9 research outputs found

    Preface

    Get PDF

    AdaCompress: Adaptive Compression for Online Computer Vision Services

    Full text link
    With the growth of computer vision based applications and services, an explosive amount of images have been uploaded to cloud servers which host such computer vision algorithms, usually in the form of deep learning models. JPEG has been used as the {\em de facto} compression and encapsulation method before one uploads the images, due to its wide adaptation. However, standard JPEG configuration does not always perform well for compressing images that are to be processed by a deep learning model, e.g., the standard quality level of JPEG leads to 50\% of size overhead (compared with the best quality level selection) on ImageNet under the same inference accuracy in popular computer vision models including InceptionNet, ResNet, etc. Knowing this, designing a better JPEG configuration for online computer vision services is still extremely challenging: 1) Cloud-based computer vision models are usually a black box to end-users; thus it is difficult to design JPEG configuration without knowing their model structures. 2) JPEG configuration has to change when different users use it. In this paper, we propose a reinforcement learning based JPEG configuration framework. In particular, we design an agent that adaptively chooses the compression level according to the input image's features and backend deep learning models. Then we train the agent in a reinforcement learning way to adapt it for different deep learning cloud services that act as the {\em interactive training environment} and feeding a reward with comprehensive consideration of accuracy and data size. In our real-world evaluation on Amazon Rekognition, Face++ and Baidu Vision, our approach can reduce the size of images by 1/2 -- 1/3 while the overall classification accuracy only decreases slightly.Comment: ACM Multimedi

    Image Compression Effects in Face Recognition Systems

    Get PDF
    With the growing number of face recognition applications in everyday life, image- an

    The effects of scene content parameters, compression, and frame rate on the performance of analytics systems

    Get PDF
    In this investigation we study the effects of compression and frame rate reduction on the performance of four video analytics (VA) systems utilizing a low complexity scenario, such as the Sterile Zone (SZ). Additionally, we identify the most influential scene parameters affecting the performance of these systems. The SZ scenario is a scene consisting of a fence, not to be trespassed, and an area with grass. The VA system needs to alarm when there is an intruder (attack) entering the scene. The work includes testing of the systems with uncompressed and compressed (using H.264/MPEG-4 AVC at 25 and 5 frames per second) footage, consisting of quantified scene parameters. The scene parameters include descriptions of scene contrast, camera to subject distance, and attack portrayal. Additional footage, including only distractions (no attacks) is also investigated. Results have shown that every system has performed differently for each compression/frame rate level, whilst overall, compression has not adversely affected the performance of the systems. Frame rate reduction has decreased performance and scene parameters have influenced the behavior of the systems differently. Most false alarms were triggered with a distraction clip, including abrupt shadows through the fence. Findings could contribute to the improvement of VA systems

    Comparison of compression algorithms' impact on fingerprint and face recognition accuracy

    Full text link

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example
    corecore