380 research outputs found

    Effects of channel estimation on multiuser virtual MIMO-OFDMA relay-based networks

    Get PDF
    A practical multiuser cooperative transmission scheme denoted as Virtual Maximum Ratio Transmission (VMRT) for multiple-input multiple-output-orthogonal frequency division multiple access (MIMO-OFDMA) relay-based networks is proposed and evaluated in the presence of a realistic channel estimation algorithm and using low-density parity-check (LDPC) codes. It is shown that this scheme is robust against channel estimation errors. It offers diversity and array gain, keeping the complexity low with a multiuser and multiantenna channel estimation algorithm that is simple and efficient. In addition, the combination with LDPC codes provides improved gains; diversity gains larger than 6 dB can be easily obtained with a reduced number of relays. Thus, this scheme can be used to extend coverage or increase system throughput by using simple cooperative OFDMA-based relays.The authors would like to thank Jae-Yun Ko for his valuable help at the beginning of our work. This work has been partly funded by the projects MULTIADAPTIVE (TEC2008-06327- C03-02), COMONSENS (CSD2008-00010) and CODIV (ICT-2007-215477).Publicad

    Effects of channel estimation on multiuser virtual MIMO-OFDMA relay-based networks

    Get PDF
    In this paper, a practical multi-user cooperative transmission scheme denoted as Virtual Maximum Ratio Transmission (VMRT) for Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiple Access (MIMO-OFDMA) Relay-based networks is proposed and evaluated in the presence of a realistic channel estimation algorithm. It is shown that this scheme is robust against channel estimation errors and offers diversity and array gain keeping the complexity low, although the multi-user and multi-antenna channel estimation algorithm is simple and efficient. Diversity gains larger than 4 can be easily obtained with reduced number of relays. Thus, this scheme can be used to extend coverage or increase system throughput by using simple cooperative OFDMA-based relays

    Effects of channel estimation on multiuser virtual MIMO-OFDMA relay-based networks

    Get PDF
    In this paper, a practical multi-user cooperative transmission scheme denoted as Virtual Maximum Ratio Transmission (VMRT) for Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiple Access (MIMO-OFDMA) Relay-based networks is proposed and evaluated in the presence of a realistic channel estimation algorithm. It is shown that this scheme is robust against channel estimation errors and offers diversity and array gain keeping the complexity low, although the multi-user and multi-antenna channel estimation algorithm is simple and efficient. Diversity gains larger than 4 can be easily obtained with reduced number of relays. Thus, this scheme can be used to extend coverage or increase system throughput by using simple cooperative OFDMA-based relays

    Effects of channel estimation on multiuser virtual MIMO-OFDMA relay-based networks

    Get PDF
    In this paper, a practical multi-user cooperative transmission scheme denoted as Virtual Maximum Ratio Transmission (VMRT) for Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiple Access (MIMO-OFDMA) Relay-based networks is proposed and evaluated in the presence of a realistic channel estimation algorithm. It is shown that this scheme is robust against channel estimation errors and offers diversity and array gain keeping the complexity low, although the multi-user and multi-antenna channel estimation algorithm is simple and efficient. Diversity gains larger than 4 can be easily obtained with reduced number of relays. Thus, this scheme can be used to extend coverage or increase system throughput by using simple cooperative OFDMA-based relays

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    • …
    corecore