33,198 research outputs found
State-dependent Priority Scheduling for Networked Control Systems
Networked control systems (NCS) have attracted considerable attention in
recent years. While the stabilizability and optimal control of NCS for a given
communication system has already been studied extensively, the design of the
communication system for NCS has recently seen an increase in more thorough
investigation. In this paper, we address an optimal scheduling problem for a
set of NCS sharing a dedicated communication channel, providing performance
bounds and asymptotic stability. We derive a suboptimal scheduling policy with
dynamic state-based priorities calculated at the sensors, which are then used
for stateless priority queuing in the network, making it both scalable and
efficient to implement on routers or multi-layer switches. These properties are
beneficial towards leveraging existing IP networks for control, which will be a
crucial factor for the proliferation of wide-area NCS applications. By allowing
for an arbitrary number of concurrent transmissions, we are able to investigate
the relationship between available bandwidth, transmission rate, and delay. To
demonstrate the feasibility of our approach, we provide a proof-of-concept
implementation of the priority scheduler using real networking hardware.Comment: 8 pages, 4 figures, accepted for publication at 2017 American Control
  Conference (ACC
Characterization of the Q-switched MOBLAS Laser Transmitter and Its Ranging Performance Relative to a PTM Q-switched System
A prototype Q-switched Nd:YAG laser transmitter intended for use in the NASA mobile laser ranging system was subjected to various tests of temporal pulse shape and stability, output energy and stability, beam divergence, and range bias errors. Peak to peak variations in the mean range were as large as 30 cm and drift rates of system bias with time as large as 6 mm per minute of operation were observed. The incorporation of a fast electro-optic cavity dump into the oscillator gave significantly improved results. Reevaluation of the ranging performance after modification showed a reduction in the peak to peak variation in the mean range to the 2 or 3 cm level and a drift rate of system time biases of less than 1 mm per minute of operation. A qualitative physical explanation for the superior performance of cavity dumped lasers is given
A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems
This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version
Effect of Random Parameter Switching on Commensurate Fractional Order Chaotic Systems
The paper explores the effect of random parameter switching in a fractional
order (FO) unified chaotic system which captures the dynamics of three popular
sub-classes of chaotic systems i.e. Lorenz, Lu and Chen's family of attractors.
The disappearance of chaos in such systems which rapidly switch from one family
to the other has been investigated here for the commensurate FO scenario. Our
simulation study show that a noise-like random variation in the key parameter
of the unified chaotic system along with a gradual decrease in the commensurate
FO is capable of suppressing the chaotic fluctuations much earlier than that
with the fixed parameter one. The chaotic time series produced by such random
parameter switching in nonlinear dynamical systems have been characterized
using the largest Lyapunov exponent (LLE) and Shannon entropy. The effect of
choosing different simulation techniques for random parameter FO switched
chaotic systems have also been explored through two frequency domain and three
time domain methods. Such a noise-like random switching mechanism could be
useful for stabilization and control of chaotic oscillation in many real-world
applications.Comment: 31 pages, 17 figures, 5 Table
Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]
We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines
Macroscopic modelling and robust control of bi-modal multi-region urban road networks
The paper concerns the integration of a bi-modal Macroscopic Fundamental Diagram (MFD) modelling for mixed traffic in a robust control framework for congested single- and multi-region urban networks. The bi-modal MFD relates the accumulation of cars and buses and the outflow (or circulating flow) in homogeneous (both in the spatial distribution of congestion and the spatial mode mixture) bi-modal traffic networks. We introduce the composition of traffic in the network as a parameter that affects the shape of the bi-modal MFD. A linear parameter varying model with uncertain parameter the vehicle composition approximates the original nonlinear system of aggregated dynamics when it is near the equilibrium point for single- and multi-region cities governed by bi-modal MFDs. This model aims at designing a robust perimeter and boundary flow controller for single- and multi-region networks that guarantees robust regulation and stability, and thus smooth and efficient operations, given that vehicle composition is a slow time-varying parameter. The control gain of the robust controller is calculated off-line using convex optimisation. To evaluate the proposed scheme, an extensive simulation-based study for single- and multi-region networks is carried out. To this end, the heterogeneous network of San Francisco where buses and cars share the same infrastructure is partitioned into two homogeneous regions with different modes of composition. The proposed robust control is compared with an optimised pre-timed signal plan and a single-region perimeter control strategy. Results show that the proposed robust control can significantly: (i) reduce the overall congestion in the network; (ii) improve the traffic performance of buses in terms of travel delays and schedule reliability, and; (iii) avoid queues and gridlocks on critical paths of the network
Temporal solitons in optical microresonators
Dissipative solitons can emerge in a wide variety of dissipative nonlinear
systems throughout the fields of optics, medicine or biology. Dissipative
solitons can also exist in Kerr-nonlinear optical resonators and rely on the
double balance between parametric gain and resonator loss on the one hand and
nonlinearity and diffraction or dispersion on the other hand. Mathematically
these solitons are solution to the Lugiato-Lefever equation and exist on top of
a continuous wave (cw) background. Here we report the observation of temporal
dissipative solitons in a high-Q optical microresonator. The solitons are
spontaneously generated when the pump laser is tuned through the effective zero
detuning point of a high-Q resonance, leading to an effective red-detuned
pumping. Red-detuned pumping marks a fundamentally new operating regime in
nonlinear microresonators. While usually unstablethis regime acquires unique
stability in the presence of solitons without any active feedback on the
system. The number of solitons in the resonator can be controlled via the pump
laser detuning and transitions to and between soliton states are associated
with discontinuous steps in the resonator transmission. Beyond enabling to
study soliton physics such as soliton crystals our observations open the route
towards compact, high repetition-rate femto-second sources, where the operating
wavelength is not bound to the availability of broadband laser gain media. The
single soliton states correspond in the frequency domain to low-noise optical
frequency combs with smooth spectral envelopes, critical to applications in
broadband spectroscopy, telecommunications, astronomy and low phase-noise
microwave generation.Comment: Includes Supplementary Informatio
Maximizing Profit in Green Cellular Networks through Collaborative Games
In this paper, we deal with the problem of maximizing the profit of Network
Operators (NOs) of green cellular networks in situations where
Quality-of-Service (QoS) guarantees must be ensured to users, and Base Stations
(BSs) can be shared among different operators. We show that if NOs cooperate
among them, by mutually sharing their users and BSs, then each one of them can
improve its net profit. By using a game-theoretic framework, we study the
problem of forming stable coalitions among NOs. Furthermore, we propose a
mathematical optimization model to allocate users to a set of BSs, in order to
reduce costs and, at the same time, to meet user QoS for NOs inside the same
coalition. Based on this, we propose an algorithm, based on cooperative game
theory, that enables each operator to decide with whom to cooperate in order to
maximize its profit. This algorithms adopts a distributed approach in which
each NO autonomously makes its own decisions, and where the best solution
arises without the need to synchronize them or to resort to a trusted third
party. The effectiveness of the proposed algorithm is demonstrated through a
thorough experimental evaluation considering real-world traffic traces, and a
set of realistic scenarios. The results we obtain indicate that our algorithm
allows a population of NOs to significantly improve their profits thanks to the
combination of energy reduction and satisfaction of QoS requirements.Comment: Added publisher info and citation notic
- …
