artificial cellular clock, which oscillates readily without any cooperative effects.Comment: 15 pages, 8 figures. Accepted by the HFSP journal (13/09/07

    Investigating modularity and transparency within bioinspired connectionist architectures using genetic and epigenetic models

    Get PDF
    Machine learning algorithms allow computers to deal with incomplete data in tasks such as speech recognition and object detection. Some machine learning algorithms take inspiration from biological systems due to useful properties such as robustness, allowing algorithms to be flexible and domain agnostic. This comes at a cost, resulting in difficulty when one attempts to understand the reasoning behind decisions. This is problematic when such models are applied in realworld situations where accountability, legality, and maintenance are of concern. Artificial gene regulatory networks (AGRNs) are a type of connectionist architecture inspired by gene regulatory mechanisms. AGRNs are of interest within this thesis due to their ability to solve tasks in chaotic dynamical systems despite their relatively small size.The overarching aim of this work was to investigate the properties of connectionist architectures to improve the transparency of their execution. Initially, the evolutionary process and internal structure of AGRNs were investigated. Following this, the creation of an external control layer used to improve the transparency of execution of an external connectionist architecture was attempted.When investigating the evolutionary process of AGRNs, pathways were found that when followed, produced more performant networks in a shorter time frame. Evidence that AGRNs are capable of performing well despite internal interference was found when investigating their modularity, where it was also discovered that they do not develop strict modularity consistently. A control layer inspired by epigenetics that selectively deactivates nodes in trained artificial neural networks (ANNs) was developed; the analysis of its behaviour provided an insight into the internal workings of the ANN

    Gene Regulatory Network Reconstruction Using Dynamic Bayesian Networks

    Get PDF
    High-content technologies such as DNA microarrays can provide a system-scale overview of how genes interact with each other in a network context. Various mathematical methods and computational approaches have been proposed to reconstruct GRNs, including Boolean networks, information theory, differential equations and Bayesian networks. GRN reconstruction faces huge intrinsic challenges on both experimental and theoretical fronts, because the inputs and outputs of the molecular processes are unclear and the underlying principles are unknown or too complex. In this work, we focused on improving the accuracy and speed of GRN reconstruction with Dynamic Bayesian based method. A commonly used structure-learning algorithm is based on REVEAL (Reverse Engineering Algorithm). However, this method has some limitations when it is used for reconstructing GRNs. For instance, the two-stage temporal Bayes network (2TBN) cannot be well recovered by application of REVEAL; it has low accuracy and speed for high dimensionality networks that has above a hundred nodes; and it even cannot accomplish the task of reconstructing a network with 400 nodes. We implemented an algorithm for DBN structure learning with Friedman\u27s score function to replace REVEAL, and tested it on reconstruction of both synthetic networks and real yeast networks and compared it with REVEAL in the absence or presence of preprocessed network generated by Zou and Conzen\u27s algorithm. The new score metric improved the precision and recall of GRN reconstruction. Networks of gene interactions were reconstructed using a Dynamic Bayesian Network (DBN) approach and were analyzed to identify the mechanism of chemical-induced reversible neurotoxicity through reconstruction of gene regulatory networks in earthworms with tools curating relevant genes from non-model organism\u27s pathway to model organism pathway

    Synthetic biology: Understanding biological design from synthetic circuits

    Get PDF
    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics

    Engineering microcompartmentalized cell-free synthetic circuits

    Get PDF

    Models in molecular evolution: the case of toyLIFE

    Get PDF
    Mención Internacional en el título de doctorThis thesis set out to contribute to the growing body of knowledge pertaining models of the genotype-phenotype map. In the process, we proposed and studied a new computational model, toyLIFE, and a new metaphor for molecular evolution —adaptive multiscapes. We also studied functional promiscuity and the evolutionary dynamics of shifting environments. The first result of this thesis was the definition of toyLIFE, a simplified model of cellular biology that incorporated toy versions of genes, proteins and regulation as well as metabolic laws. Molecules in toyLIFE interact between each other following the laws of the HP protein folding model, which endows toyLIFE with a simplified chemistry. From these laws, we saw how something reminiscent of cell-like behavior emerged, with complex regulatory and metabolic networks that grew in complexity as the genome increased. toyLIFE is, to our knowledge, the first multi-level model of the genotype- phenotype map, compared to previous models studied in the literature, such as RNA, proteins, gene regulatory networks (GRNs) or metabolic networks. All of these models either disregarded cellular context when assigning phenotype and function (RNA and proteins) or omitted genome dynamics, by defining their genotypes from high-level abstractions (GRNs and metabolic networks). toyLIFE shares the same features exhibited by all genotype-phenotype maps studied so far. There is strong degeneracy in the map, with many genotypes mapping into the same phenotype. This degeneracy translates into the existence of neutral networks, that span genotype space as soon as the genotype contains more than two genes. There is also a strong asymmetry in the size distribution of phenotypes: most phenotypes were rare, while a few of them covered most genotypes. Moreover, most common phenotypes are easily accessed from each other. We also studied the prevalence of functional promiscuity (the ability to perform more than one function) in computational models of the genotypephenotype map. In particular, we studied RNA, Boolean GRNs and toy- LIFE. Our results suggest that promiscuity is the norm, rather than the exception. These results prompt us to rethink our understanding of biology as a neatly functioning machine. One of the most interesting results of this thesis came from studying the evolutionary dynamics of shifting environments in populations showing functional promiscuity: our results show that there is an optimal frequency of change that minimizes the time to extinction of the population. Finally, we presented a new metaphor for molecular evolution: adaptive multiscapes. This framework intends to update the fitness landscape metaphor proposed by Sewall Wright in the 1930s. Adaptive multiscapes include many features that we have learned from computational studies of the genotype-phenotype map, and that have been discussed throughout the thesis. The existence of neutral networks, the asymmetry in phenotype sizes -and the concomitant asymmetry in phenotype accessibility- and the presence of functional promiscuity all alter the original fitness landscape picture.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: Joshua Levy Payne.- Secretario: Saúl Arés García.- Vocal: Jacobo Aguirre Arauj
    • …
    corecore